def test_tostring_c(self):
        language = Language.C
        x = as_symbol('x')
        y = as_symbol('y')
        z = as_symbol('z')
        n = as_number(123)

        assert Expr(Op.FACTORS, {x: 2}).tostring(language=language) == 'x * x'
        assert Expr(Op.FACTORS, {
            x + y: 2
        }).tostring(language=language) == '(x + y) * (x + y)'
        assert Expr(Op.FACTORS, {
            x: 12
        }).tostring(language=language) == 'pow(x, 12)'

        assert as_apply(ArithOp.DIV, x,
                        y).tostring(language=language) == 'x / y'
        assert as_apply(ArithOp.DIV, x,
                        x + y).tostring(language=language) == 'x / (x + y)'
        assert as_apply(ArithOp.DIV, x - y, x +
                        y).tostring(language=language) == '(x - y) / (x + y)'
        assert (x + (x - y) / (x + y) +
                n).tostring(language=language) == '123 + x + (x - y) / (x + y)'

        assert as_ternary(x, y, z).tostring(language=language) == '(x ? y : z)'
        assert as_eq(x, y).tostring(language=language) == 'x == y'
        assert as_ne(x, y).tostring(language=language) == 'x != y'
        assert as_lt(x, y).tostring(language=language) == 'x < y'
        assert as_le(x, y).tostring(language=language) == 'x <= y'
        assert as_gt(x, y).tostring(language=language) == 'x > y'
        assert as_ge(x, y).tostring(language=language) == 'x >= y'
Esempio n. 2
0
    def test_tostring_c(self):
        language = Language.C
        x = as_symbol("x")
        y = as_symbol("y")
        z = as_symbol("z")
        n = as_number(123)

        assert Expr(Op.FACTORS, {x: 2}).tostring(language=language) == "x * x"
        assert (Expr(Op.FACTORS, {
            x + y: 2
        }).tostring(language=language) == "(x + y) * (x + y)")
        assert Expr(Op.FACTORS, {
            x: 12
        }).tostring(language=language) == "pow(x, 12)"

        assert as_apply(ArithOp.DIV, x,
                        y).tostring(language=language) == "x / y"
        assert (as_apply(ArithOp.DIV, x,
                         x + y).tostring(language=language) == "x / (x + y)")
        assert (as_apply(ArithOp.DIV, x - y, x +
                         y).tostring(language=language) == "(x - y) / (x + y)")
        assert (x + (x - y) / (x + y) +
                n).tostring(language=language) == "123 + x + (x - y) / (x + y)"

        assert as_ternary(x, y, z).tostring(language=language) == "(x?y:z)"
        assert as_eq(x, y).tostring(language=language) == "x == y"
        assert as_ne(x, y).tostring(language=language) == "x != y"
        assert as_lt(x, y).tostring(language=language) == "x < y"
        assert as_le(x, y).tostring(language=language) == "x <= y"
        assert as_gt(x, y).tostring(language=language) == "x > y"
        assert as_ge(x, y).tostring(language=language) == "x >= y"
    def test_operations(self):
        x = as_symbol('x')
        y = as_symbol('y')
        z = as_symbol('z')

        assert x + x == Expr(Op.TERMS, {x: 2})
        assert x - x == Expr(Op.INTEGER, (0, 4))
        assert x + y == Expr(Op.TERMS, {x: 1, y: 1})
        assert x - y == Expr(Op.TERMS, {x: 1, y: -1})
        assert x * x == Expr(Op.FACTORS, {x: 2})
        assert x * y == Expr(Op.FACTORS, {x: 1, y: 1})

        assert +x == x
        assert -x == Expr(Op.TERMS, {x: -1}), repr(-x)
        assert 2 * x == Expr(Op.TERMS, {x: 2})
        assert 2 + x == Expr(Op.TERMS, {x: 1, as_number(1): 2})
        assert 2 * x + 3 * y == Expr(Op.TERMS, {x: 2, y: 3})
        assert (x + y) * 2 == Expr(Op.TERMS, {x: 2, y: 2})

        assert x**2 == Expr(Op.FACTORS, {x: 2})
        assert (x + y)**2 == Expr(
            Op.TERMS, {
                Expr(Op.FACTORS, {x: 2}): 1,
                Expr(Op.FACTORS, {y: 2}): 1,
                Expr(Op.FACTORS, {
                    x: 1,
                    y: 1
                }): 2
            })
        assert (x + y) * x == x**2 + x * y
        assert (x + y)**2 == x**2 + 2 * x * y + y**2
        assert (x + y)**2 + (x - y)**2 == 2 * x**2 + 2 * y**2
        assert (x + y) * z == x * z + y * z
        assert z * (x + y) == x * z + y * z

        assert (x / 2) == as_apply(ArithOp.DIV, x, as_number(2))
        assert (2 * x / 2) == x
        assert (3 * x / 2) == as_apply(ArithOp.DIV, 3 * x, as_number(2))
        assert (4 * x / 2) == 2 * x
        assert (5 * x / 2) == as_apply(ArithOp.DIV, 5 * x, as_number(2))
        assert (6 * x / 2) == 3 * x
        assert ((3 * 5) * x / 6) == as_apply(ArithOp.DIV, 5 * x, as_number(2))
        assert (30 * x**2 * y**4 / (24 * x**3 * y**3)) == as_apply(
            ArithOp.DIV, 5 * y, 4 * x)
        assert ((15 * x / 6) / 5) == as_apply(ArithOp.DIV, x,
                                              as_number(2)), ((15 * x / 6) / 5)
        assert (x / (5 / x)) == as_apply(ArithOp.DIV, x**2, as_number(5))

        assert (x / 2.0) == Expr(Op.TERMS, {x: 0.5})

        s = as_string('"ABC"')
        t = as_string('"123"')

        assert s // t == Expr(Op.STRING, ('"ABC123"', 1))
        assert s // x == Expr(Op.CONCAT, (s, x))
        assert x // s == Expr(Op.CONCAT, (x, s))

        c = as_complex(1., 2.)
        assert -c == as_complex(-1., -2.)
        assert c + c == as_expr((1 + 2j) * 2)
        assert c * c == as_expr((1 + 2j)**2)
    def test_tostring_fortran(self):
        x = as_symbol('x')
        y = as_symbol('y')
        z = as_symbol('z')
        n = as_number(123)
        m = as_number(456)
        a = as_array((n, m))
        c = as_complex(n, m)

        assert str(x) == 'x'
        assert str(n) == '123'
        assert str(a) == '[123, 456]'
        assert str(c) == '(123, 456)'

        assert str(Expr(Op.TERMS, {x: 1})) == 'x'
        assert str(Expr(Op.TERMS, {x: 2})) == '2 * x'
        assert str(Expr(Op.TERMS, {x: -1})) == '-x'
        assert str(Expr(Op.TERMS, {x: -2})) == '-2 * x'
        assert str(Expr(Op.TERMS, {x: 1, y: 1})) == 'x + y'
        assert str(Expr(Op.TERMS, {x: -1, y: -1})) == '-x - y'
        assert str(Expr(Op.TERMS, {x: 2, y: 3})) == '2 * x + 3 * y'
        assert str(Expr(Op.TERMS, {x: -2, y: 3})) == '-2 * x + 3 * y'
        assert str(Expr(Op.TERMS, {x: 2, y: -3})) == '2 * x - 3 * y'

        assert str(Expr(Op.FACTORS, {x: 1})) == 'x'
        assert str(Expr(Op.FACTORS, {x: 2})) == 'x ** 2'
        assert str(Expr(Op.FACTORS, {x: -1})) == 'x ** -1'
        assert str(Expr(Op.FACTORS, {x: -2})) == 'x ** -2'
        assert str(Expr(Op.FACTORS, {x: 1, y: 1})) == 'x * y'
        assert str(Expr(Op.FACTORS, {x: 2, y: 3})) == 'x ** 2 * y ** 3'

        v = Expr(Op.FACTORS, {x: 2, Expr(Op.TERMS, {x: 1, y: 1}): 3})
        assert str(v) == 'x ** 2 * (x + y) ** 3', str(v)
        v = Expr(Op.FACTORS, {x: 2, Expr(Op.FACTORS, {x: 1, y: 1}): 3})
        assert str(v) == 'x ** 2 * (x * y) ** 3', str(v)

        assert str(Expr(Op.APPLY, ('f', (), {}))) == 'f()'
        assert str(Expr(Op.APPLY, ('f', (x, ), {}))) == 'f(x)'
        assert str(Expr(Op.APPLY, ('f', (x, y), {}))) == 'f(x, y)'
        assert str(Expr(Op.INDEXING, ('f', x))) == 'f[x]'

        assert str(as_ternary(x, y, z)) == 'merge(y, z, x)'
        assert str(as_eq(x, y)) == 'x .eq. y'
        assert str(as_ne(x, y)) == 'x .ne. y'
        assert str(as_lt(x, y)) == 'x .lt. y'
        assert str(as_le(x, y)) == 'x .le. y'
        assert str(as_gt(x, y)) == 'x .gt. y'
        assert str(as_ge(x, y)) == 'x .ge. y'
Esempio n. 5
0
    def test_tostring_fortran(self):
        x = as_symbol("x")
        y = as_symbol("y")
        z = as_symbol("z")
        n = as_number(123)
        m = as_number(456)
        a = as_array((n, m))
        c = as_complex(n, m)

        assert str(x) == "x"
        assert str(n) == "123"
        assert str(a) == "[123, 456]"
        assert str(c) == "(123, 456)"

        assert str(Expr(Op.TERMS, {x: 1})) == "x"
        assert str(Expr(Op.TERMS, {x: 2})) == "2 * x"
        assert str(Expr(Op.TERMS, {x: -1})) == "-x"
        assert str(Expr(Op.TERMS, {x: -2})) == "-2 * x"
        assert str(Expr(Op.TERMS, {x: 1, y: 1})) == "x + y"
        assert str(Expr(Op.TERMS, {x: -1, y: -1})) == "-x - y"
        assert str(Expr(Op.TERMS, {x: 2, y: 3})) == "2 * x + 3 * y"
        assert str(Expr(Op.TERMS, {x: -2, y: 3})) == "-2 * x + 3 * y"
        assert str(Expr(Op.TERMS, {x: 2, y: -3})) == "2 * x - 3 * y"

        assert str(Expr(Op.FACTORS, {x: 1})) == "x"
        assert str(Expr(Op.FACTORS, {x: 2})) == "x ** 2"
        assert str(Expr(Op.FACTORS, {x: -1})) == "x ** -1"
        assert str(Expr(Op.FACTORS, {x: -2})) == "x ** -2"
        assert str(Expr(Op.FACTORS, {x: 1, y: 1})) == "x * y"
        assert str(Expr(Op.FACTORS, {x: 2, y: 3})) == "x ** 2 * y ** 3"

        v = Expr(Op.FACTORS, {x: 2, Expr(Op.TERMS, {x: 1, y: 1}): 3})
        assert str(v) == "x ** 2 * (x + y) ** 3", str(v)
        v = Expr(Op.FACTORS, {x: 2, Expr(Op.FACTORS, {x: 1, y: 1}): 3})
        assert str(v) == "x ** 2 * (x * y) ** 3", str(v)

        assert str(Expr(Op.APPLY, ("f", (), {}))) == "f()"
        assert str(Expr(Op.APPLY, ("f", (x, ), {}))) == "f(x)"
        assert str(Expr(Op.APPLY, ("f", (x, y), {}))) == "f(x, y)"
        assert str(Expr(Op.INDEXING, ("f", x))) == "f[x]"

        assert str(as_ternary(x, y, z)) == "merge(y, z, x)"
        assert str(as_eq(x, y)) == "x .eq. y"
        assert str(as_ne(x, y)) == "x .ne. y"
        assert str(as_lt(x, y)) == "x .lt. y"
        assert str(as_le(x, y)) == "x .le. y"
        assert str(as_gt(x, y)) == "x .gt. y"
        assert str(as_ge(x, y)) == "x .ge. y"