Esempio n. 1
0
 def reGrid(self,noise_dT=3,noise_avg=3):
     self.tPumpSkew,self.dTskew=Skew(self.tTHz,self.tPump,self.dT,noise_dT)
     self.dTSkewFFT=np_rfft(self.dTskew,axis=1)
     
     self.tPumpSkew,self.avgSkew=Skew(self.tTHz,self.tPump,
                                      self.avg,noise_avg)
     self.avgSkewFFT=np_rfft(self.avgSkew,axis=1)
                 
     return
Esempio n. 2
0
def fourier_integral_midpoint(integrand, a, b, N):
    """
        approximates int_a^b dx integrand(x) by the riemann sum with N terms
        and the most simplest uniform midpoint weights
    """
    #log.debug("integrate over [{:.3e},{:.3e}] using {} points".format(a,b,N))
    delta_x = (b-a)/N
    delta_k = 2*np.pi/(b-a)
    yl = integrand(np.linspace(a+delta_x/2, b+delta_x/2, N, endpoint=False))
    fft_vals = np_rfft(yl)
    tau = np.arange(len(fft_vals))*delta_k
    #log.debug("yields d_x={:.3e}, d_k={:.3e} kmax={:.3e}".format(delta_x, delta_k, tau[-1]))
    return tau, delta_x*np.exp(-1j*tau*(a+delta_x/2))*fft_vals
Esempio n. 3
0
def fourier_integral_simps(integrand, a, b, N):
    """
        approximates int_a^b dx integrand(x) by the riemann sum with N terms
        using simpson integration scheme        
    """
    delta_x = (b - a) / (N - 1)
    delta_k = 2 * np.pi / N / delta_x
    l = np.arange(0, N)
    yl = integrand(a + l * delta_x)
    yl = get_fourier_integral_simps_weighted_values(yl)

    fft_vals = np_rfft(yl)
    tau = np.arange(len(fft_vals)) * delta_k
    return tau, delta_x * np.exp(-1j * tau * a) * fft_vals
Esempio n. 4
0
def fourier_integral_midpoint(integrand, a, b, N):
    """
        approximates int_a^b dx integrand(x) by the riemann sum with N terms
        and the most simplest uniform midpoint weights
    """
    #log.debug("integrate over [{:.3e},{:.3e}] using {} points".format(a,b,N))
    delta_x = (b - a) / N
    delta_k = 2 * np.pi / (b - a)
    yl = integrand(
        np.linspace(a + delta_x / 2, b + delta_x / 2, N, endpoint=False))
    fft_vals = np_rfft(yl)
    tau = np.arange(len(fft_vals)) * delta_k
    #log.debug("yields d_x={:.3e}, d_k={:.3e} kmax={:.3e}".format(delta_x, delta_k, tau[-1]))
    return tau, delta_x * np.exp(-1j * tau * (a + delta_x / 2)) * fft_vals
Esempio n. 5
0
def fourier_integral_simps(integrand, a, b, N):
    """
        approximates int_a^b dx integrand(x) by the riemann sum with N terms
        using simpson integration scheme        
    """
    delta_x = (b-a)/(N-1)
    delta_k = 2*np.pi/N/delta_x
    l = np.arange(0, N)    
    yl = integrand(a + l*delta_x)
    yl = get_fourier_integral_simps_weighted_values(yl)    
    
    fft_vals = np_rfft(yl)
    tau = np.arange(len(fft_vals))*delta_k
    return tau, delta_x*np.exp(-1j*tau*a)*fft_vals
Esempio n. 6
0
    def deConvolve(self,G_w,noise_dT=3,noise_avg=3,fMax=2.4):
        self.reGrid(noise_dT=noise_dT,noise_avg=noise_avg)
        self.tPumpDeconv=np_arange(np_amin(self.tPump),np_amax(self.tPump),
                                   self.tTHz[1]-self.tTHz[0])
        loc=np_amin(np_where(self.f >= fMax))
        for i in range(self.tPumpSkew.size):
            self.dTSkewFFT[i,:loc]=self.dTSkewFFT[i,:loc]/G_w[:loc]
            self.avgSkewFFT[i,:loc]=self.avgSkewFFT[i,:loc]/G_w[:loc]

        self.dTskew=np_irfft(self.dTSkewFFT,axis=1)
        self.avgSkewFFT=np_irfft(self.avgSkewFFT,axis=1)

        self.dTdeconv=unSkew(self.tTHz,self.tPump,self.tPumpSkew,self.dTskew)
        self.avgDeconv=unSkew(self.tTHz,self.tPump
                              ,self.tPumpSkew,self.avgSkewFFT)
        self.refDeconv=self.avgDeconv-self.dTdeconv
        self.pumpDeconv=self.avgDeconv+self.dTdeconv

        self.refFFTdeconv=np_rfft(self.refDeconv,axis=1)
        self.pumpFFTdeconv=np_rfft(self.pumpDeconv,axis=1)
        self.transDeconv=self.pumpFFTdeconv/self.refFFTdeconv
                                
        return
Esempio n. 7
0
    def __init__(self,label='data',folder=False,
                 tPump=False,tTHz=False,
                 ref=False,pump=False,tmax=False,tmin=False,
                 fmax=False,fmin=False):
        if folder:
            self.tPump=np_loadtxt(folder+'/tPump.dat')
            self.tTHz=np_loadtxt(folder+'/tTHz.dat')
            self.ref=np_loadtxt(folder+'/ref.dat')
            self.pump=np_loadtxt(folder+'/pump.dat')
            self.avg=(self.ref+self.pump)/2

        if type(tPump)!=bool:
            self.tPump=tPump; self.tTHz=tTHz;

        self.dT=self.pump-self.ref
        
        self.refFFT=np_rfft(self.ref,axis=1)
        self.pumpFFT=np_rfft(self.pump,axis=1)
        self.trans=self.pumpFFT/self.refFFT
        
        self.f=np_rfftfreq(self.tTHz.size,self.tTHz[1]-self.tTHz[0])
        self.fX,self.fY=np_meshgrid(self.f,self.tPump)
        
        return
Esempio n. 8
0
def rfft(metAry, n=None, axes=-1):
    """
    RFFT function wraper for numpy.fft to be used on metaArray objects, returns 
    scaled metaArray object.
    """
    
    nyquist = len(metAry) * 0.5 / (metAry.get_range(axes, 'end') - metAry.get_range(axes, 'begin'))
    
    fary = metaArray(np_rfft(metAry.data, n, axes))
    
    fary.set_range(0, 'begin', 0)
    fary.set_range(0, 'end', nyquist)
    fary.set_range(0, 'unit', 'Hz')
    fary.set_range(0, 'label', 'Frequency')
    
    fary['unit'] = ''
    fary['label'] = 'Amplitude'
    try:
        fary['name'] = 'FFT{ ' + metAry['name'] + ' }'
    except TypeError:
        fary['name'] = 'FFT{ }'
    
    return fary
Esempio n. 9
0
def stfft(metAry, tres=100, fres=None, window='blackmanharris', \
            fmin=None, fmax=None, mag=True, debug=False):
    """
    Simple implementation of short time fast Fourier transform on metaArray
    object.
    
    metAry      Input metaArray
    tres        Temporal resolution
    fres        Frequency resolution
    window      Window function or None
    fmin        Cut-off frequency for the return data, default to the 0
    fmax        Cut-off frequency for the return data, default to the Nyquist
    mag         The default is to return the abs() value, return complex array if false
    
    Each window will overlap 50% with its immediate neighbours. e.g.:
    
    |_____________________________________________|
    | | 1 | 3 | 5 | 7 | 9 | 11| 13| 15| 17| 19| 21|
    | 0 | 2 | 4 | 6 | 8 | 10| 12| 14| 16| 18| 20| |
    
    
    
    """
    f1 = fmax
    
    # Length of the (short) time window
    l = int(round(2 * len(metAry) / float(tres)))
    
    # List of (short) time window starting points
    winlst = linspace(0, len(metAry) - l, tres).round().astype(int)
    
    # Native RFFT frequency resolution to Nyquist
    lfres = int(floor(l/2.0)+1)   
    Nyquist = 0.5 * len(metAry) / (metAry.get_range(0, 'end') - metAry.get_range(0, 'begin')) 
    
    # RFFT len, use native resolution by default
    n = None
    
    # Generate the (short) time window function
    if window is None:
        win = 1
    else:
        win = get_window(window, l)
    
    # Decide where to slice the rfft output as a ratio to Nyquist
    # Make fmax < 1 or None
    if fmax is not None:
        if fmax < Nyquist:
            fmax = fmax / Nyquist
        elif fmax >= Nyquist:
            fmax = None
            if debug:
                print("*** Warning, spec frequency range beyond Nyquist limit")
    
    # Check whether padding is needed
    # If fres is not specified, use the native resolution
    if fres is None:
        if fmax is None:
            # No freq limit, use native resolution
            fres = lfres
        else:
            # Still on native resolution, but truncated to fmax
            fres = int(round(fmax * lfres))
    else:
        # fres is specified
        if fmax is not None:
            # freq limit specified, work out global freq resolution
            gfres = int(round(fres / fmax))
        else:
            # No freq limit, global freq resolution is same as fres
            gfres = fres
        
        # Global freq resolution is greater than native freq resolution
        # Need padding for rfft
        if gfres > lfres:
            n = (gfres - 1) * 2
        elif gfres < lfres:
            # No need for padding, but throwing away freq resolution for nothing
            if debug:
                print("*** Warning, frequency resolution is artificially limited")
        # else gfres = lfres, no need for padding, native fres is just right
    
    
    # Convert fmax to array length if specified
    if fmax is not None:
        # If rfft is padded
        if n is not None:
            fmax = int(round(int(floor(n/2.0)+1) * fmax))
        else:
            # Otherwise just truncate from native output
            fmax = int(round(lfres * fmax))
    
    if debug:
        src_len = len(metAry.data[:l]*win)
        rfft_len = len(np_rfft(metAry.data[:l]*win, n=n))
        print("*** l: " + str(l))
        print("*** lfres: " + str(lfres))
        print("*** Nyquist: " + str(Nyquist))
        print("*** n: " + str(n))
        print("*** fmax: " + str(fmax))
        print("*** fres: " + str(fres))
        print("*** src_len: " + str(src_len))
        print("*** rfft_len: " + str(rfft_len))
        
    
    if mag:
        # Construct a place holder of the 2D time-freq output
        tfary = zeros((tres, fres)).astype(float)
        for i in range(len(winlst)):
            t = winlst[i]                # Where the (short) time window starts
            # Do the rfft to length n, and slice to fmax, then take abs()
            tfary[i] = spline_resize(abs(np_rfft(metAry.data[t:t+l]*win, n=n)[:fmax]), fres)
    else:
        # Construct a place holder of the 2D time-freq output
        tfary = zeros((tres,fres)).astype(complex)
        for i in range(len(winlst)):
            t = winlst[i]
            # Do the rfft to length n, and slice to fmax
            tfary[i] = spline_resize(np_rfft(metAry.data[t:t+l]*win, n=n)[:fmax], fres)
    
    tfary = metaArray(tfary)
    
    try:
        tfary['name'] = 'STFFT{ ' + metAry['name'] + ' }'
    except:
        tfary['name'] = 'STFFT{ }'
    
    tfary['unit'] = metAry['unit']
    tfary['label'] = metAry['label']
    
    # Per axis definitions
    tfary.set_range(0, 'begin', metAry.get_range(0, 'begin')) 
    tfary.set_range(0, 'end', metAry.get_range(0, 'end'))
    tfary.set_range(0, 'unit', metAry.get_range(0, 'unit'))
    tfary.set_range(0, 'label', metAry.get_range(0, 'label'))
    tfary.set_range(1, 'begin', 0)
    if f1 is None:
        tfary.set_range(1, 'end', Nyquist)
    else:
        tfary.set_range(1, 'end', f1)
    tfary.set_range(1, 'unit', 'Hz')
    tfary.set_range(1, 'label', 'Frequency')
    
    return tfary