Esempio n. 1
0
def compress_rowcols(x, axis=None):
    """Suppresses the rows and/or columns of a 2D array that contains masked values.
    The suppression behavior is selected with the `axis`parameter.
        - If axis is None, rows and columns are suppressed. 
        - If axis is 0, only rows are suppressed. 
        - If axis is 1 or -1, only columns are suppressed.
    Returns a *pure* ndarray.    
    """
    x = asarray(x)
    if x.ndim <> 2:
        raise NotImplementedError, "compress2d works for 2D arrays only."
    m = getmask(x)
    # Nothing is masked: return x
    if m is nomask or not m.any():
        return x._data
    # All is masked: return empty
    if m.all():
        return nxarray([])
    # Builds a list of rows/columns indices
    (idxr, idxc) = (range(len(x)), range(x.shape[1]))
    masked = m.nonzero()
    if not axis:
        for i in function_base.unique(masked[0]):
            idxr.remove(i)
    if axis in [None, 1, -1]:
        for j in function_base.unique(masked[1]):
            idxc.remove(j)
    return x._data[idxr][:,idxc]
Esempio n. 2
0
 def _removeNonTracklikeClusterCenters(self):
   '''NOTE : Much of this code is copied from LPCMImpl.followXSingleDirection (factor out?)
   '''
   labels = self._meanShift.labels_
   labels_unique = unique(labels)
   cluster_centers = self._meanShift.cluster_centers_
   rsp = lpcRandomStartPoints()
   cluster_representatives = []
   for k in range(len(labels_unique)):
     cluster_members = labels == k
     cluster_center = cluster_centers[k]
     cluster = self._Xi[cluster_members,:]
     mean_sub = cluster - cluster_center 
     cov_x = dot(transpose(mean_sub), mean_sub) 
     eigen_cov = eigh(cov_x)
     sorted_eigen_cov = zip(eigen_cov[0],map(ravel,vsplit(eigen_cov[1].transpose(),len(eigen_cov[1]))))
     sorted_eigen_cov.sort(key = lambda elt: elt[0], reverse = True)   
     rho = sorted_eigen_cov[1][0] / sorted_eigen_cov[0][0] #Ratio of two largest eigenvalues   
     if rho < self._lpcParameters['rho_threshold']:
       cluster_representatives.append(cluster_center)
     else: #append a random element of the cluster
       random_cluster_element = rsp(cluster, 1)[0]
       cluster_representatives.append(random_cluster_element)
   
   return array(cluster_representatives)
Esempio n. 3
0
def twoDisjointLinesWithMSClustering():
 
  t = arange(-1,1,0.002)
  x = map(lambda x: x + gauss(0,0.02)*(1-x*x), t)
  y = map(lambda x: x + gauss(0,0.02)*(1-x*x), t)
  z = map(lambda x: x + gauss(0,0.02)*(1-x*x), t)
  line1 = array(zip(x,y,z))
  line = vstack((line1, line1 + 3))
  lpc = LPCImpl(start_points_generator = lpcMeanShift(ms_h = 1), h = 0.05, mult = None, it = 200, cross = False, scaled = False, convergence_at = 0.001)
  lpc_curve = lpc.lpc(X=line)
  #Plot results
  fig = plt.figure()
  ax = Axes3D(fig)
  labels = lpc._startPointsGenerator._meanShift.labels_
  labels_unique = unique(labels)
  cluster_centers = lpc._startPointsGenerator._meanShift.cluster_centers_
  n_clusters = len(labels_unique)
  colors = cycle('bgrcmyk')
  for k, col in zip(range(n_clusters), colors):
    cluster_members = labels == k
    cluster_center = cluster_centers[k]
    ax.scatter(line[cluster_members, 0], line[cluster_members, 1], line[cluster_members, 2], c = col, alpha = 0.1)
    ax.scatter([cluster_center[0]], [cluster_center[1]], [cluster_center[2]], c = 'b', marker= '^')
    curve = lpc_curve[k]['save_xd']
    ax.plot(curve[:,0],curve[:,1],curve[:,2], c = col, linewidth = 3)
  plt.show()
Esempio n. 4
0
def mask_rowcols(a, axis=None):
    """Masks whole rows and/or columns of a 2D array that contain masked values.
    The masking behavior is selected with the `axis`parameter.
        - If axis is None, rows and columns are suppressed. 
        - If axis is 0, only rows are suppressed. 
        - If axis is 1 or -1, only columns are suppressed.
    Returns a *pure* ndarray.    
    """
    a = asarray(a)
    if a.ndim != 2:
        raise NotImplementedError, "compress2d works for 2D arrays only."
    m = getmask(a)
    # Nothing is masked: return a
    if m is nomask or not m.any():
        return a
    maskedval = m.nonzero()
    a._mask = a._mask.copy()
    if not axis:
        a[function_base.unique(maskedval[0])] = masked
    if axis in [None, 1, -1]:
        a[:,function_base.unique(maskedval[1])] = masked
    return a