Esempio n. 1
0
def trainSVM(kernel, labels):
    #need to add an id number as the first column of the list
    svmKernel = column_stack((arange(1, len(kernel.tolist()) + 1), kernel))
    prob = svm_problem(labels.tolist(), svmKernel.tolist(), isKernel=True)
    param = svm_parameter('-t 4')   

    model = svm_train(prob, param)
    return model
Esempio n. 2
0
 def test_generator(self):
     with assert_warns(FutureWarning):
         column_stack((np.arange(3) for _ in range(2)))
Esempio n. 3
0
 def test_column_stack_and_vstack(self):
     a=array([4.,2.])
     b=array([2.,8.])
     numpy.testing.assert_array_equal(column_stack((a[:,newaxis],b[:newaxis])), array([[4.,2.],[2.,8.]]))
     numpy.testing.assert_array_equal(vstack((a[:,newaxis],b[:,newaxis])), array([[4.],[2.],[2.],[8.]]))
Esempio n. 4
0
 def test_generator(self):
     with assert_warns(FutureWarning):
         column_stack((np.arange(3) for _ in range(2)))
Esempio n. 5
0
def predictSVM(model, testKernel):
    svmTestKernel = column_stack(([0] * len(testKernel), testKernel))
    #svm_predict returns 3 things - we want the first one, hense the [0] at the end of the following line
    predictedLabels  = svm_predict([0] * len(svmTestKernel), svmTestKernel.tolist(), model)[0]
    return predictedLabels