def test_clip_statistic_range(self):
     test = np.arange(30).reshape(5, 6)
     pad_amt = [(3, 3) for axis in test.shape]
     modes = ['maximum',
              'mean',
              'median',
              'minimum',
              ]
     for mode in modes:
         assert_array_equal(pad(test, pad_amt, mode=mode),
                            pad(test, pad_amt, mode=mode, stat_length=30))
 def test_shallow_statistic_range(self):
     test = np.arange(120).reshape(4, 5, 6)
     pad_amt = [(1, 1) for axis in test.shape]
     modes = ['maximum',
              'mean',
              'median',
              'minimum',
              ]
     for mode in modes:
         assert_array_equal(pad(test, pad_amt, mode='edge'),
                            pad(test, pad_amt, mode=mode, stat_length=1))
    def test_check_median_stat_length(self):
        a = np.arange(100).astype('f')
        a[1] = 2.
        a[97] = 96.
        a = pad(a, (25, 20), 'median', stat_length=(3, 5))
        b = np.array(
            [ 2.,  2.,  2.,  2.,  2.,  2.,  2.,  2.,  2.,  2.,
              2.,  2.,  2.,  2.,  2.,  2.,  2.,  2.,  2.,  2.,
              2.,  2.,  2.,  2.,  2.,

              0.,  2.,  2.,  3.,  4.,  5.,  6.,  7.,  8.,  9.,
             10., 11., 12., 13., 14., 15., 16., 17., 18., 19.,
             20., 21., 22., 23., 24., 25., 26., 27., 28., 29.,
             30., 31., 32., 33., 34., 35., 36., 37., 38., 39.,
             40., 41., 42., 43., 44., 45., 46., 47., 48., 49.,
             50., 51., 52., 53., 54., 55., 56., 57., 58., 59.,
             60., 61., 62., 63., 64., 65., 66., 67., 68., 69.,
             70., 71., 72., 73., 74., 75., 76., 77., 78., 79.,
             80., 81., 82., 83., 84., 85., 86., 87., 88., 89.,
             90., 91., 92., 93., 94., 95., 96., 96., 98., 99.,

             96., 96., 96., 96., 96., 96., 96., 96., 96., 96.,
             96., 96., 96., 96., 96., 96., 96., 96., 96., 96.]
            )
        assert_array_equal(a, b)
    def test_check_large_pad(self):
        a = np.arange(12)
        a = np.reshape(a, (3, 4))
        a = pad(a, (10, 12), 'wrap')
        b = np.array(
            [[10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10,
              11, 8, 9, 10, 11, 8, 9, 10, 11],
             [2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2,
              3, 0, 1, 2, 3, 0, 1, 2, 3],
             [6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6,
              7, 4, 5, 6, 7, 4, 5, 6, 7],
             [10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10,
              11, 8, 9, 10, 11, 8, 9, 10, 11],
             [2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2,
              3, 0, 1, 2, 3, 0, 1, 2, 3],
             [6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6,
              7, 4, 5, 6, 7, 4, 5, 6, 7],
             [10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10,
              11, 8, 9, 10, 11, 8, 9, 10, 11],
             [2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2,
              3, 0, 1, 2, 3, 0, 1, 2, 3],
             [6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6,
              7, 4, 5, 6, 7, 4, 5, 6, 7],
             [10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10,
              11, 8, 9, 10, 11, 8, 9, 10, 11],

             [2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2,
              3, 0, 1, 2, 3, 0, 1, 2, 3],
             [6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6,
              7, 4, 5, 6, 7, 4, 5, 6, 7],
             [10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10,
              11, 8, 9, 10, 11, 8, 9, 10, 11],

             [2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2,
              3, 0, 1, 2, 3, 0, 1, 2, 3],
             [6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6,
              7, 4, 5, 6, 7, 4, 5, 6, 7],
             [10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10,
              11, 8, 9, 10, 11, 8, 9, 10, 11],
             [2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2,
              3, 0, 1, 2, 3, 0, 1, 2, 3],
             [6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6,
              7, 4, 5, 6, 7, 4, 5, 6, 7],
             [10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10,
              11, 8, 9, 10, 11, 8, 9, 10, 11],
             [2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2,
              3, 0, 1, 2, 3, 0, 1, 2, 3],
             [6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6,
              7, 4, 5, 6, 7, 4, 5, 6, 7],
             [10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10,
              11, 8, 9, 10, 11, 8, 9, 10, 11],
             [2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2,
              3, 0, 1, 2, 3, 0, 1, 2, 3],
             [6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6,
              7, 4, 5, 6, 7, 4, 5, 6, 7],
             [10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10,
              11, 8, 9, 10, 11, 8, 9, 10, 11]]
            )
        assert_array_equal(a, b)
Esempio n. 5
0
    def test_check_width_shape_1_2(self):
        # Check a pad_width of the form ((1, 2),).
        # Regression test for issue gh-7808.
        a = np.array([1, 2, 3])
        padded = pad(a, ((1, 2),), 'edge')
        expected = np.array([1, 1, 2, 3, 3, 3])
        assert_array_equal(padded, expected)

        a = np.array([[1, 2, 3], [4, 5, 6]])
        padded = pad(a, ((1, 2),), 'edge')
        expected = pad(a, ((1, 2), (1, 2)), 'edge')
        assert_array_equal(padded, expected)

        a = np.arange(24).reshape(2, 3, 4)
        padded = pad(a, ((1, 2),), 'edge')
        expected = pad(a, ((1, 2), (1, 2), (1, 2)), 'edge')
        assert_array_equal(padded, expected)
Esempio n. 6
0
 def test_object_input(self):
     # Regression test for issue gh-11395.
     a = np.full((4, 3), None)
     pad_amt = ((2, 3), (3, 2))
     b = np.full((9, 8), None)
     modes = ['edge',
              'symmetric',
              'reflect',
              'wrap',
              ]
     for mode in modes:
         assert_array_equal(pad(a, pad_amt, mode=mode), b)
    def test_check_median_02(self):
        a = np.array([[3, 1, 4], [4, 5, 9], [9, 8, 2]])
        a = pad(a.T, 1, 'median').T
        b = np.array([
                    [5,   4, 5, 4,   5],

                    [3,   3, 1, 4,   3],
                    [5,   4, 5, 9,   5],
                    [8,   9, 8, 2,   8],

                    [5,   4, 5, 4,   5]])
        assert_array_equal(a, b)
 def test_check_2d(self):
     arr = np.arange(20).reshape(4, 5).astype(np.float64)
     test = pad(arr, (2, 2), mode='linear_ramp', end_values=(0, 0))
     expected = np.array(
         [[0.,   0.,   0.,   0.,   0.,   0.,   0.,    0.,   0.],
          [0.,   0.,   0.,  0.5,   1.,  1.5,   2.,    1.,   0.],
          [0.,   0.,   0.,   1.,   2.,   3.,   4.,    2.,   0.],
          [0.,  2.5,   5.,   6.,   7.,   8.,   9.,   4.5,   0.],
          [0.,   5.,  10.,  11.,  12.,  13.,  14.,    7.,   0.],
          [0.,  7.5,  15.,  16.,  17.,  18.,  19.,   9.5,   0.],
          [0., 3.75,  7.5,   8.,  8.5,   9.,  9.5,  4.75,   0.],
          [0.,   0.,   0.,   0.,   0.,   0.,   0.,    0.,   0.]])
     assert_allclose(test, expected)
 def test_zero_padding_shortcuts(self):
     test = np.arange(120).reshape(4, 5, 6)
     pad_amt = [(0, 0) for axis in test.shape]
     modes = ['constant',
              'edge',
              'linear_ramp',
              'maximum',
              'mean',
              'median',
              'minimum',
              'reflect',
              'symmetric',
              'wrap',
              ]
     for mode in modes:
         assert_array_equal(test, pad(test, pad_amt, mode=mode))
Esempio n. 10
0
    def test_check_constant_odd_pad_amount(self):
        arr = np.arange(30).reshape(5, 6)
        test = pad(arr, ((1,), (2,)), mode='constant',
                   constant_values=3)
        expected = np.array(
            [[ 3,  3,  3,  3,  3,  3,  3,  3,  3,  3],

             [ 3,  3,  0,  1,  2,  3,  4,  5,  3,  3],
             [ 3,  3,  6,  7,  8,  9, 10, 11,  3,  3],
             [ 3,  3, 12, 13, 14, 15, 16, 17,  3,  3],
             [ 3,  3, 18, 19, 20, 21, 22, 23,  3,  3],
             [ 3,  3, 24, 25, 26, 27, 28, 29,  3,  3],

             [ 3,  3,  3,  3,  3,  3,  3,  3,  3,  3]]
            )
        assert_allclose(test, expected)
    def test_check_simple(self):
        a = np.arange(12)
        a = np.reshape(a, (4, 3))
        a = pad(a, ((2, 3), (3, 2)), 'edge' )
        b = np.array([
                     [0,  0,  0,    0,  1,  2,    2,  2],
                     [0,  0,  0,    0,  1,  2,    2,  2],

                     [0,  0,  0,    0,  1,  2,    2,  2],
                     [3,  3,  3,    3,  4,  5,    5,  5],
                     [6,  6,  6,    6,  7,  8,    8,  8],
                     [9,  9,  9,    9, 10, 11,   11, 11],

                     [9,  9,  9,    9, 10, 11,   11, 11],
                     [9,  9,  9,    9, 10, 11,   11, 11],
                     [9,  9,  9,    9, 10, 11,   11, 11]])
        assert_array_equal(a, b)
Esempio n. 12
0
def applyPadding(inputImg, sampleSizes, receptiveField) : 
    receptiveField_arr = np.asarray(receptiveField, dtype="int16")
    inputImg_arr = np.asarray(inputImg.shape,dtype="int16")
   
    receptiveField = np.array(receptiveField, dtype="int16")
    
    left_padding = (receptiveField - 1) / 2
    right_padding = receptiveField - 1 - left_padding
    
    extra_padding = np.maximum(0, np.asarray(sampleSizes,dtype="int16")-(inputImg_arr+left_padding+right_padding))
    right_padding += extra_padding  
    
    paddingValues = ( (left_padding[0],right_padding[0]),
                      (left_padding[1],right_padding[1]),
                      (left_padding[2],right_padding[2]))
                      
    paddedImage = lib.pad(inputImg, paddingValues, mode='reflect' )
    return [paddedImage, paddingValues]
    def test_check_simple(self):
        a = np.arange(30)
        a = np.reshape(a, (6, 5))
        a = pad(a, ((2, 3), (3, 2)), mode='mean', stat_length=(3,))
        b = np.array([[6,  6,  6,     5,  6,  7,  8,  9,     8,  8],
                     [6,  6,  6,     5,  6,  7,  8,  9,     8,  8],

                     [1,  1,  1,     0,  1,  2,  3,  4,     3,  3],
                     [6,  6,  6,     5,  6,  7,  8,  9,     8,  8],
                     [11, 11, 11,    10, 11, 12, 13, 14,    13, 13],
                     [16, 16, 16,    15, 16, 17, 18, 19,    18, 18],
                     [21, 21, 21,    20, 21, 22, 23, 24,    23, 23],
                     [26, 26, 26,    25, 26, 27, 28, 29,    28, 28],

                     [21, 21, 21,    20, 21, 22, 23, 24,    23, 23],
                     [21, 21, 21,    20, 21, 22, 23, 24,    23, 23],
                     [21, 21, 21,    20, 21, 22, 23, 24,    23, 23]])
        assert_array_equal(a, b)
Esempio n. 14
0
    def test_check_constant_float(self):
        # If input array is int, but constant_values are float, the dtype of
        # the array to be padded is kept
        arr = np.arange(30).reshape(5, 6)
        test = pad(arr, (1, 2), mode='constant',
                   constant_values=1.1)
        expected = np.array(
            [[ 1,  1,  1,  1,  1,  1,  1,  1,  1],

             [ 1,  0,  1,  2,  3,  4,  5,  1,  1],
             [ 1,  6,  7,  8,  9, 10, 11,  1,  1],
             [ 1, 12, 13, 14, 15, 16, 17,  1,  1],
             [ 1, 18, 19, 20, 21, 22, 23,  1,  1],
             [ 1, 24, 25, 26, 27, 28, 29,  1,  1],

             [ 1,  1,  1,  1,  1,  1,  1,  1,  1],
             [ 1,  1,  1,  1,  1,  1,  1,  1,  1]]
            )
        assert_allclose(test, expected)
Esempio n. 15
0
    def test_legacy_vector_functionality(self):
        def _padwithtens(vector, pad_width, iaxis, kwargs):
            vector[:pad_width[0]] = 10
            vector[-pad_width[1]:] = 10
            return vector

        a = np.arange(6).reshape(2, 3)
        a = pad(a, 2, _padwithtens)
        b = np.array(
            [[10, 10, 10, 10, 10, 10, 10],
             [10, 10, 10, 10, 10, 10, 10],

             [10, 10,  0,  1,  2, 10, 10],
             [10, 10,  3,  4,  5, 10, 10],

             [10, 10, 10, 10, 10, 10, 10],
             [10, 10, 10, 10, 10, 10, 10]]
            )
        assert_array_equal(a, b)
    def test_check_shape(self):
        a = [[4, 5, 6]]
        a = pad(a, (5, 7), 'reflect')
        b = np.array([
               [5, 4, 5, 6, 5,   4, 5, 6,   5, 4, 5, 6, 5, 4, 5],
               [5, 4, 5, 6, 5,   4, 5, 6,   5, 4, 5, 6, 5, 4, 5],
               [5, 4, 5, 6, 5,   4, 5, 6,   5, 4, 5, 6, 5, 4, 5],
               [5, 4, 5, 6, 5,   4, 5, 6,   5, 4, 5, 6, 5, 4, 5],
               [5, 4, 5, 6, 5,   4, 5, 6,   5, 4, 5, 6, 5, 4, 5],

               [5, 4, 5, 6, 5,   4, 5, 6,   5, 4, 5, 6, 5, 4, 5],

               [5, 4, 5, 6, 5,   4, 5, 6,   5, 4, 5, 6, 5, 4, 5],
               [5, 4, 5, 6, 5,   4, 5, 6,   5, 4, 5, 6, 5, 4, 5],
               [5, 4, 5, 6, 5,   4, 5, 6,   5, 4, 5, 6, 5, 4, 5],
               [5, 4, 5, 6, 5,   4, 5, 6,   5, 4, 5, 6, 5, 4, 5],
               [5, 4, 5, 6, 5,   4, 5, 6,   5, 4, 5, 6, 5, 4, 5],
               [5, 4, 5, 6, 5,   4, 5, 6,   5, 4, 5, 6, 5, 4, 5],
               [5, 4, 5, 6, 5,   4, 5, 6,   5, 4, 5, 6, 5, 4, 5]])
        assert_array_equal(a, b)
Esempio n. 17
0
    def test_check_constant_float2(self):
        # If input array is float, and constant_values are float, the dtype of
        # the array to be padded is kept - here retaining the float constants
        arr = np.arange(30).reshape(5, 6)
        arr_float = arr.astype(np.float64)
        test = pad(arr_float, ((1, 2), (1, 2)), mode='constant',
                   constant_values=1.1)
        expected = np.array(
            [[  1.1,   1.1,   1.1,   1.1,   1.1,   1.1,   1.1,   1.1,   1.1],

             [  1.1,   0. ,   1. ,   2. ,   3. ,   4. ,   5. ,   1.1,   1.1],
             [  1.1,   6. ,   7. ,   8. ,   9. ,  10. ,  11. ,   1.1,   1.1],
             [  1.1,  12. ,  13. ,  14. ,  15. ,  16. ,  17. ,   1.1,   1.1],
             [  1.1,  18. ,  19. ,  20. ,  21. ,  22. ,  23. ,   1.1,   1.1],
             [  1.1,  24. ,  25. ,  26. ,  27. ,  28. ,  29. ,   1.1,   1.1],

             [  1.1,   1.1,   1.1,   1.1,   1.1,   1.1,   1.1,   1.1,   1.1],
             [  1.1,   1.1,   1.1,   1.1,   1.1,   1.1,   1.1,   1.1,   1.1]]
            )
        assert_allclose(test, expected)
    def test_check_mean_shape_one(self):
        a = [[4, 5, 6]]
        a = pad(a, (5, 7), 'mean', stat_length=2)
        b = np.array([
                   [4, 4, 4, 4, 4,   4, 5, 6,   6, 6, 6, 6, 6, 6, 6],
                   [4, 4, 4, 4, 4,   4, 5, 6,   6, 6, 6, 6, 6, 6, 6],
                   [4, 4, 4, 4, 4,   4, 5, 6,   6, 6, 6, 6, 6, 6, 6],
                   [4, 4, 4, 4, 4,   4, 5, 6,   6, 6, 6, 6, 6, 6, 6],
                   [4, 4, 4, 4, 4,   4, 5, 6,   6, 6, 6, 6, 6, 6, 6],

                   [4, 4, 4, 4, 4,   4, 5, 6,   6, 6, 6, 6, 6, 6, 6],

                   [4, 4, 4, 4, 4,   4, 5, 6,   6, 6, 6, 6, 6, 6, 6],
                   [4, 4, 4, 4, 4,   4, 5, 6,   6, 6, 6, 6, 6, 6, 6],
                   [4, 4, 4, 4, 4,   4, 5, 6,   6, 6, 6, 6, 6, 6, 6],
                   [4, 4, 4, 4, 4,   4, 5, 6,   6, 6, 6, 6, 6, 6, 6],
                   [4, 4, 4, 4, 4,   4, 5, 6,   6, 6, 6, 6, 6, 6, 6],
                   [4, 4, 4, 4, 4,   4, 5, 6,   6, 6, 6, 6, 6, 6, 6],
                   [4, 4, 4, 4, 4,   4, 5, 6,   6, 6, 6, 6, 6, 6, 6]])
        assert_array_equal(a, b)
    def test_check_large_pad(self):
        a = [[4, 5, 6], [6, 7, 8]]
        a = pad(a, (5, 7), 'reflect')
        b = np.array([
               [7, 6, 7, 8, 7,   6, 7, 8,   7, 6, 7, 8, 7, 6, 7],
               [5, 4, 5, 6, 5,   4, 5, 6,   5, 4, 5, 6, 5, 4, 5],
               [7, 6, 7, 8, 7,   6, 7, 8,   7, 6, 7, 8, 7, 6, 7],
               [5, 4, 5, 6, 5,   4, 5, 6,   5, 4, 5, 6, 5, 4, 5],
               [7, 6, 7, 8, 7,   6, 7, 8,   7, 6, 7, 8, 7, 6, 7],

               [5, 4, 5, 6, 5,   4, 5, 6,   5, 4, 5, 6, 5, 4, 5],
               [7, 6, 7, 8, 7,   6, 7, 8,   7, 6, 7, 8, 7, 6, 7],

               [5, 4, 5, 6, 5,   4, 5, 6,   5, 4, 5, 6, 5, 4, 5],
               [7, 6, 7, 8, 7,   6, 7, 8,   7, 6, 7, 8, 7, 6, 7],
               [5, 4, 5, 6, 5,   4, 5, 6,   5, 4, 5, 6, 5, 4, 5],
               [7, 6, 7, 8, 7,   6, 7, 8,   7, 6, 7, 8, 7, 6, 7],
               [5, 4, 5, 6, 5,   4, 5, 6,   5, 4, 5, 6, 5, 4, 5],
               [7, 6, 7, 8, 7,   6, 7, 8,   7, 6, 7, 8, 7, 6, 7],
               [5, 4, 5, 6, 5,   4, 5, 6,   5, 4, 5, 6, 5, 4, 5]])
        assert_array_equal(a, b)
    def test_check_constant(self):
        a = np.arange(100)
        a = pad(a, (25, 20), 'constant', constant_values=(10, 20))
        b = np.array([10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
                     10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
                     10, 10, 10, 10, 10,

                      0,  1,  2,  3,  4,  5,  6,  7,  8,  9,
                     10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
                     20, 21, 22, 23, 24, 25, 26, 27, 28, 29,
                     30, 31, 32, 33, 34, 35, 36, 37, 38, 39,
                     40, 41, 42, 43, 44, 45, 46, 47, 48, 49,
                     50, 51, 52, 53, 54, 55, 56, 57, 58, 59,
                     60, 61, 62, 63, 64, 65, 66, 67, 68, 69,
                     70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
                     80, 81, 82, 83, 84, 85, 86, 87, 88, 89,
                     90, 91, 92, 93, 94, 95, 96, 97, 98, 99,

                     20, 20, 20, 20, 20, 20, 20, 20, 20, 20,
                     20, 20, 20, 20, 20, 20, 20, 20, 20, 20])
        assert_array_equal(a, b)
Esempio n. 21
0
    def test_check_shape(self):
        a = [[4, 5, 6]]
        a = pad(a, (5, 7), 'symmetric')
        b = np.array(
            [[5, 6, 6, 5, 4, 4, 5, 6, 6, 5, 4, 4, 5, 6, 6],
             [5, 6, 6, 5, 4, 4, 5, 6, 6, 5, 4, 4, 5, 6, 6],
             [5, 6, 6, 5, 4, 4, 5, 6, 6, 5, 4, 4, 5, 6, 6],
             [5, 6, 6, 5, 4, 4, 5, 6, 6, 5, 4, 4, 5, 6, 6],
             [5, 6, 6, 5, 4, 4, 5, 6, 6, 5, 4, 4, 5, 6, 6],

             [5, 6, 6, 5, 4, 4, 5, 6, 6, 5, 4, 4, 5, 6, 6],
             [5, 6, 6, 5, 4, 4, 5, 6, 6, 5, 4, 4, 5, 6, 6],

             [5, 6, 6, 5, 4, 4, 5, 6, 6, 5, 4, 4, 5, 6, 6],
             [5, 6, 6, 5, 4, 4, 5, 6, 6, 5, 4, 4, 5, 6, 6],
             [5, 6, 6, 5, 4, 4, 5, 6, 6, 5, 4, 4, 5, 6, 6],
             [5, 6, 6, 5, 4, 4, 5, 6, 6, 5, 4, 4, 5, 6, 6],
             [5, 6, 6, 5, 4, 4, 5, 6, 6, 5, 4, 4, 5, 6, 6],
             [5, 6, 6, 5, 4, 4, 5, 6, 6, 5, 4, 4, 5, 6, 6]]
            )
        assert_array_equal(a, b)
Esempio n. 22
0
    def test_check_large_pad_odd(self):
        a = [[4, 5, 6], [6, 7, 8]]
        a = pad(a, (5, 7), 'symmetric', reflect_type='odd')
        b = np.array(
            [[-3, -2, -2, -1,  0,  0,  1,  2,  2,  3,  4,  4,  5,  6,  6],
             [-3, -2, -2, -1,  0,  0,  1,  2,  2,  3,  4,  4,  5,  6,  6],
             [-1,  0,  0,  1,  2,  2,  3,  4,  4,  5,  6,  6,  7,  8,  8],
             [-1,  0,  0,  1,  2,  2,  3,  4,  4,  5,  6,  6,  7,  8,  8],
             [ 1,  2,  2,  3,  4,  4,  5,  6,  6,  7,  8,  8,  9, 10, 10],

             [ 1,  2,  2,  3,  4,  4,  5,  6,  6,  7,  8,  8,  9, 10, 10],
             [ 3,  4,  4,  5,  6,  6,  7,  8,  8,  9, 10, 10, 11, 12, 12],

             [ 3,  4,  4,  5,  6,  6,  7,  8,  8,  9, 10, 10, 11, 12, 12],
             [ 5,  6,  6,  7,  8,  8,  9, 10, 10, 11, 12, 12, 13, 14, 14],
             [ 5,  6,  6,  7,  8,  8,  9, 10, 10, 11, 12, 12, 13, 14, 14],
             [ 7,  8,  8,  9, 10, 10, 11, 12, 12, 13, 14, 14, 15, 16, 16],
             [ 7,  8,  8,  9, 10, 10, 11, 12, 12, 13, 14, 14, 15, 16, 16],
             [ 9, 10, 10, 11, 12, 12, 13, 14, 14, 15, 16, 16, 17, 18, 18],
             [ 9, 10, 10, 11, 12, 12, 13, 14, 14, 15, 16, 16, 17, 18, 18]]
            )
        assert_array_equal(a, b)
    def test_check_simple(self):
        a = np.arange(100).astype('f')
        a = pad(a, (25, 20), 'linear_ramp', end_values=(4, 5))
        b = np.array([
                    4.00, 3.84, 3.68, 3.52, 3.36, 3.20, 3.04, 2.88, 2.72, 2.56,
                    2.40, 2.24, 2.08, 1.92, 1.76, 1.60, 1.44, 1.28, 1.12, 0.96,
                    0.80, 0.64, 0.48, 0.32, 0.16,

                    0.00, 1.00, 2.00, 3.00, 4.00, 5.00, 6.00, 7.00, 8.00, 9.00,
                    10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0,
                    20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0,
                    30.0, 31.0, 32.0, 33.0, 34.0, 35.0, 36.0, 37.0, 38.0, 39.0,
                    40.0, 41.0, 42.0, 43.0, 44.0, 45.0, 46.0, 47.0, 48.0, 49.0,
                    50.0, 51.0, 52.0, 53.0, 54.0, 55.0, 56.0, 57.0, 58.0, 59.0,
                    60.0, 61.0, 62.0, 63.0, 64.0, 65.0, 66.0, 67.0, 68.0, 69.0,
                    70.0, 71.0, 72.0, 73.0, 74.0, 75.0, 76.0, 77.0, 78.0, 79.0,
                    80.0, 81.0, 82.0, 83.0, 84.0, 85.0, 86.0, 87.0, 88.0, 89.0,
                    90.0, 91.0, 92.0, 93.0, 94.0, 95.0, 96.0, 97.0, 98.0, 99.0,

                    94.3, 89.6, 84.9, 80.2, 75.5, 70.8, 66.1, 61.4, 56.7, 52.0,
                    47.3, 42.6, 37.9, 33.2, 28.5, 23.8, 19.1, 14.4,  9.7,  5.])
        assert_array_almost_equal(a, b, decimal=5)
Esempio n. 24
0
    def test_check_large_pad(self):
        a = [[4, 5, 6], [6, 7, 8]]
        a = pad(a, (5, 7), 'symmetric')
        b = np.array(
            [[5, 6, 6, 5, 4, 4, 5, 6, 6, 5, 4, 4, 5, 6, 6],
             [5, 6, 6, 5, 4, 4, 5, 6, 6, 5, 4, 4, 5, 6, 6],
             [7, 8, 8, 7, 6, 6, 7, 8, 8, 7, 6, 6, 7, 8, 8],
             [7, 8, 8, 7, 6, 6, 7, 8, 8, 7, 6, 6, 7, 8, 8],
             [5, 6, 6, 5, 4, 4, 5, 6, 6, 5, 4, 4, 5, 6, 6],

             [5, 6, 6, 5, 4, 4, 5, 6, 6, 5, 4, 4, 5, 6, 6],
             [7, 8, 8, 7, 6, 6, 7, 8, 8, 7, 6, 6, 7, 8, 8],

             [7, 8, 8, 7, 6, 6, 7, 8, 8, 7, 6, 6, 7, 8, 8],
             [5, 6, 6, 5, 4, 4, 5, 6, 6, 5, 4, 4, 5, 6, 6],
             [5, 6, 6, 5, 4, 4, 5, 6, 6, 5, 4, 4, 5, 6, 6],
             [7, 8, 8, 7, 6, 6, 7, 8, 8, 7, 6, 6, 7, 8, 8],
             [7, 8, 8, 7, 6, 6, 7, 8, 8, 7, 6, 6, 7, 8, 8],
             [5, 6, 6, 5, 4, 4, 5, 6, 6, 5, 4, 4, 5, 6, 6],
             [5, 6, 6, 5, 4, 4, 5, 6, 6, 5, 4, 4, 5, 6, 6]]
            )

        assert_array_equal(a, b)
Esempio n. 25
0
    def test_check_odd_method(self):
        a = np.arange(100)
        a = pad(a, (25, 20), 'symmetric', reflect_type='odd')
        b = np.array(
            [-24, -23, -22, -21, -20, -19, -18, -17, -16, -15,
             -14, -13, -12, -11, -10, -9, -8, -7, -6, -5,
             -4, -3, -2, -1, 0,

             0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
             10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
             20, 21, 22, 23, 24, 25, 26, 27, 28, 29,
             30, 31, 32, 33, 34, 35, 36, 37, 38, 39,
             40, 41, 42, 43, 44, 45, 46, 47, 48, 49,
             50, 51, 52, 53, 54, 55, 56, 57, 58, 59,
             60, 61, 62, 63, 64, 65, 66, 67, 68, 69,
             70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
             80, 81, 82, 83, 84, 85, 86, 87, 88, 89,
             90, 91, 92, 93, 94, 95, 96, 97, 98, 99,

             99, 100, 101, 102, 103, 104, 105, 106, 107, 108,
             109, 110, 111, 112, 113, 114, 115, 116, 117, 118]
            )
        assert_array_equal(a, b)
Esempio n. 26
0
 def test_check_02(self):
     a = pad([1, 2, 3], 4, 'wrap')
     b = np.array([3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1])
     assert_array_equal(a, b)
 def test_check_03(self):
     a = pad([1, 2, 3], 6, 'symmetric')
     b = np.array([1, 2, 3, 3, 2, 1, 1, 2, 3, 3, 2, 1, 1, 2, 3])
     assert_array_equal(a, b)
Esempio n. 28
0
 def test_check_03(self):
     a = pad([1, 2, 3], 6, 'symmetric')
     b = np.array([1, 2, 3, 3, 2, 1, 1, 2, 3, 3, 2, 1, 1, 2, 3])
     assert_array_equal(a, b)
Esempio n. 29
0
 def test_check_01(self):
     a = pad([1, 2, 3], 2, 'reflect')
     b = np.array([3, 2, 1, 2, 3, 2, 1])
     assert_array_equal(a, b)
Esempio n. 30
0
 def test_check_padding_an_empty_array(self):
     a = pad(np.zeros((0, 3)), ((0, ), (1, )), mode='reflect')
     b = np.zeros((0, 5))
     assert_array_equal(a, b)
 def test_zero_pad_width(self):
     arr = np.arange(30)
     arr = np.reshape(arr, (6, 5))
     for pad_width in (0, (0, 0), ((0, 0), (0, 0))):
         assert_array_equal(arr, pad(arr, pad_width, mode='constant'))
Esempio n. 32
0
 def test_check_large_pad(self):
     a = np.arange(12)
     a = np.reshape(a, (3, 4))
     a = pad(a, (10, 12), 'wrap')
     b = np.array([[
         10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8,
         9, 10, 11, 8, 9, 10, 11
     ],
                   [
                       2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3,
                       0, 1, 2, 3, 0, 1, 2, 3
                   ],
                   [
                       6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7,
                       4, 5, 6, 7, 4, 5, 6, 7
                   ],
                   [
                       10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8,
                       9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11
                   ],
                   [
                       2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3,
                       0, 1, 2, 3, 0, 1, 2, 3
                   ],
                   [
                       6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7,
                       4, 5, 6, 7, 4, 5, 6, 7
                   ],
                   [
                       10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8,
                       9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11
                   ],
                   [
                       2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3,
                       0, 1, 2, 3, 0, 1, 2, 3
                   ],
                   [
                       6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7,
                       4, 5, 6, 7, 4, 5, 6, 7
                   ],
                   [
                       10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8,
                       9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11
                   ],
                   [
                       2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3,
                       0, 1, 2, 3, 0, 1, 2, 3
                   ],
                   [
                       6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7,
                       4, 5, 6, 7, 4, 5, 6, 7
                   ],
                   [
                       10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8,
                       9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11
                   ],
                   [
                       2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3,
                       0, 1, 2, 3, 0, 1, 2, 3
                   ],
                   [
                       6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7,
                       4, 5, 6, 7, 4, 5, 6, 7
                   ],
                   [
                       10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8,
                       9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11
                   ],
                   [
                       2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3,
                       0, 1, 2, 3, 0, 1, 2, 3
                   ],
                   [
                       6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7,
                       4, 5, 6, 7, 4, 5, 6, 7
                   ],
                   [
                       10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8,
                       9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11
                   ],
                   [
                       2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3,
                       0, 1, 2, 3, 0, 1, 2, 3
                   ],
                   [
                       6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7,
                       4, 5, 6, 7, 4, 5, 6, 7
                   ],
                   [
                       10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8,
                       9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11
                   ],
                   [
                       2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3,
                       0, 1, 2, 3, 0, 1, 2, 3
                   ],
                   [
                       6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7,
                       4, 5, 6, 7, 4, 5, 6, 7
                   ],
                   [
                       10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8,
                       9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11
                   ]])
     assert_array_equal(a, b)
Esempio n. 33
0
 def test_check_02(self):
     a = pad([1, 2, 3], 4, 'wrap')
     b = np.array([3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1])
     assert_array_equal(a, b)
Esempio n. 34
0
 def test_check_median_02(self):
     a = np.array([[3, 1, 4], [4, 5, 9], [9, 8, 2]])
     a = pad(a.T, 1, 'median').T
     b = np.array([[5, 4, 5, 4, 5], [3, 3, 1, 4, 3], [5, 4, 5, 9, 5],
                   [8, 9, 8, 2, 8], [5, 4, 5, 4, 5]])
     assert_array_equal(a, b)
Esempio n. 35
0
 def test_zero_pad_width(self):
     arr = np.arange(30)
     arr = np.reshape(arr, (6, 5))
     for pad_width in (0, (0, 0), ((0, 0), (0, 0))):
         assert_array_equal(arr, pad(arr, pad_width, mode='constant'))
Esempio n. 36
0
 def test_check_03(self):
     a = pad([1, 2, 3], 4, 'reflect')
     b = np.array([1, 2, 3, 2, 1, 2, 3, 2, 1, 2, 3])
     assert_array_equal(a, b)
 def test_check_padding_an_empty_array(self):
     a = pad(np.zeros((0, 3)), ((0,), (1,)), mode='reflect')
     b = np.zeros((0, 5))
     assert_array_equal(a, b)