Esempio n. 1
0
    def set_UVC(self, U, V, C=None):
        self.u = ma.asarray(U).ravel()
        self.v = ma.asarray(V).ravel()
        if C is not None:
            c = ma.asarray(C).ravel()
            x,y,u,v,c = delete_masked_points(self.x.ravel(), self.y.ravel(),
                self.u, self.v, c)
        else:
            x,y,u,v = delete_masked_points(self.x.ravel(), self.y.ravel(),
                self.u, self.v)

        magnitude = np.sqrt(u*u + v*v)
        flags, barbs, halves, empty = self._find_tails(magnitude,
            self.rounding, **self.barb_increments)

        #Get the vertices for each of the barbs

        plot_barbs = self._make_barbs(u, v, flags, barbs, halves, empty,
            self._length, self._pivot, self.sizes, self.fill_empty, self.flip)
        self.set_verts(plot_barbs)

        #Set the color array
        if C is not None:
            self.set_array(c)

        #Update the offsets in case the masked data changed
        xy = np.hstack((x[:,np.newaxis], y[:,np.newaxis]))
        self._offsets = xy
Esempio n. 2
0
    def recache(self, always=False):
        if always or self._invalidx:
            xconv = self.convert_xunits(self._xorig)
            if ma.isMaskedArray(self._xorig):
                x = ma.asarray(xconv, np.float_).filled(np.nan)
            else:
                x = np.asarray(xconv, np.float_)
            x = x.ravel()
        else:
            x = self._x
        if always or self._invalidy:
            yconv = self.convert_yunits(self._yorig)
            if ma.isMaskedArray(self._yorig):
                y = ma.asarray(yconv, np.float_).filled(np.nan)
            else:
                y = np.asarray(yconv, np.float_)
            y = y.ravel()
        else:
            y = self._y

        if len(x) == 1 and len(y) > 1:
            x = x * np.ones(y.shape, np.float_)
        if len(y) == 1 and len(x) > 1:
            y = y * np.ones(x.shape, np.float_)

        if len(x) != len(y):
            raise RuntimeError('xdata and ydata must be the same length')

        self._xy = np.empty((len(x), 2), dtype=np.float_)
        self._xy[:, 0] = x
        self._xy[:, 1] = y

        self._x = self._xy[:, 0]  # just a view
        self._y = self._xy[:, 1]  # just a view

        self._subslice = False
        if (self.axes and len(x) > 1000 and self._is_sorted(x) and
                self.axes.name == 'rectilinear' and
                self.axes.get_xscale() == 'linear' and
                self._markevery is None and
                self.get_clip_on() is True):
            self._subslice = True
            nanmask = np.isnan(x)
            if nanmask.any():
                self._x_filled = self._x.copy()
                indices = np.arange(len(x))
                self._x_filled[nanmask] = np.interp(indices[nanmask],
                        indices[~nanmask], self._x[~nanmask])
            else:
                self._x_filled = self._x

        if self._path is not None:
            interpolation_steps = self._path._interpolation_steps
        else:
            interpolation_steps = 1
        xy = STEP_LOOKUP_MAP[self._drawstyle](*self._xy.T)
        self._path = Path(np.asarray(xy).T, None, interpolation_steps)
        self._transformed_path = None
        self._invalidx = False
        self._invalidy = False
Esempio n. 3
0
 def __init__(self,*args,**kwargs):
     TestCase.__init__(self,*args,**kwargs)
     self.presidents = [nan, 87, 82, 75, 63, 50, 43, 32, 35, 60, 54, 55,
                        36, 39,nan,nan, 69, 57, 57, 51, 45, 37, 46, 39,
                        36, 24, 32, 23, 25, 32,nan, 32, 59, 74, 75, 60,
                        71, 61, 71, 57, 71, 68, 79, 73, 76, 71, 67, 75,
                        79, 62, 63, 57, 60, 49, 48, 52, 57, 62, 61, 66,
                        71, 62, 61, 57, 72, 83, 71, 78, 79, 71, 62, 74,
                        76, 64, 62, 57, 80, 73, 69, 69, 71, 64, 69, 62,
                        63, 46, 56, 44, 44, 52, 38, 46, 36, 49, 35, 44,
                        59, 65, 65, 56, 66, 53, 61, 52, 51, 48, 54, 49,
                        49, 61,nan,nan, 68, 44, 40, 27, 28, 25, 24, 24]
     self.mdeaths = [2134,1863,1877,1877,1492,1249,1280,1131,1209,1492,1621,
                     1846,2103,2137,2153,1833,1403,1288,1186,1133,1053,1347,
                     1545,2066,2020,2750,2283,1479,1189,1160,1113, 970, 999,
                     1208,1467,2059,2240,1634,1722,1801,1246,1162,1087,1013,
                      959,1179,1229,1655,2019,2284,1942,1423,1340,1187,1098,
                     1004, 970,1140,1110,1812,2263,1820,1846,1531,1215,1075,
                     1056, 975, 940,1081,1294,1341]
     self.fdeaths = [901, 689, 827, 677, 522, 406, 441, 393, 387, 582, 578,
                     666, 830, 752, 785, 664, 467, 438, 421, 412, 343, 440,
                     531, 771, 767,1141, 896, 532, 447, 420, 376, 330, 357,
                     445, 546, 764, 862, 660, 663, 643, 502, 392, 411, 348,
                     387, 385, 411, 638, 796, 853, 737, 546, 530, 446, 431,
                     362, 387, 430, 425, 679, 821, 785, 727, 612, 478, 429,
                     405, 379, 393, 411, 487, 574]
     self.mdeaths = ma.asarray(self.mdeaths)
     self.fdeaths = ma.asarray(self.fdeaths)
Esempio n. 4
0
    def recache(self, always=False):
        if always or self._invalidx:
            xconv = self.convert_xunits(self._xorig)
            if ma.isMaskedArray(self._xorig):
                x = ma.asarray(xconv, np.float_)
            else:
                x = np.asarray(xconv, np.float_)
            x = x.ravel()
        else:
            x = self._x
        if always or self._invalidy:
            yconv = self.convert_yunits(self._yorig)
            if ma.isMaskedArray(self._yorig):
                y = ma.asarray(yconv, np.float_)
            else:
                y = np.asarray(yconv, np.float_)
            y = y.ravel()
        else:
            y = self._y

        if len(x) == 1 and len(y) > 1:
            x = x * np.ones(y.shape, np.float_)
        if len(y) == 1 and len(x) > 1:
            y = y * np.ones(x.shape, np.float_)

        if len(x) != len(y):
            raise RuntimeError("xdata and ydata must be the same length")

        x = x.reshape((len(x), 1))
        y = y.reshape((len(y), 1))

        if ma.isMaskedArray(x) or ma.isMaskedArray(y):
            self._xy = ma.concatenate((x, y), 1)
        else:
            self._xy = np.concatenate((x, y), 1)
        self._x = self._xy[:, 0]  # just a view
        self._y = self._xy[:, 1]  # just a view

        self._subslice = False
        if (
            self.axes
            and len(x) > 100
            and self._is_sorted(x)
            and self.axes.name == "rectilinear"
            and self.axes.get_xscale() == "linear"
            and self._markevery is None
        ):
            self._subslice = True
        if hasattr(self, "_path"):
            interpolation_steps = self._path._interpolation_steps
        else:
            interpolation_steps = 1
        self._path = Path(self._xy, None, interpolation_steps)
        self._transformed_path = None
        self._invalidx = False
        self._invalidy = False
 def _check(self, data):
     array = biggus.NumpyArrayAdapter(data)
     result = self.biggus_operator(array, axis=0).masked_array()
     expected = self.numpy_masked_operator(data, axis=0)
     if expected.ndim == 0:
         if expected is np.ma.masked:
             expected = ma.asarray(expected, dtype=array.dtype)
         else:
             expected = ma.asarray(expected)
     np.testing.assert_array_equal(result.filled(), expected.filled())
     np.testing.assert_array_equal(result.mask, expected.mask)
Esempio n. 6
0
    def __new__(cls, data=None, name=None, mask=None, fill_value=None,
                dtype=None, shape=(), length=0,
                description=None, unit=None, format=None, meta=None,
                units=None, dtypes=None):

        if dtypes is not None:
            dtype = dtypes
            warnings.warn("'dtypes' has been renamed to the singular 'dtype'.",
                          AstropyDeprecationWarning)

        if units is not None:
            unit = units
            warnings.warn("'units' has been renamed to the singular 'unit'.",
                          AstropyDeprecationWarning)

        if data is None:
            dtype = (np.dtype(dtype).str, shape)
            self_data = ma.zeros(length, dtype=dtype)
        elif isinstance(data, (Column, MaskedColumn)):
            self_data = ma.asarray(data.data, dtype=dtype)
            if description is None:
                description = data.description
            if unit is None:
                unit = unit or data.unit
            if format is None:
                format = data.format
            if meta is None:
                meta = deepcopy(data.meta)
            if name is None:
                name = data.name
        elif isinstance(data, Quantity):
            if unit is None:
                self_data = ma.asarray(data, dtype=dtype)
                unit = data.unit
            else:
                self_data = ma.asarray(data.to(unit), dtype=dtype)
        else:
            self_data = ma.asarray(data, dtype=dtype)

        self = self_data.view(MaskedColumn)
        if mask is None and hasattr(data, 'mask'):
            mask = data.mask
        if fill_value is None and hasattr(data, 'fill_value'):
            fill_value = data.fill_value
        self.mask = mask
        self.fill_value = fill_value
        self._name = name
        self.unit = unit
        self.format = format
        self.description = description
        self.parent_table = None
        self.meta = meta

        return self
Esempio n. 7
0
def _mann_whitney_u(x, y=None):
    """
    Calculate the Mann-Whitney-U test.

    The Wilcoxon signed-rank test tests the null hypothesis that two related paired 
    samples come from the same distribution. In particular, it tests whether the 
    distribution of the differences x - y is symmetric about zero. 
    It is a non-parametric version of the paired T-test.
    """
    # A significance-dict for a two-tailed test with 0.05 confidence
    # from http://de.wikipedia.org/wiki/Wilcoxon-Mann-Whitney-Test
    significance_table = \
    [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
    [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2],
    [0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8],
    [0, 0, 0, 0, 1, 2, 3, 4, 4, 5, 6, 7, 8, 9, 10, 11, 11, 12, 13, 14],
    [0, 0, 0, 0, 2, 3, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 17, 18, 19, 20],
    [0, 0, 0, 0, 0, 5, 6, 8, 10, 11, 13, 14, 16, 17, 19, 21, 22, 24, 25, 27],
    [0, 0, 0, 0, 0, 0, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34],
    [0, 0, 0, 0, 0, 0, 0, 13, 15, 17, 19, 22, 24, 26, 29, 31, 34, 36, 38, 41],
    [0, 0, 0, 0, 0, 0, 0, 0, 17, 20, 23, 26, 28, 31, 34, 37, 39, 42, 45, 48],
    [0, 0, 0, 0, 0, 0, 0, 0, 0, 23, 26, 29, 33, 36, 39, 42, 45, 48, 52, 55],
    [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 30, 33, 37, 40, 44, 47, 51, 55, 58, 62],
    [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 37, 41, 45, 49, 53, 57, 61, 65, 69],
    [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 45, 50, 54, 59, 63, 67, 72, 76],
    [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 55, 59, 64, 69, 74, 78, 83],
    [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 64, 70, 75, 80, 85, 90],
    [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 75, 81, 86, 92, 98],
    [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 87, 93, 99, 105],
    [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 99, 106, 112],
    [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 113, 119],
    [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 127]]
    
    U, p = stats.mannwhitneyu(x, y)
    
    x = ma.asarray(x).compressed().view(numpy.ndarray)
    y = ma.asarray(y).compressed().view(numpy.ndarray)
    
    n1 = len(x)
    n2 = len(y)
    print n1, n2
    if n1 > n2:
        tmp = n2
        n2 = n1
        n1 = tmp
    
    if n1 < 5 or n2 < 5:
        return 10000, 10000
    if n1 < 20 or n2 < 20:
        print "WARNING: scipy.stat might not be accurate, p value is %f and significance according to table is %s" % \
                (p, U <= significance_table[n1 - 1][n2 - 1])
    return U, p
 def test_masked_fill_value(self):
     cubes = []
     y = (0, 2)
     cube = _make_cube((0, 2), y, 1)
     cube.data = ma.asarray(cube.data)
     cube.data.fill_value = 10
     cubes.append(cube)
     cube = _make_cube((2, 4), y, 1)
     cube.data = ma.asarray(cube.data)
     cube.data.fill_value = 20
     cubes.append(cube)
     result = concatenate(cubes)
     self.assertEqual(len(result), 2)
Esempio n. 9
0
def sim():
    np.random.seed(1)

    # Generate the time vector
    dt = 0.05
    N = int(30 // dt)
    k = np.arange(N)
    t = k * dt

    # Instantiate the model
    given = dict(
        alpha=1, beta=-1, delta=0.2, gamma=0.3, omega=1,
        g1=0, g2=0.1, x_meas_std=0.1,
        x0=1, v0=0, x0_std=0.1, v0_std=0.1
    )
    q = GeneratedDTDuffing.pack('q', given)
    c = GeneratedDTDuffing.pack('c', given)
    params = dict(q=q, c=c, dt=dt)
    sampled = dict(t=t)
    model = GeneratedDTDuffing(params, sampled)

    # Simulate the system
    w = np.random.randn(N - 1, model.nw)
    x = np.zeros((N, model.nx))
    x[0] = stats.multivariate_normal.rvs(model.x0(), model.Px0())
    for k in range(N - 1):
        x[k + 1] = model.f(k, x[k])  + model.g(k, x[k]).dot(w[k])
    
    # Sample the outputs
    R = model.R()
    v = np.random.multivariate_normal(np.zeros(model.ny), R, N)
    y = ma.asarray(model.h(k, x) + v)
    y[np.arange(N) % 4 != 0] = ma.masked
    return model, t, x, y, q
Esempio n. 10
0
 def to_rgba(self, x, alpha=None, bytes=False):
     '''Return a normalized rgba array corresponding to *x*. If *x*
     is already an rgb array, insert *alpha*; if it is already
     rgba, return it unchanged. If *bytes* is True, return rgba as
     4 uint8s instead of 4 floats.
     '''
     if alpha is None:
         _alpha = 1.0
     else:
         _alpha = alpha
     try:
         if x.ndim == 3:
             if x.shape[2] == 3:
                 if x.dtype == np.uint8:
                     _alpha = np.array(_alpha*255, np.uint8)
                 m, n = x.shape[:2]
                 xx = np.empty(shape=(m,n,4), dtype = x.dtype)
                 xx[:,:,:3] = x
                 xx[:,:,3] = _alpha
             elif x.shape[2] == 4:
                 xx = x
             else:
                 raise ValueError("third dimension must be 3 or 4")
             if bytes and xx.dtype != np.uint8:
                 xx = (xx * 255).astype(np.uint8)
             return xx
     except AttributeError:
         pass
     x = ma.asarray(x)
     x = self.norm(x)
     x = self.cmap(x, alpha=alpha, bytes=bytes)
     return x
Esempio n. 11
0
 def __call__(self, value, clip=None):
     if clip is None:
         clip = self.clip
     if cbook.iterable(value):
         vtype = 'array'
         val = ma.asarray(value).astype(np.float)
     else:
         vtype = 'scalar'
         val = ma.array([value]).astype(np.float)
     self.autoscale_None(val)
     vmin, vmax = self.vmin, self.vmax
     cmin, cmax = self.cmin * vmin, self.cmax * vmax
     if vmin > vmax:
         raise ValueError("minvalue must be less than or equal to maxvalue")
     elif vmin == vmax:
         result = 0.0 * val
     else:
         if clip:
             mask = ma.getmask(val)
             val = ma.array(np.clip(val.filled(vmax), vmin, vmax),
                             mask=mask)
         result = 0. * val + 0.5
         result[val > cmax] = (ma.log10(val[val > cmax]) - ma.log10(cmax)) / (np.log10(vmax) - np.log10(cmax)) / 2. + 0.5
         result[val < cmin] = -(ma.log10(-val[val < cmin]) - ma.log10(-cmin)) / (np.log10(-vmin) - np.log10(-cmin)) / 2. + 0.5
     if vtype == 'scalar':
         result = result[0]
     return result
Esempio n. 12
0
def bodytrack(threadstuple, serv):
    #serv_M = ma.asarray([[0, 0, 0, 0, 6983544, 91465, 23131612, 171783],
    #                     [340208, 21308, 230049, 18250, 83687, 35901, 0, 0],
    #                     [0, 0, 0, 0, 0, 0, 22032093, 103155]])
    serv_M = ma.asarray(serv)

    rout = [
        [[0, 0, 0, 0],
         [0, 0, 0, 0],
         [0, 0, 1, 1],
         [0, 0, 1, 0]],
         [[39, 1, 0, 0],
          [0, 4, 1, 0],
          [1, 0, 1, 0],
          [0, 0, 0, 0]],
        [[0, 0, 0, 0],
         [0, 0, 0, 0],
         [0, 0, 0, 0],
         [0, 0, 0, 1]]
         ]

    qt = list(islice(cycle((1,0)), serv_M.shape[1]))
    routL = map (lambda x: rout_insert_inter(normalizeRowWise(np.asarray(x))), rout)
    res = mva_multiclass (routL, 1./serv_M.T, threadstuple, qt)
    cont = (res[0][1::2] - serv_M.T[1::2]).T
    print "%.0f %.0f %.0f" % (cont[1,0], cont[0,2], cont[2,3])

    return res
Esempio n. 13
0
    def __call__(self, value, clip=None, midpoint=None):


        if clip is None:
            clip = self.clip

        if cbook.iterable(value):
            vtype = 'array'
            val = ma.asarray(value).astype(np.float)
        else:
            vtype = 'scalar'
            val = ma.array([value]).astype(np.float)

        self.autoscale_None(val)
        vmin, vmax = self.vmin, self.vmax

        if vmin > vmax:
            raise ValueError("minvalue must be less than or equal to maxvalue")
        elif vmin==vmax:
            return 0.0 * val
        else:
            if clip:
                mask = ma.getmask(val)
                val = ma.array(np.clip(val.filled(vmax), vmin, vmax),
                                mask=mask)
            result = (val-vmin) * (1.0/(vmax-vmin))
            #result = (ma.arcsinh(val)-np.arcsinh(vmin))/(np.arcsinh(vmax)-np.arcsinh(vmin))
            result = result**(1./self.nthroot)
        if vtype == 'scalar':
            result = result[0]
        return result
Esempio n. 14
0
    def process_value(value):
        """
        Homogenize the input *value* for easy and efficient normalization.

        *value* can be a scalar or sequence.

        Returns *result*, *is_scalar*, where *result* is a
        masked array matching *value*.  Float dtypes are preserved;
        integer types with two bytes or smaller are converted to
        np.float32, and larger types are converted to np.float.
        Preserving float32 when possible, and using in-place operations,
        can greatly improve speed for large arrays.

        Experimental; we may want to add an option to force the
        use of float32.
        """
        if cbook.iterable(value):
            is_scalar = False
            result = ma.asarray(value)
            if result.dtype.kind == 'f':
                if isinstance(value, np.ndarray):
                    result = result.copy()
            elif result.dtype.itemsize > 2:
                result = result.astype(np.float)
            else:
                result = result.astype(np.float32)
        else:
            is_scalar = True
            result = ma.array([value]).astype(np.float)
        return result, is_scalar
Esempio n. 15
0
    def smooth(self, Y):
        '''Run UKS

        Params
        ------
        Y : [T, n_dim_state] array
            Y[t] =  t obs
            If Y is a masked array and any Y[t] is masked, obs is assumed missing and ignored.

        Returns
        -------
        smoothed_state_means : [T, n_dim_state] array
            filtered_state_means[t] = mean of t state distribution | [0, T-1] obs
        smoothed_state_covariances : [T, n_dim_state, n_dim_state] array
            filtered_state_covariances[t] = covariance of t state distribution | [0, T-1] obs
        '''
        
        Y = ma.asarray(Y)

        (transition_functions, observation_functions,
         transition_covariance, observation_covariance,
         initial_state_mean, initial_state_covariance) = (
            self._initialize_parameters()
        )

        (filtered_state_means, filtered_state_covariances) = self.filter(Y)
        (smoothed_state_means, smoothed_state_covariances) = (
            additive_unscented_smoother(
                filtered_state_means, filtered_state_covariances,
                transition_functions, transition_covariance
            )
        )

        return (smoothed_state_means, smoothed_state_covariances)
def detect_contour(img, level):
  """Returns list of vertices of contours at a given level
  
  Arguments:
    img (array): the image array
    level (number): the level at which to create the contour
  
  Returns:
    (list of nx2 arrays): list of list of vertices of the different contours
  
  Note:
    The contour detection is based on matplotlib's QuadContourGenerator
  """
  #parameter
  mask = None;
  corner_mask = True;
  nchunk = 0;

  #prepare image data
  z = ma.asarray(img, dtype=np.float64); 
  ny, nx = z.shape;
  x, y = np.meshgrid(np.arange(nx), np.arange(ny));

  #find contour
  contour_generator = _contour.QuadContourGenerator(x, y, z.filled(), mask, corner_mask, nchunk)
  vertices = contour_generator.create_contour(level);
  
  return vertices;
Esempio n. 17
0
    def set_data(self, x, y, A):
        A = ma.asarray(A)
        if x is None:
            x = np.arange(0, A.shape[1] + 1, dtype=np.float64)
        else:
            x = np.asarray(x, np.float64).ravel()
        if y is None:
            y = np.arange(0, A.shape[0] + 1, dtype=np.float64)
        else:
            y = np.asarray(y, np.float64).ravel()

        if A.shape[:2] != (y.size - 1, x.size - 1):
            print A.shape
            print y.size
            print x.size
            raise ValueError("Axes don't match array shape")
        if A.ndim not in [2, 3]:
            raise ValueError("A must be 2D or 3D")
        if A.ndim == 3 and A.shape[2] == 1:
            A.shape = A.shape[:2]
        self.is_grayscale = False
        if A.ndim == 3:
            if A.shape[2] in [3, 4]:
                if (A[:, :, 0] == A[:, :, 1]).all() and (A[:, :, 0] == A[:, :, 2]).all():
                    self.is_grayscale = True
            else:
                raise ValueError("3D arrays must have RGB or RGBA as last dim")
        self._A = A
        self._Ax = x
        self._Ay = y
        self.update_dict["array"] = True
Esempio n. 18
0
    def __call__(self, value, clip=None):
        if clip is None:
            clip = self.clip

        if cbook.iterable(value):
            vtype = 'array'
            val = ma.asarray(value).astype(np.float)
        else:
            vtype = 'scalar'
            val = ma.array([value]).astype(np.float)

        self.autoscale_None(val)
        vmin, vmax = self.vmin, self.vmax
        if vmin > vmax:
            raise ValueError("minvalue must be less than or equal to maxvalue")
        elif vmin<=0:
            raise ValueError("values must all be positive")
        elif vmin==vmax:
            return 0.0 * val
        else:
            if clip:
                mask = ma.getmask(val)
                val = ma.array(np.clip(val.filled(vmax), vmin, vmax),
                                mask=mask)
            result = (ma.log(val)-np.log(vmin))/(np.log(vmax)-np.log(vmin))
        if vtype == 'scalar':
            result = result[0]
        return result
Esempio n. 19
0
 def _check_xyz(self, args):
     '''
     For functions like contour, check that the dimensions
     of the input arrays match; if x and y are 1D, convert
     them to 2D using meshgrid.
     Possible change: I think we should make and use an ArgumentError
     Exception class (here and elsewhere).
     '''
     x = self.ax.convert_xunits( args[0] )
     y = self.ax.convert_yunits( args[1] )
     x = np.asarray(x, dtype=np.float64)
     y = np.asarray(y, dtype=np.float64)
     z = ma.asarray(args[2], dtype=np.float64)
     if z.ndim != 2:
         raise TypeError("Input z must be a 2D array.")
     else: Ny, Nx = z.shape
     if x.shape == z.shape and y.shape == z.shape:
         return x,y,z
     if x.ndim != 1 or y.ndim != 1:
         raise TypeError("Inputs x and y must be 1D or 2D.")
     nx, = x.shape
     ny, = y.shape
     if nx != Nx or ny != Ny:
         raise TypeError("Length of x must be number of columns in z,\n" +
                         "and length of y must be number of rows.")
     x,y = np.meshgrid(x,y)
     return x,y,z
Esempio n. 20
0
 def set_data(self, x, y, A):
     x = np.asarray(x, np.float32)
     y = np.asarray(y, np.float32)
     A = ma.asarray(A)
     if len(x.shape) != 1 or len(y.shape) != 1\
        or A.shape[0:2] != (y.shape[0], x.shape[0]):
         raise TypeError("Axes don't match array shape")
     if len(A.shape) not in [2, 3]:
         raise TypeError("Can only plot 2D or 3D data")
     if len(A.shape) == 3 and A.shape[2] not in [1, 3, 4]:
         raise TypeError(
             "3D arrays must have three (RGB) or "
             "four (RGBA) color components"
             )
     if len(A.shape) == 3 and A.shape[2] == 1:
         A.shape = A.shape[0:2]
     if len(A.shape) == 2:
         if A.dtype != np.uint8:
             A = (self.cmap(self.norm(A)) * 255).astype(np.uint8)
         else:
             A = np.repeat(A[:, :, np.newaxis], 4, 2)
             A[:, :, 3] = 255
     else:
         if A.dtype != np.uint8:
             A = (255 * A).astype(np.uint8)
         if A.shape[2] == 3:
             B = np.zeros(tuple(list(A.shape[0:2]) + [4]), np.uint8)
             B[:, :, 0:3] = A
             B[:, :, 3] = 255
             A = B
     self._A = A
     self._Ax = x
     self._Ay = y
     self._imcache = None
Esempio n. 21
0
 def _expected(self, transpose=False):
     data = self.data
     if transpose:
         data = self.data.T
     # Expected raster weights per target grid cell.
     # This is the (fractional) source cell contribution
     # to each target cell (out of 255)
     weights = np.array([[[63, 127, 127],   # top left hand cell (tlhc)
                          [127, 255, 255]],
                         [[127, 127, 63],   # top right hand cell (trhc)
                          [255, 255, 127]],
                         [[127, 255, 255],  # bottom left hand cell (blhc)
                          [63, 127, 127]],
                         [[255, 255, 127],  # bottom right hand cell (brhc)
                          [127, 127, 63]]], dtype=np.uint8)
     weights = weights / 255
     # Expected source points per target grid cell.
     tmp = data[1:-1, 1:-1]
     shape = (-1, 2, 3)
     cells = [tmp[slice(0, 2), slice(0, 3)].reshape(shape),       # tlhc
              tmp[slice(0, 2), slice(3, None)].reshape(shape),    # trhc
              tmp[slice(2, None), slice(0, 3)].reshape(shape),    # blhc
              tmp[slice(2, None), slice(3, None)].reshape(shape)] # brhc
     cells = ma.vstack(cells)
     # Expected fractional weighted result.
     num = (cells * weights).sum(axis=(1, 2))
     dom = weights.sum(axis=(1, 2))
     expected = num / dom
     expected = ma.asarray(expected.reshape(2, 2))
     if transpose:
         expected = expected.T
     return expected
Esempio n. 22
0
    def __call__(self, value, clip=None):
        if clip is None:
            clip = self.clip

        if cbook.iterable(value):
            vtype = 'array'
            val = ma.asarray(value).astype(numpy.float)
        else:
            vtype = 'scalar'
            val = ma.array([value]).astype(numpy.float)
        
        if self.staticrange is None:
            self.autoscale_None(val)
            vmin, vmax = self.vmin, self.vmax
        else:
            self.vmin, self.vmax = None, None
            self.autoscale_None(val)
            vmin, vmax = self.vmax - self.staticrange, self.vmax
        if vmin > vmax:
            raise ValueError("minvalue must be less than or equal to maxvalue")
        elif vmin==vmax:
            result = 0.0 * val
        else:
            vmin = float(vmin)
            vmax = float(vmax)
            rmin = float(self.rmin)
            rmax = float(self.rmax)
            if clip:
                mask = ma.getmask(val)
                val = ma.array(np.clip(val.filled(vmax), vmin, vmax),
                                mask=mask)
            result = (val-vmin) * ((rmax-rmin) / (vmax-vmin)) + rmin
        if vtype == 'scalar':
            result = result[0]
        return result
Esempio n. 23
0
 def _check(self, data):
     array = biggus.NumpyArrayAdapter(data)
     result = std(array, axis=0, ddof=0).masked_array()
     expected = ma.std(data, axis=0, ddof=0)
     if expected.ndim == 0:
         expected = ma.asarray(expected)
     np.testing.assert_array_equal(result.filled(), expected.filled())
     np.testing.assert_array_equal(result.mask, expected.mask)
Esempio n. 24
0
 def test_concat_masked_2x2d(self):
     cubes = []
     y = (0, 2)
     cube = _make_cube((0, 2), y, 1)
     cube.data = ma.asarray(cube.data)
     cube.data[(0, 1), (0, 1)] = ma.masked
     cubes.append(cube)
     cube = _make_cube((2, 4), y, 2)
     cube.data = ma.asarray(cube.data)
     cube.data[(0, 1), (1, 0)] = ma.masked
     cubes.append(cube)
     result = concatenate(cubes)
     self.assertCML(result, ("concatenate", "concat_masked_2x2d.cml"))
     self.assertEqual(len(result), 1)
     self.assertEqual(result[0].shape, (2, 4))
     mask = np.array([[True, False, False, True], [False, True, True, False]], dtype=np.bool)
     self.assertArrayEqual(result[0].data.mask, mask)
Esempio n. 25
0
 def _make_verts(self, U, V):
     uv = ma.asarray(U+V*1j)
     a = ma.absolute(uv)
     if self.scale is None:
         sn = max(10, math.sqrt(self.N))
         scale = 1.8 * a.mean() * sn / self.span # crude auto-scaling
         self.scale = scale
     length = a/(self.scale*self.width)
     X, Y = self._h_arrows(length)
     # There seems to be a ma bug such that indexing
     # a masked array with one element converts it to
     # an ndarray.
     theta = np.angle(ma.asarray(uv[..., np.newaxis]).filled(0))
     xy = (X+Y*1j) * np.exp(1j*theta)*self.width
     xy = xy[:,:,np.newaxis]
     XY = ma.concatenate((xy.real, xy.imag), axis=2)
     return XY
Esempio n. 26
0
    def to_rgba(self, x, alpha=None, bytes=False):
        """
        Return a normalized rgba array corresponding to *x*.

        In the normal case, *x* is a 1-D or 2-D sequence of scalars, and
        the corresponding ndarray of rgba values will be returned,
        based on the norm and colormap set for this ScalarMappable.

        There is one special case, for handling images that are already
        rgb or rgba, such as might have been read from an image file.
        If *x* is an ndarray with 3 dimensions,
        and the last dimension is either 3 or 4, then it will be
        treated as an rgb or rgba array, and no mapping will be done.
        If the last dimension is 3, the *alpha* kwarg (defaulting to 1)
        will be used to fill in the transparency.  If the last dimension
        is 4, the *alpha* kwarg is ignored; it does not
        replace the pre-existing alpha.  A ValueError will be raised
        if the third dimension is other than 3 or 4.

        In either case, if *bytes* is *False* (default), the rgba
        array will be floats in the 0-1 range; if it is *True*,
        the returned rgba array will be uint8 in the 0 to 255 range.

        Note: this method assumes the input is well-behaved; it does
        not check for anomalies such as *x* being a masked rgba
        array, or being an integer type other than uint8, or being
        a floating point rgba array with values outside the 0-1 range.
        """
        # First check for special case, image input:
        try:
            if x.ndim == 3:
                if x.shape[2] == 3:
                    if alpha is None:
                        alpha = 1
                    if x.dtype == np.uint8:
                        alpha = np.uint8(alpha * 255)
                    m, n = x.shape[:2]
                    xx = np.empty(shape=(m, n, 4), dtype=x.dtype)
                    xx[:, :, :3] = x
                    xx[:, :, 3] = alpha
                elif x.shape[2] == 4:
                    xx = x
                else:
                    raise ValueError("third dimension must be 3 or 4")
                if bytes and xx.dtype != np.uint8:
                    xx = (xx * 255).astype(np.uint8)
                if not bytes and xx.dtype == np.uint8:
                    xx = xx.astype(float) / 255
                return xx
        except AttributeError:
            # e.g., x is not an ndarray; so try mapping it
            pass

        # This is the normal case, mapping a scalar array:
        x = ma.asarray(x)
        x = self.norm(x)
        x = self.cmap(x, alpha=alpha, bytes=bytes)
        return x
Esempio n. 27
0
def RhoMask(RomsNC, latbounds, lonbounds) :
    """
    defines mask on rho points only, without time dimension
    """
    Rholats = (RomsNC.variables['lat_rho'][:] >= latbounds[0])*(RomsNC.variables['lat_rho'][:] <= latbounds[1])
    Rholons = (RomsNC.variables['lon_rho'][:] >= lonbounds[0])*(RomsNC.variables['lon_rho'][:] <= lonbounds[1])
    Rho_Mask = ma.asarray(np.invert(Rholats*Rholons))
    
    return Rho_Mask
Esempio n. 28
0
 def test_masked_and_unmasked(self):
     cubes = []
     y = (0, 2)
     cube = _make_cube((2, 4), y, 2)
     cube.data = ma.asarray(cube.data)
     cubes.append(cube)
     cubes.append(_make_cube((0, 2), y, 1))
     result = concatenate(cubes)
     self.assertEqual(len(result), 1)
Esempio n. 29
0
 def test_concat_masked_2x2d(self):
     cubes = []
     y = (0, 2)
     cube = _make_cube((0, 2), y, 1)
     cube.data = ma.asarray(cube.data)
     cube.data[(0, 1), (0, 1)] = ma.masked
     cubes.append(cube)
     cube = _make_cube((2, 4), y, 2)
     cube.data = ma.asarray(cube.data)
     cube.data[(0, 1), (1, 0)] = ma.masked
     cubes.append(cube)
     result = concatenate(cubes)
     self.assertCML(result, ('concatenate', 'concat_masked_2x2d.cml'))
     self.assertEqual(len(result), 1)
     self.assertEqual(result[0].shape, (2, 4))
     mask = np.array([[True, False, False, True],
                      [False, True, True, False]], dtype=np.bool)
     self.assertArrayEqual(result[0].data.mask, mask)
 def test_masked_vs_unmasked(self):
     cubes = []
     y = (0, 2)
     cubes.append(_make_cube((0, 2), y, 1))
     cube = _make_cube((2, 4), y, 2)
     cube.data = ma.asarray(cube.data)
     cubes.append(cube)
     result = concatenate(cubes)
     self.assertEqual(len(result), 2)
Esempio n. 31
0
 def inverse(self, value):
     if not self.scaled():
         raise ValueError("Not invertible until scaled")
     vmin, vmax = self.vmin, self.vmax
     if cbook.iterable(value):
         val = ma.asarray(value)
         return vmin * ma.power((vmax / vmin), val)
     else:
         return vmin * pow((vmax / vmin), value)
Esempio n. 32
0
 def _make_verts(self, U, V):
     uv = ma.asarray(U+V*1j)
     a = ma.absolute(uv)
     if self.scale is None:
         sn = max(10, math.sqrt(self.N))
         scale = 1.8 * a.mean() * sn / self.span # crude auto-scaling
         self.scale = scale
     length = a/(self.scale*self.width)
     X, Y = self._h_arrows(length)
     if self.angles == 'xy':
         theta = self._angles(U, V).filled(0)[:,np.newaxis]
     elif self.angles == 'uv':
         theta = np.angle(ma.asarray(uv[..., np.newaxis]).filled(0))
     else:
         theta = ma.asarray(self.angles*np.pi/180.0).filled(0)
     xy = (X+Y*1j) * np.exp(1j*theta)*self.width
     xy = xy[:,:,np.newaxis]
     XY = ma.concatenate((xy.real, xy.imag), axis=2)
     return XY
Esempio n. 33
0
 def _parse_args(self, *args):
     X, Y, U, V, C = [None] * 5
     args = list(args)
     if len(args) == 3 or len(args) == 5:
         C = ma.asarray(args.pop(-1))
     V = ma.asarray(args.pop(-1))
     U = ma.asarray(args.pop(-1))
     if U.ndim == 1:
         nr, nc = 1, U.shape[0]
     else:
         nr, nc = U.shape
     if len(args) == 2:  # remaining after removing U,V,C
         X, Y = [np.array(a).ravel() for a in args]
         if len(X) == nc and len(Y) == nr:
             X, Y = [a.ravel() for a in np.meshgrid(X, Y)]
     else:
         indexgrid = np.meshgrid(np.arange(nc), np.arange(nr))
         X, Y = [np.ravel(a) for a in indexgrid]
     return X, Y, U, V, C
Esempio n. 34
0
 def _make_verts(self, U, V):
     uv = ma.asarray(U + V * 1j)
     a = ma.absolute(uv)
     if self.scale is None:
         sn = max(10, math.sqrt(self.N))
         scale = 1.8 * a.mean() * sn / self.span  # crude auto-scaling
         self.scale = scale
     length = a / (self.scale * self.width)
     X, Y = self._h_arrows(length)
     if self.angles == 'xy':
         theta = self._angles(U, V).filled(0)[:, np.newaxis]
     elif self.angles == 'uv':
         theta = np.angle(ma.asarray(uv[..., np.newaxis]).filled(0))
     else:
         theta = ma.asarray(self.angles * np.pi / 180.0).filled(0)
     xy = (X + Y * 1j) * np.exp(1j * theta) * self.width
     xy = xy[:, :, np.newaxis]
     XY = ma.concatenate((xy.real, xy.imag), axis=2)
     return XY
Esempio n. 35
0
 def unmasked_data_as_1d_array(array):
     array = ma.asarray(array)
     if array.ndim == 0:
         if array.mask:
             data = np.array([])
         else:
             data = np.array([array.data])
     else:
         data = array.data[~ma.getmaskarray(array)]
     return data
Esempio n. 36
0
    def inverse(self, value):
        if not self.scaled():
            raise ValueError("Not invertible until scaled")
        vmin, vmax = self.vmin, self.vmax

        if cbook.iterable(value):
            val = ma.asarray(value)
            return vmin * ma.power((vmax / vmin), val)
        else:
            return vmin * pow((vmax / vmin), value)
Esempio n. 37
0
    def __call__(self, X, alpha=1.0, bytes=False):
        """
        *X* is either a scalar or an array (of any dimension).
        If scalar, a tuple of rgba values is returned, otherwise
        an array with the new shape = oldshape+(4,). If the X-values
        are integers, then they are used as indices into the array.
        If they are floating point, then they must be in the
        interval (0.0, 1.0).
        Alpha must be a scalar.
        If bytes is False, the rgba values will be floats on a
        0-1 scale; if True, they will be uint8, 0-255.
        """

        if not self._isinit: self._init()
        alpha = min(alpha, 1.0)  # alpha must be between 0 and 1
        alpha = max(alpha, 0.0)
        self._lut[:-3, -1] = alpha
        mask_bad = None
        if not cbook.iterable(X):
            vtype = 'scalar'
            xa = np.array([X])
        else:
            vtype = 'array'
            xma = ma.asarray(X)
            xa = xma.filled(0)
            mask_bad = ma.getmask(xma)
        if xa.dtype.char in np.typecodes['Float']:
            np.putmask(xa, xa == 1.0,
                       0.9999999)  #Treat 1.0 as slightly less than 1.
            # The following clip is fast, and prevents possible
            # conversion of large positive values to negative integers.

            if NP_CLIP_OUT:
                np.clip(xa * self.N, -1, self.N, out=xa)
            else:
                xa = np.clip(xa * self.N, -1, self.N)
            xa = xa.astype(int)
        # Set the over-range indices before the under-range;
        # otherwise the under-range values get converted to over-range.
        np.putmask(xa, xa > self.N - 1, self._i_over)
        np.putmask(xa, xa < 0, self._i_under)
        if mask_bad is not None and mask_bad.shape == xa.shape:
            np.putmask(xa, mask_bad, self._i_bad)
        if bytes:
            lut = (self._lut * 255).astype(np.uint8)
        else:
            lut = self._lut
        rgba = np.empty(shape=xa.shape + (4, ), dtype=lut.dtype)
        lut.take(xa, axis=0, mode='clip', out=rgba)
        #  twice as fast as lut[xa];
        #  using the clip or wrap mode and providing an
        #  output array speeds it up a little more.
        if vtype == 'scalar':
            rgba = tuple(rgba[0, :])
        return rgba
Esempio n. 38
0
 def _parse_args(self, *args):
     X, Y, U, V, C = [None] * 5
     args = list(args)
     if len(args) == 3 or len(args) == 5:
         C = ma.asarray(args.pop(-1)).ravel()
     V = ma.asarray(args.pop(-1))
     U = ma.asarray(args.pop(-1))
     nn = np.shape(U)
     nc = nn[0]
     nr = 1
     if len(nn) > 1:
         nr = nn[1]
     if len(args) == 2:  # remaining after removing U,V,C
         X, Y = [np.array(a).ravel() for a in args]
         if len(X) == nc and len(Y) == nr:
             X, Y = [a.ravel() for a in np.meshgrid(X, Y)]
     else:
         indexgrid = np.meshgrid(np.arange(nc), np.arange(nr))
         X, Y = [np.ravel(a) for a in indexgrid]
     return X, Y, U, V, C
Esempio n. 39
0
    def inverse(self, value):
        if not self.scaled():
            raise ValueError("Not invertible until scaled")
        gamma = self.gamma
        vmin, vmax = self.vmin, self.vmax

        if cbook.iterable(value):
            val = ma.asarray(value)
            return ma.power(value, 1. / gamma) * (vmax - vmin) + vmin
        else:
            return pow(value, 1. / gamma) * (vmax - vmin) + vmin
Esempio n. 40
0
    def inverse(self, value):
        if not self.scaled():
            raise ValueError("Not invertible until scaled")
        vmin = float(self.vmin)
        vmax = float(self.vmax)

        if cbook.iterable(value):
            val = ma.asarray(value)
            return vmin + val * (vmax - vmin)
        else:
            return vmin + value * (vmax - vmin)
def test_neural_network(data, model=None):
    y = asarray(data)
    x = arange(len(data))
    y_train, y_test, x_train, x_test = train_test_split(y, x, test_size=0.33)
    guesser = Predictioner(model_input=model)
    guesser.update_input(train_x=x_train, train_y=y_train)
    history = guesser.fit_model(verbose=0)
    eva = guesser.evaluate(y_test, x_test)
    guesser.predict(x)
    guesser.visualize()
    return eva[0]
Esempio n. 42
0
    def sample(self, n_timesteps, initial_state=None, random_state=None):
        '''Sample from model defined by the Unscented Kalman Filter

        Parameters
        ----------
        n_timesteps : int
            number of time steps
        initial_state : optional, [n_dim_state] array
            initial state.  If unspecified, will be sampled from initial state
            distribution.
        random_state : optional, int or Random
            random number generator
        '''
        (transition_functions, observation_functions, transition_covariance,
         observation_covariance, initial_state_mean,
         initial_state_covariance) = (self._initialize_parameters())

        n_dim_state = transition_covariance.shape[-1]
        n_dim_obs = observation_covariance.shape[-1]

        # logic for instantiating rng
        if random_state is None:
            rng = check_random_state(self.random_state)
        else:
            rng = check_random_state(random_state)

        # logic for selecting initial state
        if initial_state is None:
            initial_state = rng.multivariate_normal(initial_state_mean,
                                                    initial_state_covariance)

        # logic for generating samples
        x = np.zeros((n_timesteps, n_dim_state))
        z = np.zeros((n_timesteps, n_dim_obs))
        for t in range(n_timesteps):
            if t == 0:
                x[0] = initial_state
            else:
                transition_function = (_last_dims(transition_functions,
                                                  t - 1,
                                                  ndims=1)[0])
                transition_noise = (rng.multivariate_normal(
                    np.zeros(n_dim_state),
                    transition_covariance.newbyteorder('=')))
                x[t] = transition_function(x[t - 1], transition_noise)

            observation_function = (_last_dims(observation_functions,
                                               t,
                                               ndims=1)[0])
            observation_noise = (rng.multivariate_normal(
                np.zeros(n_dim_obs), observation_covariance.newbyteorder('=')))
            z[t] = observation_function(x[t], observation_noise)

        return (x, ma.asarray(z))
Esempio n. 43
0
 def __init__(self, *members, **kwargs):
     ArrayChain.__init__(self, *members, **kwargs)
     self.combined = np.empty(self.shape)
     # adapted copy-paste from ArrayChain.__init__
     if not members[1:]:
         members = members[0]
     kwargs = dict(zip(members[0::2], members[1::2]))
     #
     if any([isinstance(v, ma.MaskedArray) for v in kwargs.values()]):
         self.combined = ma.asarray(self.combined)
     for k in kwargs:
         self[k] = kwargs[k]
Esempio n. 44
0
    def inverse(self, value):
        if not self.scaled():
            raise ValueError("Not invertible until scaled")

        vmin, vmax = self.vmin, self.vmax
        if cbook.iterable(value):
            val = ma.asarray(value)
            val = val * (self._upper - self._lower) + self._lower
            return self.invfn(val)
        else:
            value = value * (self._upper - self._lower) + self._lower
            return self.invfn(value)
Esempio n. 45
0
def generate_nearly_covered_modis_lst(area, doy, lat1, lat2, lon1, lon2):
    in_path = os.path.join("Data", "MOD11A1", "3km")
    out_path = get_out_path(
        os.path.join("Data", "MOD11A1", "3km_nearly_overlapped"))
    log_file = os.path.join(out_path, 'log.txt')
    sys.stdout = Logger(log_file)

    print(area, doy)
    if doy + ".nc" in os.listdir(
            os.path.join("Data", "Sentinel", "usa_filtered")):
        fh_sentinel = Dataset(
            os.path.join("Data", "Sentinel", "usa_filtered", doy + ".nc"), "r")
    elif doy + ".nc" in os.listdir(
            os.path.join("Data", "Sentinel", "usa_filtered_real_gap")):
        fh_sentinel = Dataset(
            os.path.join("Data", "Sentinel", "usa_filtered_real_gap",
                         doy + ".nc"), "r")

    lat_indices, lon_indices = select_area(lat1, lat2, lon1, lon2, "M03")
    lats, lons = get_lat_lon("M03")
    assert (len(lats) != 0 and len(lons) != 0)
    lats = lats[lat_indices[0]:lat_indices[1]]
    lons = lons[lon_indices[0]:lon_indices[1]]

    i_lat_start, i_lat_end, i_lon_start, i_lon_end = match_lat_lon(
        fh_sentinel.variables["lat"][:], fh_sentinel.variables["lon"][:], lats,
        lons)
    sm_mask = ~ma.getmaskarray(
        fh_sentinel.variables["soil_moisture"][i_lat_start:i_lat_end + 1,
                                               i_lon_start:i_lon_end + 1])
    if np.sum(sm_mask) > 0:
        s_day = datetime.datetime.strptime(doy, "%Y%m%d").date()
        n_days = 0
        lst_day_ref = []
        while True:
            hist_day = str(s_day + datetime.timedelta(days=-n_days)).replace(
                "-", "")
            print(hist_day, )

            fh = Dataset(os.path.join(in_path, hist_day + ".nc"), "r")
            lst_day_ref.append(
                fh.variables["LST_Day"][i_lat_start:i_lat_end + 1,
                                        i_lon_start:i_lon_end + 1])
            fh.close()

            lst_day_ref_mask = ~np.all(
                ma.getmaskarray(ma.asarray(lst_day_ref)), axis=0)
            overlap = np.logical_and(sm_mask, lst_day_ref_mask)
            if np.sum(overlap) / float(np.sum(sm_mask)) > 0.95:
                modis_lst_fill_missing_by_most_recent_values(doy, area, n_days)
                break

            n_days += 1
Esempio n. 46
0
    def inverse(self, value):

        # ORIGINAL MATPLOTLIB CODE

        if not self.scaled():
            raise ValueError("Not invertible until scaled")

        vmin, vmax = self.vmin, self.vmax

        # CUSTOM APLPY CODE

        if cbook.iterable(value):
            val = ma.asarray(value)
        else:
            val = value

        if self.stretch == 'Linear':

            pass

        elif self.stretch == 'Log':

            val = (ma.power(10., val * ma.log10(self.midpoint)) -
                   1.) / (self.midpoint - 1.)

        elif self.stretch == 'Sqrt':

            val = val * val

        elif self.stretch == 'Arcsinh':

            val = self.midpoint * \
                  ma.sinh(val * ma.arcsinh(1. / self.midpoint))

        elif self.stretch == 'Arccosh':

            val = self.midpoint * \
                  ma.cosh(val * ma.arccosh(1. / self.midpoint))

        elif self.stretch == 'Power':

            val = ma.power(val, (1. / self.exponent))

        elif self.stretch == 'Exp':

            val = 1. / np.exp(val)

        else:

            raise Exception("Unknown stretch in APLpyNormalize: %s" %
                            self.stretch)

        return vmin + val * (vmax - vmin)
Esempio n. 47
0
def filter_auxfiles(data, isets, auxf, auxpar, auxconds):

    if auxf:
        data = ma.asarray(data)

        for f in range(len(auxf)):
            catlg = cl.ClumpCatalog.from_file([auxf[f]])
            size = np.shape(catlg.clumps)[0]

            npars = len(auxpar[f])
            tmparr = np.zeros((npars, size))
            for i in range(size):
                for j in range(npars):
                    tmparr[j, i] = catlg.clumps[i].record[auxpar[f][j]]

            tmparr = ma.asarray(tmparr)
            fcond = auxconds[f]
            col = 0
            while fcond:
                cond = fcond.pop(0)
                cut = fcond.pop(0)

                if cond == ">":
                    mask_aux = ma.masked_greater(tmparr[col, :], cut)
                elif cond == "=":
                    mask_aux = ma.masked_equal(tmparr[col, :], cut)
                elif cond == "<":
                    mask_aux = ma.masked_less(tmparr[col, :], cut)
                elif cond == "!=":
                    mask_aux = ma.masked_not_equal(tmparr[col, :], cut)
                col += 1

                tmparr.mask = mask_aux.mask

        if np.shape(tmparr.mask):
            data.mask = tmparr.mask
        else:
            data = data.data

    return data
Esempio n. 48
0
def dotd(A, B, out=None):
    """Diagonal of :math:`\mathrm A\mathrm B^\intercal`.
    If ``A`` is :math:`n\times p` and ``B`` is :math:`p\times n`, it is done in :math:`O(pn)`.
    Args:
        A (array_like): Left matrix.
        B (array_like): Right matrix.
        out (:class:`numpy.ndarray`, optional): copy result to.
    Returns:
        :class:`numpy.ndarray`: Resulting diagonal.
    """
    A = ma.asarray(A, float)
    B = ma.asarray(B, float)
    if A.ndim == 1 and B.ndim == 1:
        if out is None:
            return ma.dot(A, B)
        return ma.dot(A, B, out)

    if out is None:
        out = ma.empty((A.shape[0], ), float)

    out[:] = ma.sum(A * B.T, axis=1)
    return out
Esempio n. 49
0
def estimate_kdp_vulpiani(psidp,dr,windsize = 7,  band = 'C', interpolate = False):
    masked = psidp.mask
    
    pool = mp.Pool(processes = mp.cpu_count(),maxtasksperchild=1)
    func=partial(kdp_estimation_vulpiani,dr = dr, band = band, windsize = windsize, interpolate = interpolate)
    all_psidp = list(psidp)
    list_est = pool.map(func,all_psidp)
    kdp = np.zeros(psidp.shape)*np.nan
    phidp_rec = np.zeros(psidp.shape)*np.nan

    for i,l in enumerate(list_est):
        kdp[i,0:len(l[0])] = l[0]
        phidp_rec[i,0:len(l[1])] = l[1]
    
    kdp = ma.asarray(kdp)
    kdp.mask = masked
    phidp_rec = ma.asarray(phidp_rec)
    phidp_rec.mask = masked
    
    pool.close()
    
    return kdp, phidp_rec
Esempio n. 50
0
def dotd(A, B):
    r"""Diagonal of :math:`\mathrm A\mathrm B^\intercal`.

    If ``A`` is :math:`n\times p` and ``B`` is :math:`p\times n`, it is done in
    :math:`O(pn)`.

    Args:
        A (array_like): Left matrix.
        B (array_like): Right matrix.

    Returns:
        :class:`numpy.ndarray`: Resulting diagonal.
    """
    A = asarray(A, float)
    B = asarray(B, float)
    if A.ndim == 1 and B.ndim == 1:
        return dot(A, B)

    out = empty((A.shape[0],), float)
    out[:] = sum(A * B.T, axis=1)

    return out
Esempio n. 51
0
def msokalsneath(u, v):
    r"""
    Computes the Sokal-Sneath dissimilarity between two boolean vectors
    ``u`` and ``v``,

    .. math::

       \frac{R}
            {c_{TT} + R}

    where :math:`c_{ij}` is the number of occurrences of
    :math:`\mathtt{u[k]} = i` and :math:`\mathtt{v[k]} = j` for
    :math:`k < n` and :math:`R = 2(c_{TF} + c_{FT})`.

    Parameters
    ----------
    u : ndarray
        An :math:`n`-dimensional vector.
    v : ndarray
        An :math:`n`-dimensional vector.

    Returns
    -------
    d : double
        The Sokal-Sneath dissimilarity between vectors ``u`` and ``v``.
    """
    u = ma.asarray(u, order='c')
    v = ma.asarray(v, order='c')
    if u.dtype == np.bool:
        ntt = (u & v).sum()
    else:
        ntt = (u * v).sum()
    (nft, ntf) = _nbool_correspond_ft_tf(u, v)
    denom = ntt + 2.0 * (ntf + nft)
    if denom == 0:
        raise ValueError('Sokal-Sneath dissimilarity is not defined for '
                         'vectors that are entirely false.')
    return float(2.0 * (ntf + nft)) / denom
Esempio n. 52
0
    def recache(self):
        #if self.axes is None: print 'recache no axes'
        #else: print 'recache units', self.axes.xaxis.units, self.axes.yaxis.units
        if ma.isMaskedArray(self._xorig) or ma.isMaskedArray(self._yorig):
            x = ma.asarray(self.convert_xunits(self._xorig), float)
            y = ma.asarray(self.convert_yunits(self._yorig), float)
            x = ma.ravel(x)
            y = ma.ravel(y)
        else:
            x = np.asarray(self.convert_xunits(self._xorig), float)
            y = np.asarray(self.convert_yunits(self._yorig), float)
            x = np.ravel(x)
            y = np.ravel(y)

        if len(x) == 1 and len(y) > 1:
            x = x * np.ones(y.shape, float)
        if len(y) == 1 and len(x) > 1:
            y = y * np.ones(x.shape, float)

        if len(x) != len(y):
            raise RuntimeError('xdata and ydata must be the same length')

        x = x.reshape((len(x), 1))
        y = y.reshape((len(y), 1))

        if ma.isMaskedArray(x) or ma.isMaskedArray(y):
            self._xy = ma.concatenate((x, y), 1)
        else:
            self._xy = np.concatenate((x, y), 1)
        self._x = self._xy[:, 0]  # just a view
        self._y = self._xy[:, 1]  # just a view

        # Masked arrays are now handled by the Path class itself
        self._path = Path(self._xy)
        self._transformed_path = TransformedPath(self._path,
                                                 self.get_transform())

        self._invalid = False
Esempio n. 53
0
    def __call__(self, value, clip=None):

        method = self.stretch
        exponent = self.exponent
        midpoint = self.midpoint

        if clip is None:
            clip = self.clip

        if cbook.iterable(value):
            vtype = 'array'
            val = ma.asarray(value).astype(np.float)
        else:
            vtype = 'scalar'
            val = ma.array([value]).astype(np.float)

        self.autoscale_None(val)
        vmin, vmax = self.vmin, self.vmax
        if vmin > vmax:
            raise ValueError("minvalue must be less than or equal to maxvalue")
        elif vmin == vmax:
            return 0.0 * val
        else:
            if clip:
                mask = ma.getmask(val)
                val = ma.array(np.clip(val.filled(vmax), vmin, vmax),
                               mask=mask)
            result = (val - vmin) * (1.0 / (vmax - vmin))

            negative = result < 0.
            if self.stretch == 'linear':
                pass
            elif self.stretch == 'log':
                result = ma.log10(result * (self.midpoint - 1.) + 1.) \
                       / ma.log10(self.midpoint)
            elif self.stretch == 'sqrt':
                result = ma.sqrt(result)
            elif self.stretch == 'arcsinh':
                result = ma.arcsinh(result / self.midpoint) \
                       / ma.arcsinh(1. / self.midpoint)
            elif self.stretch == 'power':
                result = ma.power(result, exponent)
            else:
                raise Exception("Unknown stretch in APLpyNormalize: %s" %
                                self.stretch)
            result[negative] = -np.inf

        if vtype == 'scalar':
            result = result[0]
        return result
Esempio n. 54
0
def msokalmichener(u, v):
    r"""
    Computes the Sokal-Michener dissimilarity between two boolean vectors
    ``u`` and ``v``, which is defined as

    .. math::

       \frac{R}
            {S + R}

    where :math:`c_{ij}` is the number of occurrences of
    :math:`\mathtt{u[k]} = i` and :math:`\mathtt{v[k]} = j` for
    :math:`k < n`, :math:`R = 2 * (c_{TF} + c_{FT})` and
    :math:`S = c_{FF} + c_{TT}`.

    Parameters
    ----------
    u : ndarray
        An :math:`n`-dimensional vector.
    v : ndarray
        An :math:`n`-dimensional vector.

    Returns
    -------
    d : double
        The Sokal-Michener dissimilarity between vectors ``u`` and ``v``.
    """
    u = ma.asarray(u, order='c')
    v = ma.asarray(v, order='c')
    if u.dtype == np.bool:
        ntt = (u & v).sum()
        nff = (~u & ~v).sum()
    else:
        ntt = (u * v).sum()
        nff = ((1.0 - u) * (1.0 - v)).sum()
    (nft, ntf) = _nbool_correspond_ft_tf(u, v)
    return float(2.0 * (ntf + nft)) / float(ntt + nff + 2.0 * (ntf + nft))
Esempio n. 55
0
def mcityblock(u, v):
    r"""
    Computes the Manhattan distance between two n-vectors u and v,
    which is defined as

    .. math::

       \sum_i {(u_i-v_i)}.

    Parameters
    ----------
    u : ndarray
        An :math:`n`-dimensional vector.
    v : ndarray
        An :math:`n`-dimensional vector.

    Returns
    -------
    d : double
        The City Block distance between vectors ``u`` and ``v``.
    """
    u = ma.asarray(u, order='c')
    v = ma.asarray(v, order='c')
    return abs(u - v).sum()
Esempio n. 56
0
def mchebyshev(u, v):
    r"""
    Computes the Chebyshev distance between two n-vectors u and v,
    which is defined as

    .. math::

       \max_i {|u_i-v_i|}.

    Parameters
    ----------
    u : ndarray
        An :math:`n`-dimensional vector.
    v : ndarray
        An :math:`n`-dimensional vector.

    Returns
    -------
    d : double
        The Chebyshev distance between vectors ``u`` and ``v``.
    """
    u = ma.asarray(u, order='c')
    v = ma.asarray(v, order='c')
    return max(abs(u - v))
Esempio n. 57
0
def mbraycurtis(u, v):
    r"""
    Computes the Bray-Curtis distance between two n-vectors ``u`` and
    ``v``, which is defined as

    .. math::

       \sum{|u_i-v_i|} / \sum{|u_i+v_i|}.

    Parameters
    ----------
    u : ndarray
        An :math:`n`-dimensional vector.
    v : ndarray
        An :math:`n`-dimensional vector.

    Returns
    -------
    d : double
        The Bray-Curtis distance between vectors ``u`` and ``v``.
    """
    u = ma.asarray(u, order='c')
    v = ma.asarray(v, order='c')
    return abs(u - v).sum() / abs(u + v).sum()
Esempio n. 58
0
    def set_data(self, A, shape=None):
        """
        Set the image array

        ACCEPTS: numpy/PIL Image A"""
        # check if data is PIL Image without importing Image
        if hasattr(A,'getpixel'):
            X = pil_to_array(A)
        else:
            X = ma.asarray(A) # assume array
        self._A = X

        self._imcache =None
        self._rgbacache = None
        self._oldxslice = None
        self._oldyslice = None
Esempio n. 59
0
 def test_regrid_ok_src_masked(self):
     self.data = ma.asarray(self.data)
     self.data[2, 3] = ma.masked  # tlhc 1x masked of 6x src cells
     self.data[2, 4] = ma.masked  # trhc 2x masked of 6x src cells
     self.data[2, 5] = ma.masked
     self.data[3, 2] = ma.masked  # blhc 3x masked of 6x src cells
     self.data[3, 3] = ma.masked
     self.data[4, 3] = ma.masked
     self.data[3, 4] = ma.masked  # brhc 4x masked of 6x src cells
     self.data[3, 5] = ma.masked
     self.data[4, 4] = ma.masked
     self.data[4, 5] = ma.masked
     result = agg(self.data, self.sx_points, self.sx_bounds, self.sy_points,
                  self.sy_bounds, self.sx_dim, self.sy_dim, self.gx_bounds,
                  self.gy_bounds)
     assert_array_equal(result, self._expected())