Esempio n. 1
0
def bench_eigvals():
    numpy_eigvals = nl.eigvals
    scipy_eigvals = sl.eigvals
    print()
    print('           Finding matrix eigenvalues')
    print('      ==================================')
    print('      |    contiguous     |   non-contiguous ')
    print('----------------------------------------------')
    print(' size |  scipy  | numpy   |  scipy  | numpy ')

    for size,repeat in [(20,150),(100,7),(200,2)]:
        repeat *= 1
        print('%5s' % size, end=' ')
        sys.stdout.flush()

        a = random([size,size])

        print('| %6.2f ' % measure('scipy_eigvals(a)',repeat), end=' ')
        sys.stdout.flush()

        print('| %6.2f ' % measure('numpy_eigvals(a)',repeat), end=' ')
        sys.stdout.flush()

        a = a[-1::-1,-1::-1]  # turn into a non-contiguous array
        assert_(not a.flags['CONTIGUOUS'])

        print('| %6.2f ' % measure('scipy_eigvals(a)',repeat), end=' ')
        sys.stdout.flush()

        print('| %6.2f ' % measure('numpy_eigvals(a)',repeat), end=' ')
        sys.stdout.flush()

        print('   (secs for %s calls)' % (repeat))
Esempio n. 2
0
def bench_load_trk():
    rng = np.random.RandomState(42)
    dtype = 'float32'
    NB_STREAMLINES = 5000
    NB_POINTS = 1000
    points = [rng.rand(NB_POINTS, 3).astype(dtype)
              for i in range(NB_STREAMLINES)]
    scalars = [rng.rand(NB_POINTS, 10).astype(dtype)
               for i in range(NB_STREAMLINES)]

    repeat = 10

    with InTemporaryDirectory():
        trk_file = "tmp.trk"
        tractogram = Tractogram(points, affine_to_rasmm=np.eye(4))
        TrkFile(tractogram).save(trk_file)

        streamlines_old = [d[0] - 0.5
                           for d in tv.read(trk_file, points_space="rasmm")[0]]
        mtime_old = measure('tv.read(trk_file, points_space="rasmm")', repeat)
        print("Old: Loaded {:,} streamlines in {:6.2f}".format(NB_STREAMLINES,
                                                               mtime_old))

        trk = nib.streamlines.load(trk_file, lazy_load=False)
        streamlines_new = trk.streamlines
        mtime_new = measure('nib.streamlines.load(trk_file, lazy_load=False)',
                            repeat)
        print("\nNew: Loaded {:,} streamlines in {:6.2}".format(NB_STREAMLINES,
                                                                mtime_new))
        print("Speedup of {:.2f}".format(mtime_old / mtime_new))
        for s1, s2 in zip(streamlines_new, streamlines_old):
            assert_array_equal(s1, s2)

    # Points and scalars
    with InTemporaryDirectory():

        trk_file = "tmp.trk"
        tractogram = Tractogram(points,
                                data_per_point={'scalars': scalars},
                                affine_to_rasmm=np.eye(4))
        TrkFile(tractogram).save(trk_file)

        streamlines_old = [d[0] - 0.5
                           for d in tv.read(trk_file, points_space="rasmm")[0]]

        scalars_old = [d[1]
                       for d in tv.read(trk_file, points_space="rasmm")[0]]
        mtime_old = measure('tv.read(trk_file, points_space="rasmm")', repeat)
        msg = "Old: Loaded {:,} streamlines with scalars in {:6.2f}"
        print(msg.format(NB_STREAMLINES, mtime_old))

        trk = nib.streamlines.load(trk_file, lazy_load=False)
        scalars_new = trk.tractogram.data_per_point['scalars']
        mtime_new = measure('nib.streamlines.load(trk_file, lazy_load=False)',
                            repeat)
        msg = "New: Loaded {:,} streamlines with scalars in {:6.2f}"
        print(msg.format(NB_STREAMLINES, mtime_new))
        print("Speedup of {:2f}".format(mtime_old / mtime_new))
        for s1, s2 in zip(scalars_new, scalars_old):
            assert_array_equal(s1, s2)
Esempio n. 3
0
def bench_svd():
    numpy_svd = nl.svd
    scipy_svd = sl.svd
    print()
    print('           Finding the SVD decomposition')
    print('      ==================================')
    print('      |    contiguous     |   non-contiguous ')
    print('----------------------------------------------')
    print(' size |  scipy  | numpy   |  scipy  | numpy ')

    for size,repeat in [(20,150),(100,7),(200,2)]:
        repeat *= 1
        print('%5s' % size, end=' ')
        sys.stdout.flush()

        a = random([size,size])

        print('| %6.2f ' % measure('scipy_svd(a)',repeat), end=' ')
        sys.stdout.flush()

        print('| %6.2f ' % measure('numpy_svd(a)',repeat), end=' ')
        sys.stdout.flush()

        a = a[-1::-1,-1::-1]  # turn into a non-contiguous array
        assert_(not a.flags['CONTIGUOUS'])

        print('| %6.2f ' % measure('scipy_svd(a)',repeat), end=' ')
        sys.stdout.flush()

        print('| %6.2f ' % measure('numpy_svd(a)',repeat), end=' ')
        sys.stdout.flush()

        print('   (secs for %s calls)' % (repeat))
Esempio n. 4
0
def bench_set_number_of_points():
    repeat = 1
    nb_points_per_streamline = 100
    nb_points = 42
    nb_streamlines = int(1e4)
    streamlines = [
        np.random.rand(nb_points_per_streamline, 3).astype("float32")
        for i in range(nb_streamlines)
    ]

    print("Timing set_number_of_points() in Cython"
          "({0} streamlines)".format(nb_streamlines))
    cython_time = measure("set_number_of_points(streamlines, nb_points)",
                          repeat)
    print("Cython time: {0:.3}sec".format(cython_time))
    del streamlines

    streamlines = [
        np.random.rand(nb_points_per_streamline, 3).astype("float32")
        for i in range(nb_streamlines)
    ]
    python_time = measure(
        "[set_number_of_points_python(s, nb_points)"
        " for s in streamlines]", repeat)
    print("Python time: {0:.2}sec".format(python_time))
    print("Speed up of {0}x".format(python_time / cython_time))
    del streamlines
Esempio n. 5
0
def bench_load_save():
    rng = np.random.RandomState(20111001)
    repeat = 4
    img_shape = (128, 128, 64)
    arr = rng.normal(size=img_shape)
    img = Nifti1Image(arr, np.eye(4))
    sio = BytesIO()
    img.file_map['image'].fileobj = sio
    hdr = img.get_header()
    sys.stdout.flush()
    print("\nImage load save")
    print("----------------")
    hdr.set_data_dtype(np.float32)
    mtime = measure('img.to_file_map()', repeat)
    print('%30s %6.2f' % ('Save float64 to float32', mtime))
    mtime = measure('img.from_file_map(img.file_map)', repeat)
    print('%30s %6.2f' % ('Load from float32', mtime))
    hdr.set_data_dtype(np.int16)
    mtime = measure('img.to_file_map()', repeat)
    print('%30s %6.2f' % ('Save float64 to int16', mtime))
    mtime = measure('img.from_file_map(img.file_map)', repeat)
    print('%30s %6.2f' % ('Load from int16', mtime))
    arr = np.random.random_integers(low=-1000,high=-1000, size=img_shape)
    arr = arr.astype(np.int16)
    img = Nifti1Image(arr, np.eye(4))
    sio = BytesIO()
    img.file_map['image'].fileobj = sio
    hdr = img.get_header()
    hdr.set_data_dtype(np.float32)
    mtime = measure('img.to_file_map()', repeat)
    print('%30s %6.2f' % ('Save Int16 to float32', mtime))
    sys.stdout.flush()
Esempio n. 6
0
def bench_load_save():
    rng = np.random.RandomState(20111001)
    repeat = 4
    img_shape = (128, 128, 64)
    arr = rng.normal(size=img_shape)
    img = Nifti1Image(arr, np.eye(4))
    sio = BytesIO()
    img.file_map['image'].fileobj = sio
    hdr = img.get_header()
    sys.stdout.flush()
    print "\nImage load save"
    print "----------------"
    hdr.set_data_dtype(np.float32)
    mtime = measure('img.to_file_map()', repeat)
    print '%30s %6.2f' % ('Save float64 to float32', mtime)
    mtime = measure('img.from_file_map(img.file_map)', repeat)
    print '%30s %6.2f' % ('Load from float32', mtime)
    hdr.set_data_dtype(np.int16)
    mtime = measure('img.to_file_map()', repeat)
    print '%30s %6.2f' % ('Save float64 to int16', mtime)
    mtime = measure('img.from_file_map(img.file_map)', repeat)
    print '%30s %6.2f' % ('Load from int16', mtime)
    arr = np.random.random_integers(low=-1000,high=-1000, size=img_shape)
    arr = arr.astype(np.int16)
    img = Nifti1Image(arr, np.eye(4))
    sio = BytesIO()
    img.file_map['image'].fileobj = sio
    hdr = img.get_header()
    hdr.set_data_dtype(np.float32)
    mtime = measure('img.to_file_map()', repeat)
    print '%30s %6.2f' % ('Save Int16 to float32', mtime)
    sys.stdout.flush()
def bench_vec_val_vect():
    # nosetests -s --match '(?:^|[\\b_\\.//-])[Bb]ench'
    repeat = 100
    etime = measure("np.einsum('...ij,...j,...kj->...ik', evecs, evals, evecs)",
                    repeat)
    vtime = measure("vec_val_vect(evecs, evals)", repeat)
    print("einsum %4.2f; vec_val_vect %4.2f" % (etime, vtime))
Esempio n. 8
0
def bench_eigvals():
    numpy_eigvals = nl.eigvals
    scipy_eigvals = sl.eigvals
    print()
    print('           Finding matrix eigenvalues')
    print('      ==================================')
    print('      |    contiguous     |   non-contiguous ')
    print('----------------------------------------------')
    print(' size |  scipy  | numpy   |  scipy  | numpy ')

    for size, repeat in [(20, 150), (100, 7), (200, 2)]:
        repeat *= 1
        print('%5s' % size, end=' ')
        sys.stdout.flush()

        a = random([size, size])

        print('| %6.2f ' % measure('scipy_eigvals(a)', repeat), end=' ')
        sys.stdout.flush()

        print('| %6.2f ' % measure('numpy_eigvals(a)', repeat), end=' ')
        sys.stdout.flush()

        a = a[-1::-1, -1::-1]  # turn into a non-contiguous array
        assert_(not a.flags['CONTIGUOUS'])

        print('| %6.2f ' % measure('scipy_eigvals(a)', repeat), end=' ')
        sys.stdout.flush()

        print('| %6.2f ' % measure('numpy_eigvals(a)', repeat), end=' ')
        sys.stdout.flush()

        print('   (secs for %s calls)' % (repeat))
    def bench_random(self):
        numpy_det = nl.det
        scipy_det = sl.det
        print()
        print('           Finding matrix determinant')
        print('      ==================================')
        print('      |    contiguous     |   non-contiguous ')
        print('----------------------------------------------')
        print(' size |  scipy  | numpy   |  scipy  | numpy ')

        for size, repeat in [(20, 1000), (100, 150), (500, 2), (1000, 1)][:-1]:
            repeat *= 2
            print('%5s' % size, end=' ')
            sys.stdout.flush()

            a = random([size, size])

            print('| %6.2f ' % measure('scipy_det(a)', repeat), end=' ')
            sys.stdout.flush()

            print('| %6.2f ' % measure('numpy_det(a)', repeat), end=' ')
            sys.stdout.flush()

            a = a[-1::-1, -1::-1]  # turn into a non-contiguous array
            assert_(not a.flags['CONTIGUOUS'])

            print('| %6.2f ' % measure('scipy_det(a)', repeat), end=' ')
            sys.stdout.flush()

            print('| %6.2f ' % measure('numpy_det(a)', repeat), end=' ')
            sys.stdout.flush()

            print('   (secs for %s calls)' % (repeat))
Esempio n. 10
0
def bench_set_number_of_points():
    repeat = 5
    nb_streamlines = DATA['nb_streamlines']

    msg = "Timing set_number_of_points() with {0:,} streamlines."
    print(msg.format(nb_streamlines * repeat))
    cython_time = measure("set_number_of_points(streamlines, nb_points)",
                          repeat)
    print("Cython time: {0:.3f} sec".format(cython_time))

    python_time = measure("[set_number_of_points_python(s, nb_points)"
                          " for s in streamlines]", repeat)
    print("Python time: {0:.2f} sec".format(python_time))
    print("Speed up of {0:.2f}x".format(python_time/cython_time))

    # Make sure it produces the same results.
    assert_array_almost_equal([set_number_of_points_python(s) for s in DATA["streamlines"]],
                              set_number_of_points(DATA["streamlines"]))

    cython_time_arrseq = measure("set_number_of_points(streamlines, nb_points)", repeat)
    print("Cython time (ArrSeq): {0:.3f} sec".format(cython_time_arrseq))
    print("Speed up of {0:.2f}x".format(python_time/cython_time_arrseq))

    # Make sure it produces the same results.
    assert_array_equal(set_number_of_points(DATA["streamlines"]),
                       set_number_of_points(DATA["streamlines_arrseq"]))
Esempio n. 11
0
    def test_fprop_faster(self):
        seed = 1234
        repeat = 100

        lstm = LSTM(input_size=DATA['features_size'],
                    hidden_sizes=[DATA['hidden_size']],
                    )

        lstm.initialize(initer.UniformInitializer(seed))

        lstm2 = LSTMFaster(input_size=DATA['features_size'],
                           hidden_sizes=[DATA['hidden_size']],
                           )
        # Wi, Wo, Wf, Wm
        # Make sure the weights are the same.
        lstm2.layers_lstm[0].W.set_value(np.concatenate([lstm.layers_lstm[0].Wi.get_value(), lstm.layers_lstm[0].Wo.get_value(), lstm.layers_lstm[0].Wf.get_value(), lstm.layers_lstm[0].Wm.get_value()], axis=1))
        lstm2.layers_lstm[0].U.set_value(np.concatenate([lstm.layers_lstm[0].Ui.get_value(), lstm.layers_lstm[0].Uo.get_value(), lstm.layers_lstm[0].Uf.get_value(), lstm.layers_lstm[0].Um.get_value()], axis=1))

        input = T.tensor3('input')
        input.tag.test_value = DATA['batch']

        fprop = theano.function([input], lstm.get_output(input))
        fprop2 = theano.function([input], lstm2.get_output(input))
        fprop_time = measure("out = fprop(DATA['batch'])", repeat)
        print("fprop time: {:.2f} sec.", fprop_time)
        fprop2_time = measure("out = fprop2(DATA['batch'])", repeat)
        print("fprop faster time: {:.2f} sec.", fprop2_time)
        print("Speedup: {:.2f}x".format(fprop_time/fprop2_time))

        out = fprop(DATA['batch'])
        out2 = fprop2(DATA['batch'])
        assert_array_equal(out, out2)
Esempio n. 12
0
def bench_length():
    repeat = 10
    nb_streamlines = DATA['nb_streamlines']
    streamlines = DATA["streamlines"]  # Streamlines as a list of ndarrays.

    print("Timing length() with {0:,} streamlines.".format(nb_streamlines))
    python_time = measure("[length_python(s) for s in streamlines]", repeat)
    print("Python time: {0:.2}sec".format(python_time))

    cython_time = measure("length(streamlines)", repeat)
    print("Cython time: {0:.3}sec".format(cython_time))
    print("Speed up of {0:.2f}x".format(python_time / cython_time))

    # Make sure it produces the same results.
    assert_array_equal([length_python(s) for s in DATA["streamlines"]],
                       length(DATA["streamlines"]))

    streamlines = DATA['streamlines_arrseq']
    cython_time_arrseq = measure("length(streamlines)", repeat)
    print("Cython time (ArrSeq): {0:.3}sec".format(cython_time_arrseq))
    print("Speed up of {0:.2f}x".format(python_time / cython_time_arrseq))

    # Make sure it produces the same results.
    assert_array_equal(length(DATA["streamlines"]),
                       length(DATA["streamlines_arrseq"]))
Esempio n. 13
0
def bench_set_number_of_points():
    repeat = 5
    nb_streamlines = DATA['nb_streamlines']

    msg = "Timing set_number_of_points() with {0:,} streamlines."
    print(msg.format(nb_streamlines * repeat))
    cython_time = measure("set_number_of_points(streamlines, nb_points)",
                          repeat)
    print("Cython time: {0:.3f} sec".format(cython_time))

    python_time = measure("[set_number_of_points_python(s, nb_points)"
                          " for s in streamlines]", repeat)
    print("Python time: {0:.2f} sec".format(python_time))
    print("Speed up of {0:.2f}x".format(python_time/cython_time))

    # Make sure it produces the same results.
    assert_array_almost_equal([set_number_of_points_python(s) for s in DATA["streamlines"]],
                              set_number_of_points(DATA["streamlines"]))

    cython_time_arrseq = measure("set_number_of_points(streamlines, nb_points)", repeat)
    print("Cython time (ArrSeq): {0:.3f} sec".format(cython_time_arrseq))
    print("Speed up of {0:.2f}x".format(python_time/cython_time_arrseq))

    # Make sure it produces the same results.
    assert_array_equal(set_number_of_points(DATA["streamlines"]),
                       set_number_of_points(DATA["streamlines_arrseq"]))
Esempio n. 14
0
def bench_load_trk():
    rng = np.random.RandomState(42)
    dtype = 'float32'
    NB_STREAMLINES = 5000
    NB_POINTS = 1000
    points = [rng.rand(NB_POINTS, 3).astype(dtype)
              for i in range(NB_STREAMLINES)]
    scalars = [rng.rand(NB_POINTS, 10).astype(dtype)
               for i in range(NB_STREAMLINES)]

    repeat = 10

    with InTemporaryDirectory():
        trk_file = "tmp.trk"
        tractogram = Tractogram(points, affine_to_rasmm=np.eye(4))
        TrkFile(tractogram).save(trk_file)

        streamlines_old = [d[0] - 0.5
                           for d in tv.read(trk_file, points_space="rasmm")[0]]
        mtime_old = measure('tv.read(trk_file, points_space="rasmm")', repeat)
        print("Old: Loaded {:,} streamlines in {:6.2f}".format(NB_STREAMLINES,
                                                               mtime_old))

        trk = nib.streamlines.load(trk_file, lazy_load=False)
        streamlines_new = trk.streamlines
        mtime_new = measure('nib.streamlines.load(trk_file, lazy_load=False)',
                            repeat)
        print("\nNew: Loaded {:,} streamlines in {:6.2}".format(NB_STREAMLINES,
                                                                mtime_new))
        print("Speedup of {:.2f}".format(mtime_old / mtime_new))
        for s1, s2 in zip(streamlines_new, streamlines_old):
            assert_array_equal(s1, s2)

    # Points and scalars
    with InTemporaryDirectory():

        trk_file = "tmp.trk"
        tractogram = Tractogram(points,
                                data_per_point={'scalars': scalars},
                                affine_to_rasmm=np.eye(4))
        TrkFile(tractogram).save(trk_file)

        streamlines_old = [d[0] - 0.5
                           for d in tv.read(trk_file, points_space="rasmm")[0]]

        scalars_old = [d[1]
                       for d in tv.read(trk_file, points_space="rasmm")[0]]
        mtime_old = measure('tv.read(trk_file, points_space="rasmm")', repeat)
        msg = "Old: Loaded {:,} streamlines with scalars in {:6.2f}"
        print(msg.format(NB_STREAMLINES, mtime_old))

        trk = nib.streamlines.load(trk_file, lazy_load=False)
        scalars_new = trk.tractogram.data_per_point['scalars']
        mtime_new = measure('nib.streamlines.load(trk_file, lazy_load=False)',
                            repeat)
        msg = "New: Loaded {:,} streamlines with scalars in {:6.2f}"
        print(msg.format(NB_STREAMLINES, mtime_new))
        print("Speedup of {:2f}".format(mtime_old / mtime_new))
        for s1, s2 in zip(scalars_new, scalars_old):
            assert_array_equal(s1, s2)
Esempio n. 15
0
def bench_svd():
    numpy_svd = nl.svd
    scipy_svd = sl.svd
    print()
    print('           Finding the SVD decomposition')
    print('      ==================================')
    print('      |    contiguous     |   non-contiguous ')
    print('----------------------------------------------')
    print(' size |  scipy  | numpy   |  scipy  | numpy ')

    for size, repeat in [(20, 150), (100, 7), (200, 2)]:
        repeat *= 1
        print('%5s' % size, end=' ')
        sys.stdout.flush()

        a = random([size, size])

        print('| %6.2f ' % measure('scipy_svd(a)', repeat), end=' ')
        sys.stdout.flush()

        print('| %6.2f ' % measure('numpy_svd(a)', repeat), end=' ')
        sys.stdout.flush()

        a = a[-1::-1, -1::-1]  # turn into a non-contiguous array
        assert_(not a.flags['CONTIGUOUS'])

        print('| %6.2f ' % measure('scipy_svd(a)', repeat), end=' ')
        sys.stdout.flush()

        print('| %6.2f ' % measure('numpy_svd(a)', repeat), end=' ')
        sys.stdout.flush()

        print('   (secs for %s calls)' % (repeat))
Esempio n. 16
0
    def bench_random(self):
        numpy_det = nl.det
        scipy_det = sl.det
        print()
        print('           Finding matrix determinant')
        print('      ==================================')
        print('      |    contiguous     |   non-contiguous ')
        print('----------------------------------------------')
        print(' size |  scipy  | numpy   |  scipy  | numpy ')

        for size,repeat in [(20,1000),(100,150),(500,2),(1000,1)][:-1]:
            repeat *= 2
            print('%5s' % size, end=' ')
            sys.stdout.flush()

            a = random([size,size])

            print('| %6.2f ' % measure('scipy_det(a)',repeat), end=' ')
            sys.stdout.flush()

            print('| %6.2f ' % measure('numpy_det(a)',repeat), end=' ')
            sys.stdout.flush()

            a = a[-1::-1,-1::-1]  # turn into a non-contiguous array
            assert_(not a.flags['CONTIGUOUS'])

            print('| %6.2f ' % measure('scipy_det(a)',repeat), end=' ')
            sys.stdout.flush()

            print('| %6.2f ' % measure('numpy_det(a)',repeat), end=' ')
            sys.stdout.flush()

            print('   (secs for %s calls)' % (repeat))
Esempio n. 17
0
def bench_vec_val_vect():
    # nosetests -s --match '(?:^|[\\b_\\.//-])[Bb]ench'
    repeat = 100
    shape = (100, 100)
    evecs, evals = randn(*(shape + (3, 3))), randn(*(shape + (3,)))
    etime = measure("np.einsum('...ij,...j,...kj->...ik', evecs, evals, evecs)",
                    repeat)
    vtime = measure("vec_val_vect(evecs, evals)", repeat)
    print("einsum %4.2f; vec_val_vect %4.2f" % (etime, vtime))
Esempio n. 18
0
def bench_vec_val_vect():
    # nosetests -s --match '(?:^|[\\b_\\.//-])[Bb]ench'
    repeat = 100
    shape = (100, 100)
    evecs, evals = randn(*(shape + (3, 3))), randn(*(shape + (3, )))
    etime = measure(
        "np.einsum('...ij,...j,...kj->...ik', evecs, evals, evecs)", repeat)
    vtime = measure("vec_val_vect(evecs, evals)", repeat)
    print("einsum %4.2f; vec_val_vect %4.2f" % (etime, vtime))
Esempio n. 19
0
def bench_quickbundles():
    dtype = "float32"
    repeat = 10
    nb_points = 18

    streams, hdr = nib.trackvis.read(get_data('fornix'))
    fornix = [s[0].astype(dtype) for s in streams]
    fornix = streamline_utils.set_number_of_points(fornix, nb_points)

    # Create eight copies of the fornix to be clustered (one in each octant).
    streamlines = []
    streamlines += [s + np.array([100, 100, 100], dtype) for s in fornix]
    streamlines += [s + np.array([100, -100, 100], dtype) for s in fornix]
    streamlines += [s + np.array([100, 100, -100], dtype) for s in fornix]
    streamlines += [s + np.array([100, -100, -100], dtype) for s in fornix]
    streamlines += [s + np.array([-100, 100, 100], dtype) for s in fornix]
    streamlines += [s + np.array([-100, -100, 100], dtype) for s in fornix]
    streamlines += [s + np.array([-100, 100, -100], dtype) for s in fornix]
    streamlines += [s + np.array([-100, -100, -100], dtype) for s in fornix]

    # The expected number of clusters of the fornix using threshold=10 is 4.
    threshold = 10.
    expected_nb_clusters = 4 * 8

    print("Timing QuickBundles 1.0 vs. 2.0")

    qb = QB_Old(streamlines, threshold, pts=None)
    qb1_time = measure("QB_Old(streamlines, threshold, nb_points)", repeat)
    print("QuickBundles time: {0:.4}sec".format(qb1_time))
    assert_equal(qb.total_clusters, expected_nb_clusters)
    sizes1 = [qb.partitions()[i]['N'] for i in range(qb.total_clusters)]
    indices1 = [
        qb.partitions()[i]['indices'] for i in range(qb.total_clusters)
    ]

    qb2 = QB_New(threshold)
    qb2_time = measure("clusters = qb2.cluster(streamlines)", repeat)
    print("QuickBundles2 time: {0:.4}sec".format(qb2_time))
    print("Speed up of {0}x".format(qb1_time / qb2_time))
    clusters = qb2.cluster(streamlines)
    sizes2 = map(len, clusters)
    indices2 = map(lambda c: c.indices, clusters)
    assert_equal(len(clusters), expected_nb_clusters)
    assert_array_equal(sizes2, sizes1)
    assert_arrays_equal(indices2, indices1)

    qb = QB_New(threshold, metric=MDFpy())
    qb3_time = measure("clusters = qb.cluster(streamlines)", repeat)
    print("QuickBundles2_python time: {0:.4}sec".format(qb3_time))
    print("Speed up of {0}x".format(qb1_time / qb3_time))
    clusters = qb.cluster(streamlines)
    sizes3 = map(len, clusters)
    indices3 = map(lambda c: c.indices, clusters)
    assert_equal(len(clusters), expected_nb_clusters)
    assert_array_equal(sizes3, sizes1)
    assert_arrays_equal(indices3, indices1)
Esempio n. 20
0
def bench_quickbundles():
    dtype = "float32"
    repeat = 10
    nb_points = 12

    streams, hdr = nib.trackvis.read(get_fnames('fornix'))
    fornix = [s[0].astype(dtype) for s in streams]
    fornix = streamline_utils.set_number_of_points(fornix, nb_points)

    # Create eight copies of the fornix to be clustered (one in each octant).
    streamlines = []
    streamlines += [s + np.array([100, 100, 100], dtype) for s in fornix]
    streamlines += [s + np.array([100, -100, 100], dtype) for s in fornix]
    streamlines += [s + np.array([100, 100, -100], dtype) for s in fornix]
    streamlines += [s + np.array([100, -100, -100], dtype) for s in fornix]
    streamlines += [s + np.array([-100, 100, 100], dtype) for s in fornix]
    streamlines += [s + np.array([-100, -100, 100], dtype) for s in fornix]
    streamlines += [s + np.array([-100, 100, -100], dtype) for s in fornix]
    streamlines += [s + np.array([-100, -100, -100], dtype) for s in fornix]

    # The expected number of clusters of the fornix using threshold=10 is 4.
    threshold = 10.
    expected_nb_clusters = 4 * 8

    print("Timing QuickBundles 1.0 vs. 2.0")

    qb = QB_Old(streamlines, threshold, pts=None)
    qb1_time = measure("QB_Old(streamlines, threshold, nb_points)", repeat)
    print("QuickBundles time: {0:.4}sec".format(qb1_time))
    assert_equal(qb.total_clusters, expected_nb_clusters)
    sizes1 = [qb.partitions()[i]['N'] for i in range(qb.total_clusters)]
    indices1 = [qb.partitions()[i]['indices']
                for i in range(qb.total_clusters)]

    qb2 = QB_New(threshold)
    qb2_time = measure("clusters = qb2.cluster(streamlines)", repeat)
    print("QuickBundles2 time: {0:.4}sec".format(qb2_time))
    print("Speed up of {0}x".format(qb1_time / qb2_time))
    clusters = qb2.cluster(streamlines)
    sizes2 = map(len, clusters)
    indices2 = map(lambda c: c.indices, clusters)
    assert_equal(len(clusters), expected_nb_clusters)
    assert_array_equal(list(sizes2), sizes1)
    assert_arrays_equal(indices2, indices1)

    qb = QB_New(threshold, metric=MDFpy())
    qb3_time = measure("clusters = qb.cluster(streamlines)", repeat)
    print("QuickBundles2_python time: {0:.4}sec".format(qb3_time))
    print("Speed up of {0}x".format(qb1_time / qb3_time))
    clusters = qb.cluster(streamlines)
    sizes3 = map(len, clusters)
    indices3 = map(lambda c: c.indices, clusters)
    assert_equal(len(clusters), expected_nb_clusters)
    assert_array_equal(list(sizes3), sizes1)
    assert_arrays_equal(indices3, indices1)
Esempio n. 21
0
    def test_fprop_faster(self):
        activation = "tanh"
        seed = 1234
        repeat = 1000

        layer = LayerLSTM(input_size=DATA['features_size'],
                          hidden_size=DATA['hidden_size'],
                          activation=activation)

        layer.initialize(initer.UniformInitializer(seed))

        layer_fast = LayerLSTMFast(input_size=DATA['features_size'],
                                   hidden_size=DATA['hidden_size'],
                                   activation=activation)

        # Wi, Wo, Wf, Wm
        layer_fast.W.set_value(
            np.concatenate([
                layer.Wi.get_value(),
                layer.Wo.get_value(),
                layer.Wf.get_value(),
                layer.Wm.get_value()
            ],
                           axis=1))
        layer_fast.U.set_value(
            np.concatenate([
                layer.Ui.get_value(),
                layer.Uo.get_value(),
                layer.Uf.get_value(),
                layer.Um.get_value()
            ],
                           axis=1))

        input = T.matrix('input')
        input.tag.test_value = DATA['batch_one_step']
        last_h = sharedX(DATA['state_h'])
        last_m = sharedX(DATA['state_m'])

        fprop = theano.function([input], layer.fprop(input, last_h, last_m))
        fprop_faster = theano.function([input],
                                       layer_fast.fprop(input, last_h, last_m))

        fprop_time = measure("h, m = fprop(DATA['batch_one_step'])", repeat)
        fprop_faster_time = measure(
            "h, m = fprop_faster(DATA['batch_one_step'])", repeat)

        print("fprop time: {:.2f} sec.", fprop_time)
        print("fprop faster time: {:.2f} sec.", fprop_faster_time)
        print("Speedup: {:.2f}x".format(fprop_time / fprop_faster_time))

        for i in range(DATA['seq_len']):
            h1, m1 = fprop(DATA['batch'][:, i, :])
            h2, m2 = fprop_faster(DATA['batch'][:, i, :])
            assert_array_equal(h1, h2)
            assert_array_equal(m1, m2)
Esempio n. 22
0
def bench_length():
    repeat = 1000
    streamline = np.random.rand(1000, 3)

    print("Timing length() in Cython")
    cython_time = measure("length(streamline)", repeat)
    print("Cython time: {0:.2}sec".format(cython_time))

    python_time = measure("length_python(streamline)", repeat)
    print("Python time: {0:.2}sec".format(python_time))
    print("Speed up of {0}x".format(python_time/cython_time))
Esempio n. 23
0
def bench_resample():
    repeat = 1000
    nb_points = 42
    streamline = np.random.rand(1000, 3)

    print("Timing set_number_of_points() in Cython")
    cython_time = measure("set_number_of_points(streamline, nb_points)", repeat)
    print("Cython time: {0:.2}sec".format(cython_time))

    python_time = measure("set_number_of_points_python(streamline, nb_points)", repeat)
    print("Python time: {0:.2}sec".format(python_time))
    print("Speed up of {0}x".format(python_time/cython_time))
Esempio n. 24
0
def bench_bounding_box():
    vol = np.zeros((100, 100, 100))

    vol[0, 0, 0] = 1
    times = 100
    time = measure("bounding_box(vol)", times) / times
    print("Bounding_box on a sparse volume: {}".format(time))

    vol[:] = 10
    times = 1
    time = measure("bounding_box(vol)", times) / times
    print("Bounding_box on a dense volume: {}".format(time))
Esempio n. 25
0
def bench_bounding_box():
    vol = np.zeros((100, 100, 100))

    vol[0, 0, 0] = 1
    times = 100
    time = measure("bounding_box(vol)", times) / times
    print("Bounding_box on a sparse volume: {}".format(time))

    vol[:] = 10
    times = 1
    time = measure("bounding_box(vol)", times) / times
    print("Bounding_box on a dense volume: {}".format(time))
Esempio n. 26
0
def bench_local_maxima():
    repeat = 10000
    vertices, faces = default_sphere.vertices, default_sphere.faces
    print('Timing peak finding')
    timed0 = measure("local_maxima(odf, edges)", repeat)
    print('Actual sphere: %0.2f' % timed0)
    # Create an artificial odf with a few peaks
    odf = np.zeros(len(vertices))
    odf[1] = 1.
    odf[143] = 143.
    odf[505] = 505.
    timed1 = measure("local_maxima(odf, edges)", repeat)
    print('Few-peak sphere: %0.2f' % timed1)
Esempio n. 27
0
def bench_quick_squash():
    # nosetests -s --match '(?:^|[\\b_\\.//-])[Bb]ench'
    repeat = 10
    shape = (300, 200)
    arrs = np.zeros(shape, dtype=object)
    scalars = np.zeros(shape, dtype=object)
    for ijk in ndindex(arrs.shape):
        arrs[ijk] = np.ones((3, 5))
        scalars[ijk] = np.float32(0)
    print('\nSquashing benchmarks')
    for name, objs in (
        ('floats', np.zeros(shape, float).astype(object)),
        ('ints', np.zeros(shape, int).astype(object)),
        ('arrays', arrs),
        ('scalars', scalars),
    ):
        print(name)
        timed0 = measure("quick_squash(objs)", repeat)
        timed1 = measure("old_squash(objs)", repeat)
        print("fast %4.2f; slow %4.2f" % (timed0, timed1))
        objs[50, 50] = None
        timed0 = measure("quick_squash(objs)", repeat)
        timed1 = measure("old_squash(objs)", repeat)
        print("With None: fast %4.2f; slow %4.2f" % (timed0, timed1))
        msk = objs != np.array(None)
        timed0 = measure("quick_squash(objs, msk)", repeat)
        timed1 = measure("old_squash(objs, msk)", repeat)
        print("With mask: fast %4.2f; slow %4.2f" % (timed0, timed1))
        objs[50, 50] = np.float32(0)
        timed0 = measure("quick_squash(objs, msk)", repeat)
        timed1 = measure("old_squash(objs, msk)", repeat)
        print("Other dtype: fast %4.2f; slow %4.2f" % (timed0, timed1))
Esempio n. 28
0
def bench_quick_squash():
    # nosetests -s --match '(?:^|[\\b_\\.//-])[Bb]ench'
    repeat = 10
    shape = (300, 200)
    arrs = np.zeros(shape, dtype=object)
    scalars = np.zeros(shape, dtype=object)
    for ijk in ndindex(arrs.shape):
        arrs[ijk] = np.ones((3, 5))
        scalars[ijk] = np.float32(0)
    print('\nSquashing benchmarks')
    for name, objs in (
        ('floats', np.zeros(shape, float).astype(object)),
        ('ints', np.zeros(shape, int).astype(object)),
        ('arrays', arrs),
        ('scalars', scalars),
    ):
        print(name)
        timed0 = measure("quick_squash(objs)", repeat)
        timed1 = measure("old_squash(objs)", repeat)
        print("fast %4.2f; slow %4.2f" % (timed0, timed1))
        objs[50, 50] = None
        timed0 = measure("quick_squash(objs)", repeat)
        timed1 = measure("old_squash(objs)", repeat)
        print("With None: fast %4.2f; slow %4.2f" % (timed0, timed1))
        msk = objs != np.array(None)
        timed0 = measure("quick_squash(objs, msk)", repeat)
        timed1 = measure("old_squash(objs, msk)", repeat)
        print("With mask: fast %4.2f; slow %4.2f" % (timed0, timed1))
        objs[50, 50] = np.float32(0)
        timed0 = measure("quick_squash(objs, msk)", repeat)
        timed1 = measure("old_squash(objs, msk)", repeat)
        print("Other dtype: fast %4.2f; slow %4.2f" % (timed0, timed1))
Esempio n. 29
0
def bench_local_maxima():
    repeat = 10000
    sphere = get_sphere('symmetric724')
    vertices, faces = sphere.vertices, sphere.faces
    print('Timing peak finding')
    timed0 = measure("local_maxima(odf, edges)", repeat)
    print('Actual sphere: %0.2f' % timed0)
    # Create an artificial odf with a few peaks
    odf = np.zeros(len(vertices))
    odf[1] = 1.
    odf[143] = 143.
    odf[505] = 505.
    timed1 = measure("local_maxima(odf, edges)", repeat)
    print('Few-peak sphere: %0.2f' % timed1)
Esempio n. 30
0
    def test_fprop_faster(self):
        seed = 1234
        repeat = 100

        lstm = LSTM(
            input_size=DATA['features_size'],
            hidden_sizes=[DATA['hidden_size']],
        )

        lstm.initialize(initer.UniformInitializer(seed))

        lstm2 = LSTMFaster(
            input_size=DATA['features_size'],
            hidden_sizes=[DATA['hidden_size']],
        )
        # Wi, Wo, Wf, Wm
        # Make sure the weights are the same.
        lstm2.layers_lstm[0].W.set_value(
            np.concatenate([
                lstm.layers_lstm[0].Wi.get_value(),
                lstm.layers_lstm[0].Wo.get_value(),
                lstm.layers_lstm[0].Wf.get_value(),
                lstm.layers_lstm[0].Wm.get_value()
            ],
                           axis=1))
        lstm2.layers_lstm[0].U.set_value(
            np.concatenate([
                lstm.layers_lstm[0].Ui.get_value(),
                lstm.layers_lstm[0].Uo.get_value(),
                lstm.layers_lstm[0].Uf.get_value(),
                lstm.layers_lstm[0].Um.get_value()
            ],
                           axis=1))

        input = T.tensor3('input')
        input.tag.test_value = DATA['batch']

        fprop = theano.function([input], lstm.get_output(input))
        fprop2 = theano.function([input], lstm2.get_output(input))
        fprop_time = measure("out = fprop(DATA['batch'])", repeat)
        print("fprop time: {:.2f} sec.", fprop_time)
        fprop2_time = measure("out = fprop2(DATA['batch'])", repeat)
        print("fprop faster time: {:.2f} sec.", fprop2_time)
        print("Speedup: {:.2f}x".format(fprop_time / fprop2_time))

        out = fprop(DATA['batch'])
        out2 = fprop2(DATA['batch'])
        assert_array_equal(out, out2)
Esempio n. 31
0
def bench_local_maxima():
    repeat = 10000
    sphere = get_sphere('symmetric724')
    vertices, faces = sphere.vertices, sphere.faces
    odf = abs(vertices.sum(-1))
    edges = unique_edges(faces)
    print('Timing peak finding')
    timed0 = measure("local_maxima(odf, edges)", repeat)
    print('Actual sphere: %0.2f' % timed0)
    # Create an artificial odf with a few peaks
    odf = np.zeros(len(vertices))
    odf[1] = 1.
    odf[143] = 143.
    odf[505] = 505.
    timed1 = measure("local_maxima(odf, edges)", repeat)
    print('Few-peak sphere: %0.2f' % timed1)
Esempio n. 32
0
def bench_length():
    repeat = 1
    nb_points_per_streamline = 100
    nb_streamlines = int(1e5)
    streamlines = [np.random.rand(nb_points_per_streamline, 3).astype("float32") for i in range(nb_streamlines)]

    print("Timing length() in Cython ({0} streamlines)".format(nb_streamlines))
    cython_time = measure("length(streamlines)", repeat)
    print("Cython time: {0:.3}sec".format(cython_time))
    del streamlines

    streamlines = [np.random.rand(nb_points_per_streamline, 3).astype("float32") for i in range(nb_streamlines)]
    python_time = measure("[length_python(s) for s in streamlines]", repeat)
    print("Python time: {0:.2}sec".format(python_time))
    print("Speed up of {0}x".format(python_time/cython_time))
    del streamlines
Esempio n. 33
0
def bench_local_maxima():
    repeat = 10000
    sphere = get_sphere("symmetric724")
    vertices, faces = sphere.vertices, sphere.faces
    odf = abs(vertices.sum(-1))
    edges = unique_edges(faces)
    print("Timing peak finding")
    timed0 = measure("local_maxima(odf, edges)", repeat)
    print("Actual sphere: %0.2f" % timed0)
    # Create an artificial odf with a few peaks
    odf = np.zeros(len(vertices))
    odf[1] = 1.0
    odf[143] = 143.0
    odf[505] = 505.0
    timed1 = measure("local_maxima(odf, edges)", repeat)
    print("Few-peak sphere: %0.2f" % timed1)
Esempio n. 34
0
def bench_zhang():
    print 'Zhang min'
    print '=' * 10
    #ref_time = measure('tm.most_similar_track_zhang(tracks300)')
    #print 'reference time: %f' % ref_time
    opt_time = measure('pf.most_similar_track_zhang(tracks300)')
    print 'optimized time: %f' % opt_time
    print
Esempio n. 35
0
def bench_zhang():
    print 'Zhang min'
    print '=' * 10
    #ref_time = measure('tm.most_similar_track_zhang(tracks300)')
    #print 'reference time: %f' % ref_time
    opt_time = measure('pf.most_similar_track_zhang(tracks300)')
    print 'optimized time: %f' % opt_time
    print
Esempio n. 36
0
def bench_array_to_file():
    rng = np.random.RandomState(20111001)
    repeat = 10
    img_shape = (128, 128, 64, 10)
    arr = rng.normal(size=img_shape)
    sys.stdout.flush()
    print_git_title("\nArray to file")
    mtime = measure('array_to_file(arr, BytesIO(), np.float32)', repeat)
    print('%30s %6.2f' % ('Save float64 to float32', mtime))
    mtime = measure('array_to_file(arr, BytesIO(), np.int16)', repeat)
    print('%30s %6.2f' % ('Save float64 to int16', mtime))
    # Set a lot of NaNs to check timing
    arr[:, :, :, 1] = np.nan
    mtime = measure('array_to_file(arr, BytesIO(), np.float32)', repeat)
    print('%30s %6.2f' % ('Save float64 to float32, NaNs', mtime))
    mtime = measure('array_to_file(arr, BytesIO(), np.int16)', repeat)
    print('%30s %6.2f' % ('Save float64 to int16, NaNs', mtime))
    # Set a lot of infs to check timing
    arr[:, :, :, 1] = np.inf
    mtime = measure('array_to_file(arr, BytesIO(), np.float32)', repeat)
    print('%30s %6.2f' % ('Save float64 to float32, infs', mtime))
    mtime = measure('array_to_file(arr, BytesIO(), np.int16)', repeat)
    print('%30s %6.2f' % ('Save float64 to int16, infs', mtime))
    # Int16 input, float output
    arr = np.random.random_integers(low=-1000, high=1000, size=img_shape)
    arr = arr.astype(np.int16)
    mtime = measure('array_to_file(arr, BytesIO(), np.float32)', repeat)
    print('%30s %6.2f' % ('Save Int16 to float32', mtime))
    sys.stdout.flush()
Esempio n. 37
0
def bench_array_to_file():
    rng = np.random.RandomState(20111001)
    repeat = 10
    img_shape = (128, 128, 64, 10)
    arr = rng.normal(size=img_shape)
    sys.stdout.flush()
    print_git_title("\nArray to file")
    mtime = measure('array_to_file(arr, BytesIO(), np.float32)', repeat)
    print('%30s %6.2f' % ('Save float64 to float32', mtime))
    mtime = measure('array_to_file(arr, BytesIO(), np.int16)', repeat)
    print('%30s %6.2f' % ('Save float64 to int16', mtime))
    # Set a lot of NaNs to check timing
    arr[:, :, :, 1] = np.nan
    mtime = measure('array_to_file(arr, BytesIO(), np.float32)', repeat)
    print('%30s %6.2f' % ('Save float64 to float32, NaNs', mtime))
    mtime = measure('array_to_file(arr, BytesIO(), np.int16)', repeat)
    print('%30s %6.2f' % ('Save float64 to int16, NaNs', mtime))
    # Set a lot of infs to check timing
    arr[:, :, :, 1] = np.inf
    mtime = measure('array_to_file(arr, BytesIO(), np.float32)', repeat)
    print('%30s %6.2f' % ('Save float64 to float32, infs', mtime))
    mtime = measure('array_to_file(arr, BytesIO(), np.int16)', repeat)
    print('%30s %6.2f' % ('Save float64 to int16, infs', mtime))
    # Int16 input, float output
    arr = np.random.random_integers(low=-1000, high=1000, size=img_shape)
    arr = arr.astype(np.int16)
    mtime = measure('array_to_file(arr, BytesIO(), np.float32)', repeat)
    print('%30s %6.2f' % ('Save Int16 to float32', mtime))
    sys.stdout.flush()
Esempio n. 38
0
def bench_compress_streamlines():
    repeat = 10
    fname = get_data('fornix')
    streams, hdr = tv.read(fname)
    streamlines = [i[0] for i in streams]

    print("Timing compress_streamlines() in Cython ({0} streamlines)".format(len(streamlines)))
    cython_time = measure("compress_streamlines(streamlines)", repeat)
    print("Cython time: {0:.3}sec".format(cython_time))
    del streamlines

    fname = get_data('fornix')
    streams, hdr = tv.read(fname)
    streamlines = [i[0] for i in streams]
    python_time = measure("map(compress_streamlines_python, streamlines)", repeat)
    print("Python time: {0:.2}sec".format(python_time))
    print("Speed up of {0}x".format(python_time/cython_time))
    del streamlines
Esempio n. 39
0
def bench_compress_streamlines():
    repeat = 10
    fname = get_fnames('fornix')
    fornix = load_tractogram(fname, 'same', bbox_valid_check=False).streamlines

    streamlines = Streamlines(fornix)

    print("Timing compress_streamlines() in Cython"
          " ({0} streamlines)".format(len(streamlines)))
    cython_time = measure("compress_streamlines(streamlines)", repeat)
    print("Cython time: {0:.3}sec".format(cython_time))
    del streamlines

    streamlines = Streamlines(fornix)
    python_time = measure("map(compress_streamlines_python, streamlines)",
                          repeat)
    print("Python time: {0:.2}sec".format(python_time))
    print("Speed up of {0}x".format(python_time / cython_time))
    del streamlines
Esempio n. 40
0
def bench_mdl_traj():
    t=np.concatenate(tracks300)
    #t=tracks300[0]
    
    print 'MDL traj'
    print '=' * 10
    opt_time = measure('pf.approximate_mdl_trajectory(t)')
    #opt_time = measure('tm.approximate_trajectory_partitioning(t)')
    #opt_time= measure('tm.minimum_description_length_unpartitoned(t)')
    print 'optimized time: %f' % opt_time
    print
Esempio n. 41
0
def bench_mdl_traj():
    t = np.concatenate(tracks300)
    #t=tracks300[0]

    print 'MDL traj'
    print '=' * 10
    opt_time = measure('pf.approximate_mdl_trajectory(t)')
    #opt_time = measure('tm.approximate_trajectory_partitioning(t)')
    #opt_time= measure('tm.minimum_description_length_unpartitoned(t)')
    print 'optimized time: %f' % opt_time
    print
Esempio n. 42
0
def bench_compress_streamlines():
    repeat = 10
    fname = get_fnames('fornix')
    streams, hdr = tv.read(fname)
    streamlines = [i[0] for i in streams]

    print("Timing compress_streamlines() in Cython"
          " ({0} streamlines)".format(len(streamlines)))
    cython_time = measure("compress_streamlines(streamlines)", repeat)
    print("Cython time: {0:.3}sec".format(cython_time))
    del streamlines

    fname = get_fnames('fornix')
    streams, hdr = tv.read(fname)
    streamlines = [i[0] for i in streams]
    python_time = measure("map(compress_streamlines_python, streamlines)",
                          repeat)
    print("Python time: {0:.2}sec".format(python_time))
    print("Speed up of {0}x".format(python_time / cython_time))
    del streamlines
Esempio n. 43
0
def bench_finite_range():
    rng = np.random.RandomState(20111001)
    repeat = 10
    img_shape = (128, 128, 64, 10)
    arr = rng.normal(size=img_shape)
    sys.stdout.flush()
    print_git_title("\nFinite range")
    mtime = measure('finite_range(arr)', repeat)
    print('%30s %6.2f' % ('float64 all finite', mtime))
    arr[:, :, :, 1] = np.nan
    mtime = measure('finite_range(arr)', repeat)
    print('%30s %6.2f' % ('float64 many NaNs', mtime))
    arr[:, :, :, 1] = np.inf
    mtime = measure('finite_range(arr)', repeat)
    print('%30s %6.2f' % ('float64 many infs', mtime))
    # Int16 input, float output
    arr = np.random.random_integers(low=-1000, high=-1000, size=img_shape)
    arr = arr.astype(np.int16)
    mtime = measure('finite_range(arr)', repeat)
    print('%30s %6.2f' % ('int16', mtime))
    sys.stdout.flush()
def bench_finite_range():
    rng = np.random.RandomState(20111001)
    repeat = 10
    img_shape = (128, 128, 64, 10)
    arr = rng.normal(size=img_shape)
    sys.stdout.flush()
    print_git_title("\nFinite range")
    mtime = measure('finite_range(arr)', repeat)
    print('%30s %6.2f' % ('float64 all finite', mtime))
    arr[:, :, :, 1] = np.nan
    mtime = measure('finite_range(arr)', repeat)
    print('%30s %6.2f' % ('float64 many NaNs', mtime))
    arr[:, :, :, 1] = np.inf
    mtime = measure('finite_range(arr)', repeat)
    print('%30s %6.2f' % ('float64 many infs', mtime))
    # Int16 input, float output
    arr = np.random.random_integers(low=-1000, high=1000, size=img_shape)
    arr = arr.astype(np.int16)
    mtime = measure('finite_range(arr)', repeat)
    print('%30s %6.2f' % ('int16', mtime))
    sys.stdout.flush()
Esempio n. 45
0
    def test_fprop_faster(self):
        activation = "tanh"
        seed = 1234
        repeat = 1000

        layer = LayerLSTM(input_size=DATA['features_size'],
                          hidden_size=DATA['hidden_size'],
                          activation=activation)

        layer.initialize(initer.UniformInitializer(seed))

        layer_fast = LayerLSTMFast(input_size=DATA['features_size'],
                                   hidden_size=DATA['hidden_size'],
                                   activation=activation)

        # Wi, Wo, Wf, Wm
        layer_fast.W.set_value(np.concatenate([layer.Wi.get_value(), layer.Wo.get_value(), layer.Wf.get_value(), layer.Wm.get_value()], axis=1))
        layer_fast.U.set_value(np.concatenate([layer.Ui.get_value(), layer.Uo.get_value(), layer.Uf.get_value(), layer.Um.get_value()], axis=1))

        input = T.matrix('input')
        input.tag.test_value = DATA['batch_one_step']
        last_h = sharedX(DATA['state_h'])
        last_m = sharedX(DATA['state_m'])

        fprop = theano.function([input], layer.fprop(input, last_h, last_m))
        fprop_faster = theano.function([input], layer_fast.fprop(input, last_h, last_m))

        fprop_time = measure("h, m = fprop(DATA['batch_one_step'])", repeat)
        fprop_faster_time = measure("h, m = fprop_faster(DATA['batch_one_step'])", repeat)

        print("fprop time: {:.2f} sec.", fprop_time)
        print("fprop faster time: {:.2f} sec.", fprop_faster_time)
        print("Speedup: {:.2f}x".format(fprop_time/fprop_faster_time))

        for i in range(DATA['seq_len']):
            h1, m1 = fprop(DATA['batch'][:, i, :])
            h2, m2 = fprop_faster(DATA['batch'][:, i, :])
            assert_array_equal(h1, h2)
            assert_array_equal(m1, m2)
Esempio n. 46
0
def bench_csdeconv(center=(50, 40, 40), width=12):
    img, gtab, labels_img = read_stanford_labels()
    data = img.get_data()

    labels = labels_img.get_data()
    shape = labels.shape
    mask = np.in1d(labels, [1, 2])
    mask.shape = shape

    a, b, c = center
    hw = width // 2
    idx = (slice(a - hw, a + hw), slice(b - hw, b + hw), slice(c - hw, c + hw))

    data_small = data[idx].copy()
    mask_small = mask[idx].copy()
    voxels = mask_small.sum()

    cmd = "model.fit(data_small, mask_small)"
    print("== Benchmarking CSD fit on %d voxels ==" % voxels)
    msg = "SH order - %d, gradient directons - %d :: %g sec"

    # Basic case
    sh_order = 8
    ConstrainedSphericalDeconvModel(gtab, None, sh_order=sh_order)
    time = npt.measure(cmd)
    print(msg % (sh_order, num_grad(gtab), time))

    # Smaller data set
    # data_small = data_small[..., :75].copy()
    gtab = GradientTable(gtab.gradients[:75])
    ConstrainedSphericalDeconvModel(gtab, None, sh_order=sh_order)
    time = npt.measure(cmd)
    print(msg % (sh_order, num_grad(gtab), time))

    # Super resolution
    sh_order = 12
    ConstrainedSphericalDeconvModel(gtab, None, sh_order=sh_order)
    time = npt.measure(cmd)
    print(msg % (sh_order, num_grad(gtab), time))
Esempio n. 47
0
def bench_csdeconv(center=(50, 40, 40), width=12):
    img, gtab, labels_img = read_stanford_labels()
    data = img.get_data()

    labels = labels_img.get_data()
    shape = labels.shape
    mask = np.in1d(labels, [1, 2])
    mask.shape = shape

    a, b, c = center
    hw = width // 2
    idx = (slice(a - hw, a + hw), slice(b - hw, b + hw), slice(c - hw, c + hw))

    data_small = data[idx].copy()
    mask_small = mask[idx].copy()
    voxels = mask_small.sum()

    cmd = "model.fit(data_small, mask_small)"
    print("== Benchmarking CSD fit on %d voxels ==" % voxels)
    msg = "SH order - %d, gradient directons - %d :: %g sec"

    # Basic case
    sh_order = 8
    model = ConstrainedSphericalDeconvModel(gtab, None, sh_order=sh_order)
    time = npt.measure(cmd)
    print(msg % (sh_order, num_grad(gtab), time))

    # Smaller data set
    data_small = data_small[..., :75].copy()
    gtab = GradientTable(gtab.gradients[:75])
    model = ConstrainedSphericalDeconvModel(gtab, None, sh_order=sh_order)
    time = npt.measure(cmd)
    print(msg % (sh_order, num_grad(gtab), time))

    # Super resolution
    sh_order = 12
    model = ConstrainedSphericalDeconvModel(gtab, None, sh_order=sh_order)
    time = npt.measure(cmd)
    print(msg % (sh_order, num_grad(gtab), time))
Esempio n. 48
0
def bench_length():
    repeat = 1
    nb_points_per_streamline = 100
    nb_streamlines = int(1e5)
    streamlines = [
        np.random.rand(nb_points_per_streamline, 3).astype("float32")
        for i in range(nb_streamlines)
    ]

    print("Timing length() in Cython ({0} streamlines)".format(nb_streamlines))
    cython_time = measure("length(streamlines)", repeat)
    print("Cython time: {0:.3}sec".format(cython_time))
    del streamlines

    streamlines = [
        np.random.rand(nb_points_per_streamline, 3).astype("float32")
        for i in range(nb_streamlines)
    ]
    python_time = measure("[length_python(s) for s in streamlines]", repeat)
    print("Python time: {0:.2}sec".format(python_time))
    print("Speed up of {0}x".format(python_time / cython_time))
    del streamlines
Esempio n. 49
0
    def bench_random(self):
        numpy_solve = nl.solve
        scipy_solve = sl.solve
        print()
        print('      Solving system of linear equations')
        print('      ==================================')

        print('      |    contiguous     |   non-contiguous ')
        print('----------------------------------------------')
        print(' size |  scipy  | numpy   |  scipy  | numpy ')

        for size,repeat in [(20,1000),(100,150),(500,2),(1000,1)][:-1]:
            repeat *= 2
            print('%5s' % size, end=' ')
            sys.stdout.flush()

            a = random([size,size])
            # larger diagonal ensures non-singularity:
            for i in range(size):
                a[i,i] = 10*(.1+a[i,i])
            b = random([size])

            print('| %6.2f ' % measure('scipy_solve(a,b)',repeat), end=' ')
            sys.stdout.flush()

            print('| %6.2f ' % measure('numpy_solve(a,b)',repeat), end=' ')
            sys.stdout.flush()

            a = a[-1::-1,-1::-1]  # turn into a non-contiguous array
            assert_(not a.flags['CONTIGUOUS'])

            print('| %6.2f ' % measure('scipy_solve(a,b)',repeat), end=' ')
            sys.stdout.flush()

            print('| %6.2f ' % measure('numpy_solve(a,b)',repeat), end=' ')
            sys.stdout.flush()

            print('   (secs for %s calls)' % (repeat))
    def bench_random(self):
        numpy_solve = nl.solve
        scipy_solve = sl.solve
        print()
        print('      Solving system of linear equations')
        print('      ==================================')

        print('      |    contiguous     |   non-contiguous ')
        print('----------------------------------------------')
        print(' size |  scipy  | numpy   |  scipy  | numpy ')

        for size, repeat in [(20, 1000), (100, 150), (500, 2), (1000, 1)][:-1]:
            repeat *= 2
            print('%5s' % size, end=' ')
            sys.stdout.flush()

            a = random([size, size])
            # larger diagonal ensures non-singularity:
            for i in range(size):
                a[i, i] = 10 * (.1 + a[i, i])
            b = random([size])

            print('| %6.2f ' % measure('scipy_solve(a,b)', repeat), end=' ')
            sys.stdout.flush()

            print('| %6.2f ' % measure('numpy_solve(a,b)', repeat), end=' ')
            sys.stdout.flush()

            a = a[-1::-1, -1::-1]  # turn into a non-contiguous array
            assert_(not a.flags['CONTIGUOUS'])

            print('| %6.2f ' % measure('scipy_solve(a,b)', repeat), end=' ')
            sys.stdout.flush()

            print('| %6.2f ' % measure('numpy_solve(a,b)', repeat), end=' ')
            sys.stdout.flush()

            print('   (secs for %s calls)' % (repeat))
Esempio n. 51
0
def run_print(test_list):
    print()
    print(" Integrating sum(x**2) -- MISER Monte Carlo")
    print(" ==========================================")
    print()
    print(" ndims | npoints | nprocs | time ")
    print(" ------------------------------- ")
    
    for ndims,npoints,nprocs,repeat in test_list:
        print(" {ndims:5} | {npoints:7} | {nprocs:6} |".format(ndims=ndims,npoints=npoints,nprocs=nprocs),end="")
        xl = [0.]*ndims
        xu = [1.]*ndims
        time = measure("mcmiser(lambda x: sum(x**2),{npoints},{xl},{xu},nprocs={nprocs})".format(npoints=npoints,xl=str(xl),xu=str(xu),nprocs=str(nprocs)),repeat)
        print(" {time:.2f}  (seconds for {ncalls} calls)".format(time=time,ncalls=repeat))
Esempio n. 52
0
def bench_length():
    repeat = 10
    nb_streamlines = DATA['nb_streamlines']

    msg = "Timing length() with {0:,} streamlines."
    print(msg.format(nb_streamlines * repeat))
    python_time = measure("[length_python(s) for s in streamlines]", repeat)
    print("Python time: {0:.2f} sec".format(python_time))

    cython_time = measure("length(streamlines)", repeat)
    print("Cython time: {0:.3f} sec".format(cython_time))
    print("Speed up of {0:.2f}x".format(python_time/cython_time))

    # Make sure it produces the same results.
    assert_array_almost_equal([length_python(s) for s in DATA["streamlines"]],
                              length(DATA["streamlines"]))

    cython_time_arrseq = measure("length(streamlines)", repeat)
    print("Cython time (ArrSeq): {0:.3f} sec".format(cython_time_arrseq))
    print("Speed up of {0:.2f}x".format(python_time/cython_time_arrseq))

    # Make sure it produces the same results.
    assert_array_equal(length(DATA["streamlines"]),
                       length(DATA["streamlines_arrseq"]))
Esempio n. 53
0
def bench_set_number_of_points():
    repeat = 1
    nb_points_per_streamline = 100
    nb_points = 42
    nb_streamlines = int(1e4)
    streamlines = [np.random.rand(nb_points_per_streamline,
                                  3).astype("float32")
                   for i in range(nb_streamlines)]

    print("Timing set_number_of_points() in Cython"
          "({0} streamlines)".format(nb_streamlines))
    cython_time = measure("set_number_of_points(streamlines, nb_points)",
                          repeat)
    print("Cython time: {0:.3}sec".format(cython_time))
    del streamlines

    streamlines = [np.random.rand(nb_points_per_streamline,
                                  3).astype("float32")
                   for i in range(nb_streamlines)]
    python_time = measure("[set_number_of_points_python(s, nb_points)"
                          " for s in streamlines]", repeat)
    print("Python time: {0:.2}sec".format(python_time))
    print("Speed up of {0}x".format(python_time/cython_time))
    del streamlines
Esempio n. 54
0
    def bench_random(self):
        numpy_inv = nl.inv
        scipy_inv = sl.inv
        print()
        print('           Finding matrix inverse')
        print('      ==================================')
        print('      |    contiguous     |   non-contiguous ')
        print('----------------------------------------------')
        print(' size |  scipy  | numpy   |  scipy  | numpy')

        for size,repeat in [(20,1000),(100,150),(500,2),(1000,1)][:-1]:
            repeat *= 2
            print('%5s' % size, end=' ')
            sys.stdout.flush()

            a = random([size,size])
            # large diagonal ensures non-singularity:
            for i in range(size):
                a[i,i] = 10*(.1+a[i,i])

            print('| %6.2f ' % measure('scipy_inv(a)',repeat), end=' ')
            sys.stdout.flush()

            print('| %6.2f ' % measure('numpy_inv(a)',repeat), end=' ')
            sys.stdout.flush()

            a = a[-1::-1,-1::-1]  # turn into a non-contiguous array
            assert_(not a.flags['CONTIGUOUS'])

            print('| %6.2f ' % measure('scipy_inv(a)',repeat), end=' ')
            sys.stdout.flush()

            print('| %6.2f ' % measure('numpy_inv(a)',repeat), end=' ')
            sys.stdout.flush()

            print('   (secs for %s calls)' % (repeat))
    def bench_random(self):
        numpy_inv = nl.inv
        scipy_inv = sl.inv
        print()
        print('           Finding matrix inverse')
        print('      ==================================')
        print('      |    contiguous     |   non-contiguous ')
        print('----------------------------------------------')
        print(' size |  scipy  | numpy   |  scipy  | numpy')

        for size, repeat in [(20, 1000), (100, 150), (500, 2), (1000, 1)][:-1]:
            repeat *= 2
            print('%5s' % size, end=' ')
            sys.stdout.flush()

            a = random([size, size])
            # large diagonal ensures non-singularity:
            for i in range(size):
                a[i, i] = 10 * (.1 + a[i, i])

            print('| %6.2f ' % measure('scipy_inv(a)', repeat), end=' ')
            sys.stdout.flush()

            print('| %6.2f ' % measure('numpy_inv(a)', repeat), end=' ')
            sys.stdout.flush()

            a = a[-1::-1, -1::-1]  # turn into a non-contiguous array
            assert_(not a.flags['CONTIGUOUS'])

            print('| %6.2f ' % measure('scipy_inv(a)', repeat), end=' ')
            sys.stdout.flush()

            print('| %6.2f ' % measure('numpy_inv(a)', repeat), end=' ')
            sys.stdout.flush()

            print('   (secs for %s calls)' % (repeat))
Esempio n. 56
0
def run_print(test_list):
    print()
    print(" Integrating exp(-sum(x**2))*sum(x**2) w. importance sampling")
    print(" ============================================================")
    print()
    print(" ndims | npoints | nprocs | time ")
    print(" ------------------------------- ")
    
    for ndims,npoints,nprocs,repeat in test_list:
        print(" {ndims:5} | {npoints:7} | {nprocs:6} |".format(ndims=ndims,npoints=npoints,nprocs=nprocs),end="")
        mean = "np.zeros(({ndims},))".format(ndims=ndims)
        cov = "np.eye({ndims}) / np.sqrt(2.)".format(ndims=ndims)
        time = measure(
                "mcimport(lambda x: sum(x**2),{npoints},\
                lambda size: multivariate_normal({mean},{cov},size),\
                nprocs={nprocs})".format(
            npoints=npoints,mean=mean,cov=cov,nprocs=str(nprocs)),repeat)
        print(" {time:.2f}  (seconds for {ncalls} calls)".format(time=time,ncalls=repeat))
Esempio n. 57
0
def run_print(test_list):
    print()
    print(" Integrating sum(x**2) -- MISER Monte Carlo")
    print(" ==========================================")
    print()
    print(" ndims | npoints | nprocs | time ")
    print(" ------------------------------- ")

    for ndims, npoints, nprocs, repeat in test_list:
        print(" {ndims:5} | {npoints:7} | {nprocs:6} |".format(ndims=ndims,
                                                               npoints=npoints,
                                                               nprocs=nprocs),
              end="")
        xl = [0.] * ndims
        xu = [1.] * ndims
        time = measure(
            "mcmiser(lambda x: sum(x**2),{npoints},{xl},{xu},nprocs={nprocs})".
            format(npoints=npoints, xl=str(xl), xu=str(xu),
                   nprocs=str(nprocs)), repeat)
        print(" {time:.2f}  (seconds for {ncalls} calls)".format(
            time=time, ncalls=repeat))
Esempio n. 58
0
    def test_fprop(self):
        activation = "tanh"
        seed = 1234
        repeat = 1000

        layer = LayerLSTM(input_size=DATA['features_size'],
                          hidden_size=DATA['hidden_size'],
                          activation=activation)

        layer.initialize(initer.UniformInitializer(seed))

        # input = T.tensor3('input')
        input = T.matrix('input')
        input.tag.test_value = DATA['batch_one_step']
        last_h = sharedX(DATA['state_h'])
        last_m = sharedX(DATA['state_m'])

        fprop = theano.function([input],
                                layer.fprop_faster(input, last_h, last_m))
        fprop_time = measure("h, m = fprop(DATA['batch_one_step'])", repeat)
        print("fprop time: {:.2f} sec.", fprop_time)
        h, m = fprop(DATA['batch_one_step'])
Esempio n. 59
0
def bench_load_save():
    rng = np.random.RandomState(20111001)
    repeat = 10
    img_shape = (128, 128, 64, 10)
    arr = rng.normal(size=img_shape)
    img = Nifti1Image(arr, np.eye(4))
    sio = BytesIO()
    img.file_map['image'].fileobj = sio
    hdr = img.header
    sys.stdout.flush()
    print()
    print_git_title("Image load save")
    hdr.set_data_dtype(np.float32)
    mtime = measure('sio.truncate(0); img.to_file_map()', repeat)
    print('%30s %6.2f' % ('Save float64 to float32', mtime))
    mtime = measure('img.from_file_map(img.file_map)', repeat)
    print('%30s %6.2f' % ('Load from float32', mtime))
    hdr.set_data_dtype(np.int16)
    mtime = measure('sio.truncate(0); img.to_file_map()', repeat)
    print('%30s %6.2f' % ('Save float64 to int16', mtime))
    mtime = measure('img.from_file_map(img.file_map)', repeat)
    print('%30s %6.2f' % ('Load from int16', mtime))
    # Set a lot of NaNs to check timing
    arr[:, :, :20] = np.nan
    mtime = measure('sio.truncate(0); img.to_file_map()', repeat)
    print('%30s %6.2f' % ('Save float64 to int16, NaNs', mtime))
    mtime = measure('img.from_file_map(img.file_map)', repeat)
    print('%30s %6.2f' % ('Load from int16, NaNs', mtime))
    # Int16 input, float output
    arr = np.random.random_integers(low=-1000, high=1000, size=img_shape)
    arr = arr.astype(np.int16)
    img = Nifti1Image(arr, np.eye(4))
    sio = BytesIO()
    img.file_map['image'].fileobj = sio
    hdr = img.header
    hdr.set_data_dtype(np.float32)
    mtime = measure('sio.truncate(0); img.to_file_map()', repeat)
    print('%30s %6.2f' % ('Save Int16 to float32', mtime))
    sys.stdout.flush()