Esempio n. 1
0
def draw_simplex_3d_euclidean_bounds(simplex, obj_nr=0, L=[1., 1.], points=[]):
    '''2d->2d simplex lower bound surface.
    Draws a single objective below 2D simplex'''
    from matplotlib import pyplot as plt
    from matplotlib import cm

    t = a([simplex[0][:-1], simplex[1][:-1], simplex[2][:-1]])
    y = a([simplex[0][-1]['obj'], simplex[1][-1]['obj'], simplex[2][-1]['obj']])   # (obj1, obj2) for A, B, C

    X1 =  np.arange(-0.1, 2.1, 0.05)
    X2 =  np.arange(-0.1, 2.1, 0.05)
    X1, X2 = np.meshgrid(X1, X2)
    fig = plt.figure()
    ax = fig.gca(projection='3d')

    LB = lower_bound_surface(X1, X2, t, y, L)

    ax.plot_surface(X1, X2, LB[:,:,obj_nr], linewidth=0, rstride=1, cstride=1, cmap=cm.coolwarm)
    ax.plot_wireframe(np.hstack((t[:,0], t[0,0])), np.hstack(([t[:,1], t[0,1]])), np.hstack((y[:,obj_nr],y[0,obj_nr])), zorder=1000)  ## Line surface

    # points = [simplex[-1]['mins_ABC'][1]]
    for p in points:
        ax.plot([p[0]], [p[1]], [p[2]], 'go')

    # points = [[1.5892857095626787, 1.5892857194077434, 1.186929245703222]]
    # for p in points:
    #     ax.plot([p[0]], [p[1]], [p[2]], 'ro')
    plt.show()
Esempio n. 2
0
def analyse_beam(data):
    beam = generate_beam_from_json(data)

    beam.calculations()

    sections = [(section.start, section.end) for section in beam.sections]
    distance = a([np.linspace(section.start, section.end) for section in beam.sections])

    return {
        'sections': sections,
        'distance': [distance[i].tolist() for i in range(beam.num_sections)],
        'shear_force': {
            'equations': beam.shear_force_eqs,
            'values': [beam.shear_force_values[i].tolist() for i in range(beam.shear_force_values.shape[0])],
            'plot': {
                'x': distance.reshape(-1).tolist(),
                'y': beam.shear_force_values.reshape(-1).tolist(),
                'backup': {
                    'x': a([np.linspace(s.start, s.end) for s in beam.sections]).reshape(-1).tolist(),
                    'y': a([np.linspace(beam.shear_force_values[i], beam.shear_force_values[i]) for i in
                            range(beam.num_sections)]).reshape(-1).tolist()
                }
            }
        },
        'bending_moment': {
            'equations': beam.bending_moment_eqs,
            'values': [beam.bending_moment_values[i].tolist() for i in range(beam.bending_moment_values.shape[0])],
            'plot': {
                'x': distance.reshape(-1).tolist(),
                'y': beam.bending_moment_values.reshape(-1).tolist()
            }
        }
    }
Esempio n. 3
0
def show_lower_pareto_bound(simplexes):
    from matplotlib import pyplot as plt
    '''For 2D -> 2D problem show the lower pareto bound.'''
    # Warning:  unfinished, untested.
    def lower_bound_for_interval(t, y, dist=None, L=[1.,1.], verts=[0,1]):
        '''Returns lower L bound line in (f1,f2) space for an interval in
        multidimensional feasible region.'''
        def lower_bound_cracks(x1, x2, y1, y2, dist):
            '''Computes lower L bound crack points for the given interval.'''
            if dist is None:
                dist = enorm(x2-x1)
            t1 = (y1[0]-y2[0])/(2.*L[0]) + dist/2.
            t2 = (y1[1]-y2[1])/(2.*L[1]) + dist/2.
            if t1 >= t2:
                p1 = [y1[0] - L[0]*t2, y1[1] - L[1]*t2]
                p2 = [y1[0] - L[0]*t1, y2[1] - dist*L[1] + L[1]*t1]
            else:
                p2 = [y2[0] - dist*L[0] + L[0]*t2, y1[1] - L[1]*t2]
                p1 = [y1[0] - L[0]*t1, y1[1] - L[1]*t1]
            return [p1, p2]
        p1, p2 = lower_bound_cracks(t[verts[0]], t[verts[1]], y[verts[0]], y[verts[1]], dist)
        return a([y[verts[0]], p1, p2, y[verts[1]]])

    # For each simplex we have dimensions+1 vertex, so what does this mean.
    # Patobulinimas: We could check if any of them are dominated and keep the
    # least dominated.
    for simplex in simplexes:
        t = a([simplex[0][:-1], simplex[1][:-1], simplex[2][:-1]])
        y = a([simplex[0][-1]['obj'], simplex[1][-1]['obj'], simplex[2][-1]['obj']])   # (obj1, obj2) for A, B, C
        lb = lower_bound_for_interval(t, y)
        plt.plot(lb[:,0], lb[:,1])

    # Draw longest (or nondominated) edge lower bound and mark these vertexes as stars.
    plt.show()
Esempio n. 4
0
def draw_bounds(x1, x2, L=[1.,1.]):
    '''Draws 3 plots describing bounds for 1D->2D problems'''
    from matplotlib import pyplot as plt
    import matplotlib.ticker as plticker
    fig, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(18,6))

    ## Normalize x1, x2 for 2D variable space
    x2 = [enorm(a(x2[:-1]) - a(x1[:-1])), x2[-1]]
    x1 = [0, x1[-1]]

    ax1 = draw_objective_bounds_and_hat_epsilon(x1, x2, ax=ax1, L=L)
    ax2 = draw_tolerance_change(x1, x2, ax=ax2, L=L)
    ax3 = draw_objective_bounds(x1, x2, ax=ax3, L=L)

    ax1.xaxis.set_major_locator(plticker.MultipleLocator(base=0.2))
    ax1.yaxis.set_major_locator(plticker.MultipleLocator(base=0.1))
    # ax1.axis([0,1.,0,1.2])

    ax2.xaxis.set_major_locator(plticker.MultipleLocator(base=0.2))
    ax2.yaxis.set_major_locator(plticker.MultipleLocator(base=0.1))

    ax3.xaxis.set_major_locator(plticker.MultipleLocator(base=0.2))
    ax3.yaxis.set_major_locator(plticker.MultipleLocator(base=0.1))
    # ax3.axis([0,1.2,0,1.2])

    plt.show()
Esempio n. 5
0
 def test_select_point_to_explore_in_two_dimensions(self):
     '''
     This test case just runs code on a multi-dimensional input dataset.
     It doesn't test any conditions, but could presumably do so in the future.
     '''
     acquire(
         x=a([
             [-0.5, -0.5],
             [-0.5, 0.5],
         ]),
         # Fake fmap and Cmap values from another set of x's
         fmap=a([
             [0.03254087],
             [-0.03254087],
         ]),
         Cmap=a([
             [0.07894662, -0.07894662],
             [-0.07894662, 0.07894662],
         ]),
         bounds=a([
             [-1.0, 1.0],
             [-1.0, 1.0],
         ]),
         kernelfunc=default_kernel
     )
Esempio n. 6
0
 def test_run_optimization(self):
     f, _ = newton_rhapson(
         x=a([
             [0.0, 1.0],
             [1.0, 1.0],
             [-1.0, 0.0],
             [2.0, 2.0],
             [1.5, -1.0]
         ]),
         f0=a([
             [0.0],
             [0.0],
             [0.0],
             [0.0],
             [0.0],
         ]),
         comparisons=a([
             [3, 1],
             [0, 1],
             [2, 1],
             [4, 0],
             [2, 4],
         ]),
         kernelfunc=default_kernel,
         Hfunc=compute_H,
         gfunc=compute_g,
         sigma=2,
         maxiter=20,
     )
     self.assertTrue(f[3][0] > f[1][0])
     self.assertTrue(f[0][0] > f[1][0])
     self.assertTrue(f[2][0] > f[1][0])
     self.assertTrue(f[4][0] > f[0][0])
     self.assertTrue(f[2][0] > f[4][0])
Esempio n. 7
0
 def test_get_distinct_x_from_comparisons(self):
     comp = a([
         [[0.0], [1.0]],
         [[2.0], [3.0]]
     ])
     x = get_distinct_x(comp)
     self.assertAlmostEqual(x, a([[0.0], [1.0], [2.0], [3.0]]))
Esempio n. 8
0
    def test_compute_expectation(self):
        '''
        Intermediate results expected

        Kernel matrix:
        1.0 .135335283
        .135335283 1.0

        K^-1:
        1.018657360 -0.137860282
        -0.137860282  1.018657360

        Kernel vector:
        .324652467
        .882496903

        k' * Kinv:
        0.209048353 0.854205285
        '''
        expected = predict_f(x=a([
            [-1.0, 1.0],
            [1.0, 1.0],
        ]),
                             fmap=a([
                                 [1.0],
                                 [3.0],
                             ]),
                             xnew=a([0.5, 1.0]),
                             kernelfunc=default_kernel)
        self.assertAlmostEqual(expected, 2.771664208)
Esempio n. 9
0
 def getColor(self, u, v):
     if self.tex is None:
         return a([1.,1.,1.])
     else:
         u, v = map(int,(u*(self.tex.size[0]-1),v*(self.tex.size[1]-1)))
         c = a(self.tex.getpixel((u,v)), float)
         return c/255
Esempio n. 10
0
 def test_select_point_to_exploit(self):
     # We attempt to force exploitation by covering most of the input
     # space and expecting that the maximization algorithm will choose
     # the point between the highest outputs, given a symmetric output function.
     next_point = acquire(
         x=a([
             [-0.75],
             [-0.25],
             [0.25],
             [0.75],
         ]),
         # I got these fmap and Cmap values from running our optimizer
         # on the input data with comparisons [1, 0], [1, 3], [2, 0], [2, 3].
         fmap=a([
             [0.08950024],
             [0.21423927],
             [0.21423927],
             [0.08950024],
         ]),
         Cmap=a([
             [0.15672336, -0.07836168, -0.07836168, 0.0],
             [-0.07836168, 0.15672336, 0.0, -0.07836168],
             [-0.07836168, 0.0, 0.15672336, -0.07836168],
             [0.0, -0.07836168, -0.07836168, 0.15672336],
         ]),
         bounds=a([
             [-1.0, 1.0],
         ]),
         kernelfunc=default_kernel)
     self.assertTrue(next_point[0] > -.25)
     self.assertTrue(next_point[0] < .25)
Esempio n. 11
0
 def getNormal(self, u, v):
     if self.bump is None:
         return a([0,0,0])
     else:
         u, v = map(int,(u*(self.bump.size[0]-1),v*(self.bump.size[1]-1)))
         n = 2*a(self.bump.getpixel((u,v)), float)/255 - a([1.,1.,1])
         return Vec3(*n).normalized()
Esempio n. 12
0
 def test_run_optimization(self):
     f, _ = newton_rhapson(
         x=a([[0.0, 1.0], [1.0, 1.0], [-1.0, 0.0], [2.0, 2.0], [1.5,
                                                                -1.0]]),
         f0=a([
             [0.0],
             [0.0],
             [0.0],
             [0.0],
             [0.0],
         ]),
         comparisons=a([
             [3, 1],
             [0, 1],
             [2, 1],
             [4, 0],
             [2, 4],
         ]),
         kernelfunc=default_kernel,
         Hfunc=compute_H,
         gfunc=compute_g,
         sigma=2,
         maxiter=20,
     )
     self.assertTrue(f[3][0] > f[1][0])
     self.assertTrue(f[0][0] > f[1][0])
     self.assertTrue(f[2][0] > f[1][0])
     self.assertTrue(f[4][0] > f[0][0])
     self.assertTrue(f[2][0] > f[4][0])
Esempio n. 13
0
 def test_select_point_to_exploit(self):
     # We attempt to force exploitation by covering most of the input
     # space and expecting that the maximization algorithm will choose
     # the point between the highest outputs, given a symmetric output function.
     next_point = acquire(
         x=a([
             [-0.75],
             [-0.25],
             [0.25],
             [0.75],
         ]),
         # I got these fmap and Cmap values from running our optimizer
         # on the input data with comparisons [1, 0], [1, 3], [2, 0], [2, 3].
         fmap=a([
             [0.08950024],
             [0.21423927],
             [0.21423927],
             [0.08950024],
         ]),
         Cmap=a([
             [0.15672336, -0.07836168, -0.07836168, 0.0],
             [-0.07836168, 0.15672336, 0.0, -0.07836168],
             [-0.07836168, 0.0, 0.15672336, -0.07836168],
             [0.0, -0.07836168, -0.07836168, 0.15672336],
         ]),
         bounds=a([
             [-1.0, 1.0],
         ]),
         kernelfunc=default_kernel
     )
     self.assertTrue(next_point[0] > -.25)
     self.assertTrue(next_point[0] < .25)
Esempio n. 14
0
 def test_skip_repetitions_within_comparison(self):
     comp = a([
         [[0.0], [1.0]],
         [[2.0], [2.0]]
     ])
     x = get_distinct_x(comp)
     self.assertAlmostEqual(x, a([[0.0], [1.0], [2.0]]))
Esempio n. 15
0
 def test_skip_repetitions_across_comparisons(self):
     comp = a([
         [[1.0], [2.0]],
         [[2.0], [3.0]]
     ])
     x = get_distinct_x(comp)
     self.assertAlmostEqual(x, a([[1.0], [2.0], [3.0]]))
Esempio n. 16
0
    def test_compute_expectation(self):
        '''
        Intermediate results expected

        Kernel matrix:
        1.0 .135335283
        .135335283 1.0

        K^-1:
        1.018657360 -0.137860282
        -0.137860282  1.018657360

        Kernel vector:
        .324652467
        .882496903

        k' * Kinv:
        0.209048353 0.854205285
        '''
        expected = predict_f(
            x=a([
                [-1.0, 1.0],
                [1.0, 1.0],
            ]),
            fmap=a([
                [1.0],
                [3.0],
            ]),
            xnew=a([0.5, 1.0]),
            kernelfunc=default_kernel
        )
        self.assertAlmostEqual(expected, 2.771664208)
Esempio n. 17
0
 def test_get_distinct_x_from_2_dimensional_input_data(self):
     comp = a([
         [[1.0, 2.0], [2.0, 2.0]],
         [[2.0, 2.0], [3.0, 3.0]]
     ])
     x = get_distinct_x(comp)
     self.assertAlmostEqual(x, a([[1.0, 2.0], [2.0, 2.0], [3.0, 3.0]]))
Esempio n. 18
0
def optimal_myopic(domain, domain_mu_prior, domain_cm_prior, xObs, yObs,\
                   xres, yres, ysdbounds, lenscale, sigvar, noisevar2):
    out = {}
    bounds = [domain[0], domain[-1]]
    xcandidates = linspace(bounds[0], bounds[1], xres)
    out['x'] = xcandidates
    out['ev'] = zeros_like(xcandidates)
    ysdcandidates = linspace(ysdbounds[0], ysdbounds[1], yres)
    pysdcandidates = norm.pdf(ysdcandidates)

    for ix0, x0 in enumerate(xcandidates):
        x0 = a([x0])
        xObsPlusX0 = append(xObs, x0)
        xcmpri0 = jbgp.K_se(x0, x0, lenscale, sigvar)
        ymu0 = jbgp.conditioned_mu(x0, xObs, yObs, lenscale, sigvar, noisevar2)
        ycm0 = jbgp.conditioned_covmat(x0, atleast_2d(xcmpri0), xObs, lenscale, sigvar, noisevar2)
        ysd0 = diag(ycm0)
        ycands = a([ymu0 + (ysd0 * n) for n in ysdcandidates])
        for iy0, y0 in enumerate(ycands):
            yObsPlusY0 = append(yObs, y0)
            py0 = pysdcandidates[iy0]
            mu0 = jbgp.conditioned_mu(domain, xobsPlusX0, yObsPlusY0, lenscale, sigvar, noisevar2)
            evmax = mu0.max()
            out['ev'][ix0] += evmax * py0

    return out
Esempio n. 19
0
def emep(domainbounds, xObs, yObs, lenscale, sigvar, noisevar2, xres, yres, ysdbounds):
    """expected value of the max expected value of the posterior"""
    out = {}
    xcandidates = linspace(domainbounds[0], domainbounds[1], xres)
    out['x'] = xcandidates
    out['emep'] = zeros_like(xcandidates)
    ySDcandidates = linspace(ysdbounds[0], ysdbounds[1], yres)
    pdfySDcandidates = norm.pdf(ySDcandidates)
    cdfySDcandidates = norm.cdf(ySDcandidates)
    for ix0, xx0 in enumerate(xcandidates):
        # print 'x: ' + str(ix0)
        x0 = a([xx0])
        # get ymu and ysd for x0 so know what points to consider for generating prob-weighted ev of max of posterior
        ymu0 = jbgp.conditioned_mu(x0, xObs, yObs, lenscale, sigvar, noisevar2)
        xcmpri0 = jbgp.K_se(x0, x0, lenscale, sigvar)  # get covmat for xSam
        ycm0 = jbgp.conditioned_covmat(x0, atleast_2d(xcmpri0), xObs, lenscale, sigvar, noisevar2)
        ysd0 = diag(ycm0)
        # y-vals to consider with probs pysdcandidates
        ycands = a([ymu0 + (ysd0 * d) for d in ySDcandidates])
        xObsPlusX0 = append(xObs, x0)  # add considered point to xObs locations
        # run simulations of what happens with certain y-vals
        mep = zeros_like(cdfySDcandidates)

        for iy0, y0 in enumerate(ycands):
            # print 'y: ' + str(iy0)
            yObsPlusY0 = append(yObs, y0)
            py0 = pdfySDcandidates[iy0]
            mu0 = jbgp.conditioned_mu(domain, xObsPlusX0, yObsPlusY0, lenscale, sigvar, noisevar2)
            mep[iy0] = mu0.max()

        out['emep'][ix0] = trapz(maxevpost, cdfySDcandidates)
    return out
Esempio n. 20
0
 def setUp(self):
     self.default_f = a([
         [6.0],
         [1.0],
         [2.0],
     ])
     self.default_comparison = a([0, 2], dtype=np.int)
     self.default_sigma = 2.0
Esempio n. 21
0
 def testBlockSub2CenterCarWithoutBand(self):
     '''test BlockSub2CenterCarWithoutBand'''
     example = ( ( 0, a([-1.9,-1.9,-1.9])), 
                 ( 1, a([-1.7,-1.9,-1.9])) )
     for ind,right in example:
         sub = self.bnd.BlockInd2SubWithoutBand(ind)
         rslt = self.bnd.BlockSub2CenterCarWithoutBand(sub)
         npt.assert_array_equal(rslt, right)
Esempio n. 22
0
 def test_compute_kernel_vector(self):
     x = a([
         [0.0, 1.0],
         [1.0, 1.0]
     ])
     xnew = a([0.0, 0.0])
     k = kernel_vector(default_kernel, x, xnew)
     self.assertAlmostEqual(k, a([[.60653066], [.367879441]]))
Esempio n. 23
0
 def testNorm1(self):
     '''test Norm1.'''
     example = ( ( a( [1,1,1] ), 1 ) ,
                 ( a( [[1,3,4],[2,-2,1]] ), a( [4,2] )) 
                )
     for x,y in example:
         rslt = Band.norm1(x)
         npt.assert_allclose(rslt, y)
Esempio n. 24
0
 def setUp(self):
     self.default_f = a([
         [6.0],
         [1.0],
         [2.0],
     ])
     self.default_comparison = a([0, 2], dtype=np.int)
     self.default_sigma = 2.0
Esempio n. 25
0
 def testBlockSub2CenterCarWithoutBand(self):
     '''test BlockSub2CenterCarWithoutBand'''
     if 1 == 1: return
     example = ( ( 0, a([-1.9,-1.9,-1.9])), 
                 ( 1, a([-1.7,-1.9,-1.9])) )
     for ind,right in example:
         sub = self.bnd.BlockInd2SubWithoutBand(ind)
         rslt = self.bnd.BlockSub2CenterCarWithoutBand(sub)
         npt.assert_array_equal(rslt, right)
Esempio n. 26
0
def sort_vertexes_longest_edge_first(simplex):
    '''Motves longest edge vertexes to the simplex vertex list beggining.'''
    edge_lengths = []
    for i in xrange(len(simplex)):
        edge_lengths.append(enorm(a(simplex[i-1][:-1]) - a(simplex[i][:-1])))
    max_len_index = edge_lengths.index(max(edge_lengths))
    top_vertex = simplex.pop(max_len_index - 2)
    simplex.append(top_vertex)
    return simplex
Esempio n. 27
0
        def get_simplex_lower_bound_minimum(X, simp, L, verts=3):     # How to set current simplex for one argument function?
            '''Uses 3 vertex information'''
            if not is_in_simplex(simp[:,:-1], X):
                return float('inf')

            lb_values = []
            for i, v in enumerate(simp):
                if i < verts:
                    lb_values.append(v[-1] - L*enorm(a(v[:-1]) - a(X)))
            return max(lb_values)
Esempio n. 28
0
 def test_get_indices_for_comparisons(self):
     comp = a([[[1.0, 2.5], [3.0, 2.0]], [[1.0, 2.5], [1.0, 2.5]],
               [[2.0, 3.0], [3.0, 2.0]]])
     x = a([[1.0, 2.5], [3.0, 2.0], [2.0, 3.0]])
     indices = get_comparison_indices(x, comp)
     self.assertEqual(indices, a([
         [0, 1],
         [0, 0],
         [2, 1],
     ]))
Esempio n. 29
0
 def test_one_iteration_yields_expected_result(self):
     '''
     Taking our results from the computation of H in the last test,
     H^-1:
     [
     -1.066045352 -0.661325899 -0.301834093
     -0.661325899 -1.045461463 -0.027289758
     -0.301834093 -0.027289758 -1.066045352
     ]
     b (computed fresh):
     [
     [-.603424068]
     [0.0]
     [.603424068]
     ]
     g:
     [
     [-9.616613948]
     [4.388339650]
     [1.558974488]
     ]
     Then, we compute that H^-1 * g:
     [
     [6.879072286]
     [1.729331837]
     [1.120927715]
     ]
     '''
     f1, _ = newton_rhapson(
         x=a([
             [0.0, 1.0],
             [1.0, 1.0],
             [-1.0, 0.0],
         ]),
         f0=a([
             [6.0],
             [1.0],
             [2.0],
         ]),
         comparisons=a([
             [0, 2],
             [2, 0],
         ]),
         kernelfunc=default_kernel,
         Hfunc=compute_H,
         gfunc=compute_g,
         sigma=2.0,
         maxiter=1,
     )
     self.assertAlmostEqual(
         f1, a([
             [-.879072286],
             [-.729331837],
             [.879072285],
         ]))
Esempio n. 30
0
 def testBlockInd2SubWithoutBand(self):
     '''test BlockInd2SubWithoutBand'''
     example = ( (5, a([5,0,0]) ),
                 (21,a([1,1,0]) ),
                 (a([401,402]),a([[1,2],[0,0],[1,1]])) )
     for ind,sub in example:
         result = self.bnd.BlockInd2SubWithoutBand(ind)
         npt.assert_array_equal(result,sub)
     ExceptionExample = (10000,8000)
     for i in ExceptionExample:
         self.assertRaises(exceptions.IndexError, self.bnd.BlockInd2SubWithoutBand,i)
Esempio n. 31
0
 def test_one_iteration_yields_expected_result(self):
     '''
     Taking our results from the computation of H in the last test,
     H^-1:
     [
     -1.066045352 -0.661325899 -0.301834093
     -0.661325899 -1.045461463 -0.027289758
     -0.301834093 -0.027289758 -1.066045352
     ]
     b (computed fresh):
     [
     [-.603424068]
     [0.0]
     [.603424068]
     ]
     g:
     [
     [-9.616613948]
     [4.388339650]
     [1.558974488]
     ]
     Then, we compute that H^-1 * g:
     [
     [6.879072286]
     [1.729331837]
     [1.120927715]
     ]
     '''
     f1, _ = newton_rhapson(
         x=a([
             [0.0, 1.0],
             [1.0, 1.0],
             [-1.0, 0.0],
         ]),
         f0=a([
             [6.0],
             [1.0],
             [2.0],
         ]),
         comparisons=a([
             [0, 2],
             [2, 0],
         ]),
         kernelfunc=default_kernel,
         Hfunc=compute_H,
         gfunc=compute_g,
         sigma=2.0,
         maxiter=1,
     )
     self.assertAlmostEqual(f1, a([
         [-.879072286],
         [-.729331837],
         [.879072285],
     ]))
Esempio n. 32
0
 def test_compute_kernel_matrix(self):
     x = a([
         [0.0, 1.0],
         [1.0, 1.0],
         [-1.0, 0.0],
     ])
     K = kernel_matrix(default_kernel, x)
     self.assertAlmostEqual(K, a([
         [1.0, .60653066, .367879441],
         [.60653066, 1.0, .082084999],
         [.367879441, .082084999, 1.0],
     ]))
Esempio n. 33
0
 def testBlockInd2SubWithoutBand(self):
     '''test BlockInd2SubWithoutBand'''
     if 1 == 1:return 
     example = ( (5, a([5,0,0]) ),
                 (21,a([1,1,0]) ),
                 (a([401,402]),a([[1,0,1],[2,0,1]])) )
     for ind,sub in example:
         result = self.bnd.BlockInd2SubWithoutBand(ind)
         npt.assert_array_equal(result,sub,'{0} is wrong '.format(ind))
     ExceptionExample = (10000,8000)
     for i in ExceptionExample:
         self.assertRaises(exceptions.IndexError, self.bnd.BlockInd2SubWithoutBand,i)
Esempio n. 34
0
 def is_in_region(t, p):
     '''Checks if point is in the triangle region using Barycentric coordinates:
     www.farinhansford.com/dianne/teaching/cse470/materials/BarycentricCoords.pdf'''
     A = det(a([[t[0][0], t[1][0], t[2][0]], [t[0][1], t[1][1], t[2][1]], [1., 1., 1.]]))
     A1 = det(a([[p[0], t[1][0], t[2][0]], [p[1], t[1][1], t[2][1]], [1, 1, 1]]))
     A2 = det(a([[t[0][0], p[0], t[2][0]], [t[0][1], p[1], t[2][1]], [1, 1, 1]]))
     A3 = det(a([[t[0][0], t[1][0], p[0]], [t[0][1], t[1][1], p[1]], [1, 1, 1]]))
     u = A1 / A
     v = A2 / A
     w = A3 / A
     if u >= 0 and v >= 0 and w >= 0:
         return True
     return False
Esempio n. 35
0
 def test_get_indices_for_comparisons(self):
     comp = a([
         [[1.0, 2.5], [3.0, 2.0]],
         [[1.0, 2.5], [1.0, 2.5]],
         [[2.0, 3.0], [3.0, 2.0]]
     ])
     x = a([[1.0, 2.5], [3.0, 2.0], [2.0, 3.0]])
     indices = get_comparison_indices(x, comp)
     self.assertEqual(indices, a([
         [0, 1],
         [0, 0],
         [2, 1],
     ]))
Esempio n. 36
0
 def test_compute_b_with_j_for_each_point(self):
     b = compute_b(
         f=self.default_f,
         comparisons=a([
             [0, 2],
             [2, 1],
         ]),
         sigma=self.default_sigma,
     )
     self.assertAlmostEqual(b, a([
         [.056317811],
         [-.207629909],
         [.151312099],
     ]))
Esempio n. 37
0
 def test_compose_c_matrix(self):
     C = compute_C(
         f=self.default_f,
         comparisons=a([
             [0, 2],
             [2, 0],
         ]),
         sigma=self.default_sigma,
     )
     self.assertAlmostEqual(C, a([
         [.136719008, 0.0, -.136719008],
         [0.0, 0.0, 0.0],
         [-.136719008, 0.0, .136719008],
     ]))
Esempio n. 38
0
 def test_compute_kernel_matrix(self):
     x = a([
         [0.0, 1.0],
         [1.0, 1.0],
         [-1.0, 0.0],
     ])
     K = kernel_matrix(default_kernel, x)
     self.assertAlmostEqual(
         K,
         a([
             [1.0, .60653066, .367879441],
             [.60653066, 1.0, .082084999],
             [.367879441, .082084999, 1.0],
         ]))
Esempio n. 39
0
def hartman3(X):
    '''http://www.sfu.ca/~ssurjano/hart3.html'''
    alpha = (1.0, 1.2, 3.0, 3.2)
    A = a([[3.0, 10, 30], [0.1, 10, 35], [3.0, 10, 30], [0.1, 10, 35]])
    P = a([[0.3689, 0.1170, 0.2673],
           [0.4699, 0.4387, 0.7470],
           [0.1091, 0.8732, 0.5547],
           [0.0381, 0.5743, 0.8828]])
    sum1 = 0
    for i in range(4):
        sum2 = 0
        for j in range(3):
            sum2 += A[i][j] * (X[j] - P[i][j])**2
        sum1 += alpha[i] * np.exp(-sum2)
    return -sum1
Esempio n. 40
0
 def test_compute_b_with_j_for_each_point(self):
     b = compute_b(
         f=self.default_f,
         comparisons=a([
             [0, 2],
             [2, 1],
         ]),
         sigma=self.default_sigma,
     )
     self.assertAlmostEqual(
         b, a([
             [.056317811],
             [-.207629909],
             [.151312099],
         ]))
Esempio n. 41
0
 def test_compose_c_matrix(self):
     C = compute_C(
         f=self.default_f,
         comparisons=a([
             [0, 2],
             [2, 0],
         ]),
         sigma=self.default_sigma,
     )
     self.assertAlmostEqual(
         C,
         a([
             [.136719008, 0.0, -.136719008],
             [0.0, 0.0, 0.0],
             [-.136719008, 0.0, .136719008],
         ]))
Esempio n. 42
0
 def celluloid(self, array, nb_shade):
     minr = amin(array[:, :, 0])
     maxr = amax(array[:, :, 0])
     minv = amin(array[:, :, 1])
     maxv = amax(array[:, :, 1])
     minb = amin(array[:, :, 2])
     maxb = amax(array[:, :, 2])
     seqr = a(linspace(minr, maxr, nb_shade))
     seqv = a(linspace(minv, maxv, nb_shade))
     seqb = a(linspace(minb, maxb, nb_shade))
     shade_tab = stack((seqr, seqv, seqb), axis=0).T
     cp = copy(array)
     for line in range(cp.shape[0]):
         for color in range(cp.shape[1]):
             cp[line][color] = self.find_shade(cp[line][color], shade_tab)
     return cp
def pico(curvaNivel=False):
    aumento = 0.1
    rango = 6
    aumentoX = 0.4
    h = 2.6
    p = 1
    if curvaNivel:
        aumento = 0.025
        rango = 18
        aumentoX = 0.1

    b = 0.6
    x = 0
    for i in range(0, rango):
        points_set_1 = a([[-b, -1, h], [-1, -p - x, h], [1, -p - x, h],
                          [b, -1, h]])
        t_points = np.arange(0, 1, 0.01)
        curve_set_1 = Bezier.Curve(t_points, points_set_1)
        ax.plot(curve_set_1[:, 0],
                curve_set_1[:, 1],
                curve_set_1[:, 2],
                color="green")

        h = h + aumento
        x = x + aumentoX
Esempio n. 44
0
 def test_compute_gradient(self):
     '''
     About this computation:
     Recall from the above test case that the kernel will be:
     [
     [1.0, .60653066, .367879441],
     [.60653066, 1.0, .082084999],
     [.367879441, .082084999, 1.0],
     ]
     It follows that the inverted kernel is:
     [
     [ 1.88589785, -1.09427888, -0.60395917],
     [-1.09427888,  1.64173123,  0.2678012 ],
     [-0.60395917,  0.2678012 ,  1.2002017 ]
     ]
     From the above example for computing b, we know that b is:
     [
     [.056317811],
     [-.207629909],
     [.151312099],
     ]
     Therefore, the expected calculation of -K^-1 * f + b is:
      -9.013189880      .056317811    -8.956872069
      4.388339650  +  -.207629909  =   4.180709741
      0.955550420      .151312099      1.106862519
     '''
     g = compute_g(kernelfunc=default_kernel,
                   x=a([
                       [0.0, 1.0],
                       [1.0, 1.0],
                       [-1.0, 0.0],
                   ]),
                   f=self.default_f,
                   comparisons=a([
                       [0, 2],
                       [2, 1],
                   ]),
                   sigma=self.default_sigma)
     self.assertAlmostEqual(
         g, a([
             [-8.956872069],
             [4.180709741],
             [1.106862519],
         ]))
Esempio n. 45
0
 def test_compute_H(self):
     '''
     This test reuse intermediate test results that can be seen in tests
     for computing the kernel, computing the gradient, and computing C.
     From these previous test cases, we know that:
     K^-1 is:
     [
     [ 1.88589785, -1.09427888, -0.60395917],
     [-1.09427888,  1.64173123,  0.2678012 ],
     [-0.60395917,  0.2678012 ,  1.2002017 ]
     ]
     and C is:
     [
     [.136719008, 0.0, -.136719008],
     [0.0, 0.0, 0.0],
     [-.136719008, 0.0, .136719008],
     ]
     We add these two matrices to compute the second derivative H.
     '''
     H = compute_H(
         kernelfunc=default_kernel,
         x=a([
             [0.0, 1.0],
             [1.0, 1.0],
             [-1.0, 0.0],
         ]),
         f=a([
             [6.0],
             [1.0],
             [2.0],
         ]),
         comparisons=a([
             [0, 2],
             [2, 0],
         ]),
         sigma=2.0,
     )
     self.assertAlmostEqual(
         H,
         a([
             [-1.749178842, 1.094278880, 0.467240162],
             [1.094278880, -1.641731230, -0.267801200],
             [0.467240162, -0.267801200, -1.063482692],
         ]))
Esempio n. 46
0
def g_get_points(n):
    z = a([[0], [1]])
    for k in range(n):
        m = g1(z)
        n = g2(z)
        z = np.concatenate((m,n), axis=1)

    x = z.real
    y = z.imag
    return x, y
Esempio n. 47
0
 def test_b_j_composed_of_one_summand_if_only_one_relevant_pair(self):
     res = b_j(
         f=self.default_f,
         j=2,
         comparisons=a([
             [0, 2],
         ]),
         sigma=self.default_sigma,
     )
     self.assertAlmostEqual(res, -.056317811)
Esempio n. 48
0
 def test_b_j_made_up_of_multiple_terms_if_j_in_multiple_comparisons(self):
     res = b_j(
         f=self.default_f,
         j=2,
         comparisons=a([
             [0, 2],
             [2, 1],
         ]),
         sigma=self.default_sigma,
     )
     self.assertAlmostEqual(res, .151312099)
Esempio n. 49
0
 def test_b_j_is_zero_when_no_comparisons_contain_j(self):
     res = b_j(
         f=self.default_f,
         j=1,
         comparisons=a([
             [0, 2],
             [2, 0],
         ]),
         sigma=self.default_sigma,
     )
     self.assertAlmostEqual(res, 0.0)
Esempio n. 50
0
 def test_c_entry_with_two_constrasting_comparisons(self):
     res = c_m_n(
         f=self.default_f,
         m=0,
         n=2,
         comparisons=a([
             [0, 2],
             [2, 0],
         ]),
         sigma=self.default_sigma,
     )
     self.assertAlmostEqual(res, -.136719008)
Esempio n. 51
0
 def test_select_point_to_explore(self):
     next_point = acquire(
         x=a([
             [-0.75],
             [-0.4],
         ]),
         # I got these fmap and Cmap values from running our optimizer
         # on the input data with comparisons [0, 1]
         fmap=a([
             [0.03254087],
             [-0.03254087],
         ]),
         Cmap=a([
             [0.07894662, -0.07894662],
             [-0.07894662, 0.07894662],
         ]),
         bounds=a([
             [-1.0, 1.0],
         ]),
         kernelfunc=default_kernel)
     self.assertTrue(next_point[0] > -.4)
Esempio n. 52
0
 def calculate_framerate(self):
     """Calculate the image acquisition frequency in Hz and store it
     in the member variable 'framerate'"""
     # The "StatFrameRate" attribute always reads 0.0.
     # Called preiodically from "resume".
     from numpy import argsort, array as a, nan
     if len(self.Frames) < 2: return nan
     # Find the last two image based on their frame count.
     counts = a([
         self.Frames[i].frame.FrameCount
         for i in range(0, len(self.Frames))
     ])
     times = a(
         [self.frame_timestamp(i) for i in range(0, len(self.Frames))])
     order = argsort(counts)
     count1, count2 = counts[order][-2:]
     time1, time2 = times[order][-2:]
     if count1 == 0 or count2 == 0: return nan  # not enough valid images.
     # Calculate the frame rate based on the last two images.
     if time2 == time1: return nan
     self.framerate = (count2 - count1) / (time2 - time1)
Esempio n. 53
0
 def test_c_entry_is_summand_over_doubled_squared_sigma_when_only_one_relevant_comparison(
         self):
     res = c_m_n(
         f=self.default_f,
         m=0,
         n=2,
         comparisons=a([
             [0, 2],
         ]),
         sigma=self.default_sigma,
     )
     self.assertAlmostEqual(res, -.250644809 / 8.0)
Esempio n. 54
0
class agent:
    c = a([0, 0])  # Row,Col
    E = []  # Sensing Matrix
    env = ''  # Environment Generator
    f = 0  # Fitness Score

    G = []  # Gene Matrix
    P = []  # Next Step Policy
    cfg = ''

    def __init__(self, env, cfg):
        self.c = [int(g(0, 10)), int(g(0, 10))]
        self.env = env
        self.E = env.getSensingMatrix(self.c)
        self.G = gene(cfg)
        self.cfg = cfg

    def step(self):

        if np.linalg.norm(self.c) < self.cfg.B + 10:

            self.E = self.env.getSensingMatrix(self.c)

            self.P = self.G.A @ self.E @ self.G.B
            for i in range(len(self.P)):
                if self.P[i] == np.array(self.P).max():
                    break
            # Up
            if i == 0:
                self.c += a([1, 0])
            # Down
            elif i == 1:
                self.c += a([-1, 0])
            # Left
            elif i == 2:
                self.c += a([0, -1])
            # Right
            elif i == 3:
                self.c += a([0, 1])
            # Up Right
            elif i == 4:
                self.c += a([1, 1])
            # Down Right
            elif i == 5:
                self.c += a([-1, 1])
            # Down Left
            elif i == 6:
                self.c += a([-1, -1])
            # Up Left
            elif i == 7:
                self.c += a([1, -1])

            self.f += self.env.consume(self.c)
Esempio n. 55
0
def geometry_to_points(geo):
    points = dict()

    # Bottom bracket
    points['bottom bracket'] = a([0., 0.])

    # Seat tube
    points['seat tube bottom'] = points['bottom bracket']
    points['seat tube top'] = a([
        -cos(radians(geo['seat angle'])) * geo['seat tube'],
        sin(radians(geo['seat angle'])) * geo['seat tube'],
    ])

    # Axles
    points['rear axle'] = a([
        -sqrt(geo['chain stay']**2 - geo['bottom bracket drop']),
        geo['bottom bracket drop'],
    ])
    points['front axle'] = a([
        points['rear axle'][0] + geo['wheelbase'],
        points['rear axle'][1],
    ])

    # Head tube
    points['head tube top'] = a([
        geo['reach'],
        geo['stack'],
    ])
    points['head tube bottom'] = a([
        cos(radians(geo['head angle'])) * geo['head tube'] + geo['reach'],
        -sin(radians(geo['head angle'])) * geo['head tube'] + geo['stack'],
    ])

    return points
Esempio n. 56
0
    def closestPointToCartesian(self, xx, verbose=0):
        """ brue force search over all triangles """
        x, y, z = xx

        (dd, cpx, cpy, cpz) = FindClosestPointToTriSet(x, y, z, self.F, self.V)
        cp = a([cpx, cpy, cpz])
        dist = norm(xx - cp, 2)
        bdy = 0  # TODO: I guess!
        #others = dict(whichFace=tmin)
        others = {}
        if (verbose >= 0):
            print "found cp: x,cp,dist=", xx, cp, dist
        return cp, dist, bdy, others
Esempio n. 57
0
def f_get_points(n):
    z = a([[0, 1], [0, 0]])
    for k in range(n):
        z1 = f1real(z)
        z2 = f2real(z)
        z = np.concatenate((z1,z2), axis=1)

    x = np.zeros([2, 2**n])
    y = np.zeros([2, 2**n])
    for k in range(2**n):
        x[:, k] = z[0, k:k+2]
        y[:, k] = z[1, k:k+2]
    return x, y