Esempio n. 1
0
def plot_fft2(samp_t, ROWLIST, SETTINGS):
    from scipy import signal
    from scipy.ndimage.filters import maximum_filter
    from scipy.ndimage.morphology import generate_binary_structure, binary_erosion, iterate_structure

    xcm, vcm, fi_rows, R, t, imap, rmap = slicer(SETTINGS)
    RUNS, ini, end, rows, Name = SETTINGS

    mag = lambda F: (F * cj(F)).real
    T, Npr, rows = fi_rows.shape

    for ROW in ROWLIST:
        fig, ax = plt.subplots(1, 1)
        print(ROW)
        matrix = fi_rows[:, :, ROW].T
        Fmatrix = np.fft.fftshift(mag(np.fft.fftn(matrix)))
        # Fmatrix =  mag( np.fft.fftn(matrix) )
        shape = Fmatrix.shape
        F = Fmatrix.flatten()
        F[np.argmax(F)] = 0
        newmax = F[np.argmax(F)]
        Fmatrix = F.reshape(shape)
        thresh = Fmatrix > 0.5 * newmax
        samp_e = 1.  # vecinos
        t_freq = np.fft.fftshift(np.fft.fftfreq(len(t), d=1. / samp_t))
        e_freq = np.fft.fftshift(np.fft.fftfreq(Npr, d=1. / samp_e))
        # print(e_freq)
        defreq = e_freq[1] - e_freq[0]
        dtfreq = t_freq[1] - t_freq[0]
        logF = np.log(Fmatrix)
        filt = logF > np.max(logF) * .7
        # print( logF.shape, filt.shape )
        # # Peak finder
        # neighborhood = np.zeros((5,5)); neighborhood[2,2]=1
        # neighborhood = neighborhood.astype(bool)
        # local_max = maximum_filter(Fmatrix, footprint=neighborhood)==Fmatrix
        # background = (Fmatrix <= np.max(Fmatrix)*.9)
        # eroded_background = binary_erosion(background, structure=neighborhood, iterations=1, border_value=1)
        # detected_peaks = local_max ^ eroded_background
        # peaks_index = np.transpose( np.nonzero( detected_peaks ) )

        # for ipeak in peaks_index:
        #     espacial = "i={0}, k={1:f} 1/vec, la={2:f} vec".format(ipeak[0],e_freq[ipeak[0]],1/e_freq[ipeak[0]])
        #     temporal = "i={0}, f={1:f} 1/, T={2:f} corrida".format(ipeak[1],t_freq[ipeak[1]],1/t_freq[ipeak[1]])
        #     print( espacial )
        #     print( temporal )

        # ax.imshow( np.log( Fmatrix*thresh +1 )  ,aspect='auto', extent=[ t_freq[0], t_freq[-1], e_freq[0]+defreq, e_freq[-1]+defreq  ] )
        ax.imshow(logF * filt,
                  aspect='auto',
                  extent=[
                      t_freq[0], t_freq[-1], e_freq[0] + defreq,
                      e_freq[-1] + defreq
                  ])
        ax.axhline(0, c='r')
        ax.axvline(0, c='r')
        # plt.show()
    return fig, ax
Esempio n. 2
0
def angle_dist(ROWLIST):

    X, V, fi_rows, R, t, imap, rmap = slicer(SETTINGS)
    RUNS, ini, end, rows, Name = loadargs(sys.argv[2:])
    r2 = (R * cj(R)).real
    Rang = np.angle(R)  #+ np.pi
    print(Rang.min(), Rang.max())
    print(fi_rows.min(), fi_rows.max())

    Tsize, Npr, rows = fi_rows.shape
    DAT = [RUNS, ini, end, rows, Name, Tsize, Npr]

    ed2cen = lambda ed: .5 * (ed[1:] + ed[:-1])

    def bound(A):
        for i in range(len(A)):
            if A[i] > np.pi:
                A[i] = -A[i] + 2 * np.pi
        return A

    def bound2(A):
        for i in range(len(A)):
            if A[i] < 0:
                A[i] = A[i] + 2 * np.pi
        return A

    def bound3(A):
        for i in range(len(A)):
            if A[i] > np.pi * .5:
                A[i] = A[i] - np.pi
        return A

    fi_rel = np.empty_like(fi_rows)
    for c in range(Npr):
        fi_rel[:, c, :] = fi_rows[:, c, :] - Rang

    fig, ax = plt.subplots(1, 1)
    for ROW in ROWLIST:
        fi_rel_flat = fi_rel[:, :, ROW].flatten()

        fi_rel_flat_bound = bound(fi_rel_flat)
        # fi_rel_flat_bound = fi_rel_flat

        # ax.plot( t, np.angle(R[:,ROW]), 'k' )

        H, ed = np.histogram(abs(fi_rel_flat_bound), bins=100, density=True)
        bins = ed2cen(ed)
        ax.plot(bins, H, 'o-')
    plt.show()
Esempio n. 3
0
def r2_stat(SETTINGS):
    xcm, vcm, fi_rows, R, t, imap, rmap = slicer(SETTINGS)
    RUNS, ini, end, rows, Name = SETTINGS
    r2 = (R * cj(R)).real
    mean = np.mean(r2, axis=0)
    std = np.std(r2, axis=0)
    print("   ".join(["ROW", "MEAN", "STD"]))
    for i in range(len(mean)):
        # text = "{0}\t{1:.3f}\t{2:.3f}".format( i, mean[i], std[i])
        text = "{0}   {1:.3f}   {2:.3f}".format(i, mean[i], std[i])
        print(text)

    print("-" * len(text))
    print("\t".join(["<MEAN>", "<STD>/sqrt(size)"]))
    print("{0:.3f}\t{1:.3f}".format(np.mean(mean),
                                    np.mean(std) / len(std)**.5))
Esempio n. 4
0
def stripes_ROW(ROWLIST, SETTINGS):

    xcm, vcm, fi_rows, R, t, imap, rmap = slicer(SETTINGS)
    RUNS, ini, end, rows, Name = SETTINGS

    r2 = R * cj(R)

    T, Npr, rows = fi_rows.shape
    DAT = [RUNS, ini, end, rows, Name, T, Npr]

    for ROW in ROWLIST:

        matrix = fi_rows[:, :, ROW].T  # (osc, time)

        labeled, n_obj = find_stripes(matrix)
        pendientes = []
        tiempos = []

        # Taking means
        centers = np.empty((labeled.shape[0], n_obj))
        centers[:, :] = np.nan
        for obj in range(1, n_obj + 1):  # objects start at 1
            filt = labeled == obj
            obj_i = np.where(filt)
            length = len(set(np.transpose(obj_i)[:, 0]))
            if length > int(Npr * .6):  # stripe-length % of system
                for fila in range(centers.shape[0]):
                    centers[fila, obj - 1] = np.mean(t[filt[fila, :]])
                center_obj = centers[:, obj - 1]
                nanfilt = ~np.isnan(center_obj)
                if any(nanfilt):
                    cent = center_obj[nanfilt]
                    vec = (np.arange(0, Npr) + .5)[nanfilt]
                    P = np.polyfit(vec, cent, 1)
                    pendientes.append(P[0])
                    tiempos.append(np.mean(cent))

        block_name = "block_" + str(ROW) + "_" + Name

        np.savez(block_name,
                 pendientes=pendientes,
                 tiempos=tiempos,
                 DAT=DAT,
                 centers=centers,
                 r2=r2)
Esempio n. 5
0
def plot_r2(SETTINGS, ROWLIST):
    xcm, vcm, fi_rows, R, t, imap, rmap = slicer(SETTINGS)
    RUNS, ini, end, rows, Name = SETTINGS
    fig, axROWS = plt.subplots(len(ROWLIST), 1)
    cmap = plt.cm.tab10(range(len(ROWLIST)))
    r2 = R * cj(R)
    if type(axROWS) == np.ndarray:
        for i, ROW in enumerate(ROWLIST):
            axROWS[i].plot(t, r2[:, ROW].real, color=cmap[i])
        axROWS[int(len(axROWS) * .5)].set_ylabel(
            r'$\left\Vert R\right\Vert^{2}$', fontsize=13)
        axROWS[-1].set_xlabel(r'$Nº\;Corrida\;[10^6 \Delta t]$', fontsize=13)
    else:
        for ROW in ROWLIST:
            axROWS.plot(t, r2[:, ROW].real)
        axROWS.set_ylabel(r'$\left\Vert R\right\Vert^{2}$', fontsize=13)
        axROWS.set_xlabel(r'$Nº\;Corrida\;[10^6 \Delta t]$', fontsize=13)
    # ax.plot(t,r2[:,0].real)
    print(np.mean(r2.real, axis=0))
    return fig, axROWS
Esempio n. 6
0
def plot_polar(ROWLIST, SETTINGS):

    X, V, fi_rows, R, t, imap, rmap = slicer(SETTINGS)
    RUNS, ini, end, rows, Name = SETTINGS

    r2 = (R * cj(R)).real

    Tsize, Npr, rows = fi_rows.shape
    DAT = [RUNS, ini, end, rows, Name, Tsize, Npr]
    # fig_R, ax_R = plt.subplots(1,1,figsize=fsize)
    cm2in = lambda w, h: (w / 2.54, h / 2.54)
    fig, ax = plt.subplots(2, 3, subplot_kw=dict(polar=True))
    rowi = np.asarray([[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2]])
    p = 1.8
    fig.set_size_inches(cm2in(p * 12, p * 8), forward=True)

    def bound2(A):
        if A < 0:
            A += 2 * np.pi
        return A

    T = 0000
    for ROW in ROWLIST:
        for c in range(Npr):
            i, j = rowi[ROW]
            # fi_rel = bound2( fi_rows[T,c,ROW]-np.angle(R[T,ROW]) )
            fi_rel = fi_rows[T, c, ROW] - (np.angle(R[T, ROW]))
            ax[i, j].scatter(0, np.absolute(R[T, ROW]), 50, color='xkcd:red')
            ax[i, j].scatter(fi_rel, 1, 30, color='xkcd:blue')

        # ax_R.plot(t,np.absolute(R),zorder=-1)
        # ax_R.set_xlabel(r'$Corrida \: [10^6 \: \Delta t ] $')
        # fig_R.tight_layout()
    fig.tight_layout()
    plt.show()
    # ax.plot(fi[0,:],r_0[0,:])

    return [fig, fig_R], [ax, ax_R]
Esempio n. 7
0
#!/usr/bin/env python3
import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
from numpy import conjugate as cj
import sys, argparse, pickle

padlength = lambda size: int(2**np.ceil(np.log2(size))-size)
Mag = lambda f: (f*cj(f)).real
cm2in = lambda w,h: (w/2.54,h/2.54)
get_par = lambda d: "{0:.2f}".format(float(d.split('=')[1].strip('$')))

def plot_par(sim,par,ROWS):
    par = int(par)
    datos = np.load('corr_err_rows_'+sim+'.npz')
    corr, cerr, labels = datos['CORR'],datos['CERR'],datos['labels']
    ch=np.linspace(0,10,11); N=ch.shape[0]
    if sim == 'mec' : sim_label = r'$\rho ='; sim_unit = r'\;1/\sigma$'
    if sim == 'ela' : sim_label = r'$ k ='; sim_unit = r'\;\epsilon/\sigma^2$'

    fig, ax = plt.subplots(1,1)

    # colormap = plt.cm.nipy_spectral #I suggest to use nipy_spectral, Set1,Paired
    # ax.set_color_cycle([colormap(i) for i in np.linspace(0., 0.95,4 )])
    for ROW in ROWS:
    # for d, label in enumerate( labels ):
    #     label = labels[n]
    #     corr = C_ce[n,:,0]
    #     err = C_ce[n,:,1]
        ax.errorbar(ch[1:], corr[par,ROW,1:], yerr=cerr[par,ROW,1:],
                    fmt='-o', ms=3, capsize=5, lw=1.,
Esempio n. 8
0
def corr(ROWLIST, SETTINGS):

    xcm, vcm, fi_rows, R, t, imap, rmap = slicer(SETTINGS)
    RUNS, ini, end, rows, Name = SETTINGS

    r2 = (R * cj(R)).real

    mag = lambda F: (F * cj(F)).real
    T, Npr, rows = fi_rows.shape

    def rot(v, j):
        # posiciona el indice j primero, preservando orden ciclico
        v2 = np.copy(v)
        n = len(v)
        i = int(n / 2 + 1 + j)
        if i > n - 1:
            i = int(i - n)
        v2[:n - i] = v[i:]
        v2[n - i:] = v[:i]
        return v2

    def plegado(A, j):
        # Pliega la matriz de correlacion sobre la col j
        # A[i, j+1] -> (A[i,j+1] + A[i,j-1])/2
        col = (A.shape[0], 1)
        flip = np.copy(A[:, :j])
        for i in range(j):
            flip[:, i] = A[:, j - 1 - i]
        if A.shape[1] % 2 == 0:
            B = np.concatenate(
                ((A[:, j].reshape(col)), ((A[:, j + 1:-1] + flip) * .5),
                 (A[:, -1].reshape(col))),
                axis=1)
        else:
            B = np.concatenate(
                ((A[:, j].reshape(col)), ((A[:, j + 1:] + flip) * .5)), axis=1)
        return B

    def CrossCorr(ROW):
        # fi = fi_rows[:,:,ROW] # time, chain
        c = xcm[:, :, ROW]  # time, chain
        C = 0 * np.empty((Npr, Npr))
        for i in range(Npr):
            sig_i = np.std(c[:, i])
            c_i = c[:, i] - np.mean(c[:, i])
            for j in range(i + 1):
                sig_j = np.std(c[:, j])
                c_j = c[:, j] - np.mean(c[:, j])
                C[i, j] = np.mean(c_i * c_j) / (sig_i * sig_j)
                C[j, i] = C[i, j]

        C_cent = np.empty((Npr, Npr))
        for ch in range(Npr):
            C_cent[ch, :] = rot(C[ch, :], ch)
        return C_cent

    if Npr % 2 == 0:
        pleg_col = int(Npr / 2. - 1)
    else:
        pleg_col = int((Npr + 1) / 2.)

    Cross = 0 * np.empty((Npr, Npr, rows))

    r2mean = np.mean(r2, axis=0)
    text_start = r"$\left\langle r^{{2}}\right\rangle_"

    fig, ax = plt.subplots(1, 1)
    for ROW in ROWLIST:
        Cross_ROW = CrossCorr(ROW)
        CrossPleg = plegado(Cross_ROW, pleg_col)
        CrossMean = np.mean(CrossPleg, axis=0)
        CrossErr = np.std(CrossPleg, axis=0) / (CrossMean.shape[0])**.5
        vecinos = range(1, CrossMean[1:].size + 1)
        text = text_start + str(ROW) + r"={0:.2f}$".format(r2mean[ROW])
        # ax.plot(vecinos, CrossMean[1:],'-o', ms=3, label=text)
        ax.errorbar(vecinos,
                    CrossMean[1:],
                    yerr=CrossErr[1:],
                    capsize=5,
                    fmt='-o',
                    ms=3,
                    label=text)
        ax.axhline(0, color='k')
        Cross[:, :, ROW] = Cross_ROW
    ax.legend()
    return ax, Cross
Esempio n. 9
0
def plot_stripes_ROW(ROWLIST, SETTINGS):

    xcm, vcm, fi_rows, R, t, imap, rmap = slicer(SETTINGS)
    RUNS, ini, end, rows, Name = SETTINGS

    r2 = R * cj(R)
    T, Npr, rows = fi_rows.shape
    DAT = [RUNS, ini, end, rows, Name, T, Npr]

    cm2in = lambda w, h: (w / 2.54, h / 2.54)
    print(len(ROWLIST))
    fig_pend, ax_pend = plt.subplots(len(ROWLIST), 1)
    cmap = create_custom_cmap()
    # np.save("matrix", matrix )
    for index, ROW in enumerate(ROWLIST):

        matrix = fi_rows[:, :, ROW].T  # (osc, time)
        # matrix[0,:] = 0*matrix[0,:]
        labeled, n_obj = find_stripes(matrix)
        pendientes = []
        tiempos = []
        color_bar_TRUE = True
        if color_bar_TRUE:
            fig, ax = plt.subplots(1, 2, gridspec_kw={'width_ratios': [9, 1]})
            axim = ax[0]
            axcb = ax[1]
        else:
            fig, ax = plt.subplots(1, 1)
            axim = ax
            p = 1.
            fig.set_size_inches(cm2in(p * 12, p * 12), forward=True)

        extent = [t[0], t[-1], 0, Npr]

        implot = axim.imshow(
            matrix,
            interpolation='none',
            cmap=cmap,  # cmap="gray",
            vmin=0,
            vmax=2 * np.pi,
            extent=extent,
            aspect='auto',
            origin='lower')

        ytick_labels = np.arange(0, Npr, 10)
        ytick_pos = np.arange(0, Npr, 10) + .5
        axim.set_xlabel(r'$Nº\;Corrida \: [10^6 \: \Delta t ] $', fontsize=13)
        axim.set_ylabel('Oscilador', fontsize=13)
        axim.set_ylim([0, Npr])
        axim.set_xlim([t[0], t[-1]])
        axim.set_yticks(ytick_pos)
        axim.set_yticklabels(ytick_labels)

        # Colorbar
        if color_bar_TRUE:
            axcb.set_axis_off()
            cbar = fig.colorbar(implot, ax=axcb, fraction=1)
            ticks = (np.arange(0, 2.5, .5)) * np.pi
            cbar.set_ticks(ticks)
            cbar.set_ticklabels([
                r"$0$", r"$\frac{\pi}{2}$", r"$\pi$", r"$\frac{3\pi}{2}$",
                r"$2\pi$"
            ])

        fig.tight_layout()

        # Taking means
        centers = np.empty((labeled.shape[0], n_obj))
        centers[:, :] = np.nan
        for obj in range(1, n_obj + 1):  # objects start at 1
            filt = labeled == obj
            obj_i = np.where(filt)
            length = len(set(np.transpose(obj_i)[:, 0]))
            if length > int(Npr * .6):  # stripe-length % of system
                for fila in range(centers.shape[0]):
                    centers[fila, obj - 1] = np.mean(t[filt[fila, :]])
                center_obj = centers[:, obj - 1]
                nanfilt = ~np.isnan(center_obj)
                if any(nanfilt):
                    cent = center_obj[nanfilt]
                    vec = (np.arange(0, Npr) + .5)[nanfilt]
                    P = np.polyfit(vec, cent, 1)
                    pendientes.append(P[0] * 10**3)
                    tiempos.append(np.mean(cent))
                    # axim.plot(  cent, vec, color='xkcd:blue', marker='o', ms=3, ls='', lw=3, zorder=2 )
                    # axim.plot( np.polyval(P, np.arange(0,Npr+1) ), np.arange(0,Npr+1), color='xkcd:orange', lw=4, zorder=1 )
        # for m in range(11):
        #     axim.axhline( 18.2*m, color='xkcd:green' )
        # axim.axhline( 100, color='xkcd:green' )

        size_ = (11.2, 4.8)
        fig_pend.set_size_inches(cm2in(*size_), forward=True)

        if type(ax_pend) == np.ndarray:
            ax_pend_current_plot = ax_pend[index]
            ax_pend[int(len(ROWLIST) *
                        .5)].set_ylabel(r'$a/v\;[10^6 \Delta t]$')
            ax_pend[-1].set_xlabel(r'$Nº\;Corrida \: [10^6 \: \Delta t ] $')
        else:
            ax_pend_current_plot = ax_pend
            ax_pend.set_ylabel(r'$a/v\;[10^6 \Delta t]$')
            ax_pend.set_xlabel(r'$Nº\;Corrida \: [10^6 \: \Delta t ] $')

        ax_pend_current_plot.plot(tiempos, pendientes, 'o', ms=1)
        ax_pend_current_plot.set_xlim([t[0], t[-1]])
        ax_pend_current_plot.text(-0.10,
                                  0.99,
                                  "$\\times 10^{-" + str(3) + "}$",
                                  fontsize=9,
                                  transform=plt.gca().transAxes)

        # ax_pend[1].plot(t,r2[:,ROW].real, lw=.5)
        # ax_pend[1].set_xlabel(r'$Corrida \: [10^6 \: \Delta t ] $')
        # ax_pend[1].set_ylabel(r'$r^2$')
        # ax_pend[1].set_xlim([t[0],t[-1]])
        fig_pend.tight_layout()

        if not color_bar_TRUE:
            p = 1
            fig.set_size_inches(cm2in(p * 16, p * 11))
            fig.tight_layout()
    plots = ([fig, ax], [fig_pend, ax_pend])
    # fig_pend.savefig('pendientes.png')
    # md.add_meta('pendientes.png', meta)

    return plots
Esempio n. 10
0
def plot_fft_x(sample, SETTINGS):

    xcm, vcm, fi_rows, R, t, imap, rmap = slicer(SETTINGS)
    RUNS, ini, end, rows, Name = SETTINGS  #loadargs( sys.argv[2:] )
    T, Npr, rows = fi_rows.shape

    r2 = (R * cj(R)).real
    label_bp = r'$\left\langle r^{{2}}\right\rangle _{{{0}}}={1:.2f}$'
    r2mean = np.mean(r2, axis=0)

    fig, ax = plt.subplots(1, 1)
    # size_zoom = (12.3, 10) #(11,10)
    # size_ = size_zoom
    size_ = (16, 8)
    fig.set_size_inches(cm2in(*size_), forward=True)

    for ROW in range(rows):
        x = xcm[:, :, ROW]
        v = vcm[:, :, ROW]
        F = np.fft.rfft(x, axis=0)
        Fv = np.fft.rfft(v, axis=0)
        E = (F * np.conjugate(F)).real
        Ev = (Fv * np.conjugate(Fv)).real
        f = np.fft.rfftfreq(x.shape[0], d=1. / sample)
        # print( x.shape[0], f.shape )
        meanE = np.mean(E, axis=1)
        meanEv = np.mean(Ev, axis=1)
        # ax.plot(f, meanE, label = "{0}".format(ROW))
        # ax.plot(f, meanE, label = label_bp.format(ROW, r2mean[ROW]))

        # ax.set_xlim([27.25,30])
        # ax.set_ylim([10**5, 10**9.5])
        ax.set_xlabel(r'$f\;[\frac{10^{-6}}{\Delta t}]$', size=15)
        ax.set_ylabel(r'$\mathscr{F}\cdot\mathscr{F}^{\mathscr{*}}$', size=15)

        # print(ROW, f[ np.argmax(meanE) ] )
        try:
            meanRow += meanE
            meanRowv += meanEv
        except:
            meanRow = meanE
            meanRowv = meanEv

    ax.plot(
        f,
        meanRow / rows,
        label=
        r"$\left\langle \left\Vert \mathscr{F}[X_{CM}]\right\Vert ^{2}\right\rangle$",
        zorder=1)
    ax.plot(
        f,
        meanRowv / rows,
        label=
        r"$\left\langle \left\Vert \mathscr{F}[V_{CM}]\right\Vert ^{2}\right\rangle$",
        zorder=0)
    ax.legend(fontsize=11)

    ax.set_yscale('log')
    fig.tight_layout()
    dat = [f, meanRow / ROW]
    return ax, dat