def func_hook(self, np_func: _NpFn, wrapped: _MyFn[_Arr]) -> _MyFn[_Arr]:
        """This method is called on the wrapped function before returning

        Parameters
        ----------
        np_func : Callable[...->ndarray]
            The `numpy` function being wrapped.
        wrapped : Callable[...->Array]
            The wrapped function.

        Returns
        -------
        wrapped : Callable[...->Array]
            The wrapped function.
        """
        super().func_hook(np_func, wrapped)
        old_name = f"{self._mod_name}.{np_func.__name__}"
        new_name = f"{np_func.__module__}.{np_func.__name__}"
        msg = "This function will be removed in numpy_linalg 0.4.0"
        new_wrapped = _np.deprecate(wrapped,
                                    old_name=old_name,
                                    new_name=new_name,
                                    message=msg)
        return super().func_hook(np_func, new_wrapped)
Esempio n. 2
0
        else:
            raise ValueError('1D option "%s" is strange'
                             % oned_as)
    return shape


class ByteOrder(object):
    ''' Namespace for byte ordering '''
    little_endian = boc.sys_is_le
    native_code = boc.native_code
    swapped_code = boc.swapped_code
    to_numpy_code = boc.to_numpy_code

ByteOrder = np.deprecate(ByteOrder, message="""
We no longer use the ByteOrder class, and deprecate it; we will remove
it in future versions of scipy.  Please use the
scipy.io.matlab.byteordercodes module instead.
""")


class MatVarReader(object):
    ''' Abstract class defining required interface for var readers'''
    def __init__(self, file_reader):
        pass

    def read_header(self):
        ''' Returns header '''
        pass

    def array_from_header(self, header):
        ''' Reads array given header '''
Esempio n. 3
0
        Partially flattened array.

    Raises
    ------
    ValueError
        If `start > stop`.
    """
    if stop is None:
        stop = arr.ndim
    newshape = arr.shape[:start] + (-1,) + arr.shape[stop:]
    if len(newshape) > arr.ndim + 1:
        raise ValueError(f"start={start} > stop={stop}")
    return np.reshape(arr, newshape)


flattish = np.deprecate(ravelaxes, old_name='flattish', new_name='ravelaxes',
                        message="This alias will be removed in v.0.4.0")


@set_module('numpy_linalg')
def unravelaxis(arr: np.ndarray, axis: int, shape: ty.Tuple[int, ...]
                ) -> np.ndarray:
    """Partial unflattening.

    Folds an `axis` into `shape`.

    Parameters
    ----------
    arr : np.ndarray (...,L,M*N*...*P*Q,R,...)
        Array to be partially folded.
    axis : int
        Axis to be folded.
Esempio n. 4
0
        loader_path = os.path.abspath(loader_path)
        if not os.path.isdir(loader_path):
            libdir = os.path.dirname(loader_path)
        else:
            libdir = loader_path

        for ln in libname_ext:
            try:
                libpath = os.path.join(libdir, ln)
                return ctypes.cdll[libpath]
            except OSError, e:
                pass

        raise e

    ctypes_load_library = deprecate(load_library, 'ctypes_load_library',
                                    'load_library')

def _num_fromflags(flaglist):
    num = 0
    for val in flaglist:
        num += _flagdict[val]
    return num

_flagnames = ['C_CONTIGUOUS', 'F_CONTIGUOUS', 'ALIGNED', 'WRITEABLE',
              'OWNDATA', 'UPDATEIFCOPY']
def _flags_fromnum(num):
    res = []
    for key in _flagnames:
        value = _flagdict[key]
        if (num & value):
            res.append(key)
Esempio n. 5
0
    C[should_be_nan] = np.nan

    return C


def maybe_unwrap_results(results):
    """
    Gets raw results back from wrapped results.

    Can be used in plotting functions or other post-estimation type
    routines.
    """
    return getattr(results, '_results', results)


class Bunch(dict):
    """
    Returns a dict-like object with keys accessible via attribute lookup.
    """
    def __init__(self, **kw):
        dict.__init__(self, kw)
        self.__dict__ = self

webuse = np.deprecate(webuse,
                      old_name='statsmodels.tools.tools.webuse',
                      new_name='statsmodels.datasets.webuse',
                      message='webuse will be removed from the tools '
                              'namespace in the 0.7.0 release. Please use the'
                              ' new import.')
Esempio n. 6
0
#Use this to add a new axis to an array
#compatibility only
NewAxis = None

#deprecated
UFuncType = type(um.sin)
UfuncType = type(um.sin)
ArrayType = mu.ndarray
arraytype = mu.ndarray

LittleEndian = (sys.byteorder == 'little')

from numpy import deprecate

# backward compatibility
arrayrange = deprecate(functions.arange, 'arrayrange', 'arange')

# deprecated names
matrixmultiply = deprecate(mu.dot, 'matrixmultiply', 'dot')

def DumpArray(m, fp):
    m.dump(fp)

def LoadArray(fp):
    import cPickle
    return cPickle.load(fp)

def array_constructor(shape, typecode, thestr, Endian=LittleEndian):
    if typecode == "O":
        x = array(thestr, "O")
    else:
Esempio n. 7
0
    from pandas import DatetimeIndex  # pylint: disable=E0611

    date_range = DatetimeIndex(start=start_date, freq=offset, periods=n)

    return data, date_range


def get_logdet(m):
    from statsmodels.tools.linalg import logdet_symm

    return logdet_symm(m)


get_logdet = np.deprecate(
    get_logdet,
    "statsmodels.tsa.vector_ar.util.get_logdet",
    "statsmodels.tools.linalg.logdet_symm",
    "get_logdet is deprecated and will be removed in " "0.8.0",
)


def norm_signif_level(alpha=0.05):
    return stats.norm.ppf(1 - alpha / 2)


def acf_to_acorr(acf):
    diag = np.diag(acf[0])
    # numpy broadcasting sufficient
    return acf / np.sqrt(np.outer(diag, diag))


def varsim(coefs, intercept, sig_u, steps=100, initvalues=None, seed=None):
Esempio n. 8
0
__all__ = ['bicg', 'bicgstab', 'cg', 'cgs', 'gmres', 'qmr']

# Deprecated on January 26, 2008

from scipy.sparse.linalg import isolve
from numpy import deprecate

for name in __all__:
    oldfn = getattr(isolve, name)
    oldname = 'scipy.linalg.' + name
    newname = 'scipy.sparse.linalg.' + name
    newfn = deprecate(oldfn, oldname=oldname, newname=newname)
    exec(name + ' = newfn')
Esempio n. 9
0
import numpy as np

np.deprecate(1)  # E: No overload variant

np.deprecate_with_doc(1)  # E: incompatible type

np.byte_bounds(1)  # E: incompatible type

np.who(1)  # E: incompatible type

np.lookfor(None)  # E: incompatible type

np.safe_eval(None)  # E: incompatible type
Esempio n. 10
0
    """

    if r is None:
        r = np_matrix_rank(X)

    V, D, U = L.svd(X, full_matrices=0)
    order = np.argsort(D)
    order = order[::-1]
    value = []
    for i in range(r):
        value.append(V[:, order[i]])
    return np.asarray(np.transpose(value)).astype(np.float64)

StepFunction = np.deprecate(StepFunction,
                            old_name='statsmodels.tools.tools.StepFunction',
                            new_name='statsmodels.distributions.StepFunction')
monotone_fn_inverter = np.deprecate(monotone_fn_inverter,
                                    old_name='statsmodels.tools.tools'
                                             '.monotone_fn_inverter',
                                    new_name='statsmodels.distributions'
                                             '.monotone_fn_inverter')
ECDF = np.deprecate(ECDF,
                    old_name='statsmodels.tools.tools.ECDF',
                    new_name='statsmodels.distributions.ECDF')


def unsqueeze(data, axis, oldshape):
    """
    Unsqueeze a collapsed array
Esempio n. 11
0
        the same name as the module.
    """
    dir,filename = os.path.split(module.__file__)
    filebase = filename.split('.')[0]
    fn = os.path.join(dir, filebase)
    f = dumb_shelve.open(fn, "r")
    #exec( 'import ' + module.__name__)
    for i in f.keys():
        exec( 'import ' + module.__name__+ ';' +
              module.__name__+'.'+i + '=' + 'f["' + i + '"]')
#       print i, 'loaded...'
#   print 'done'

load = deprecate(_load, message="""
This is an internal function used with scipy.io.save_as_module

If you are saving arrays into a module, you should think about using
HDF5 or .npz files instead.
""")


def _create_module(file_name):
    """ Create the module file.
    """
    if not os.path.exists(file_name+'.py'): # don't clobber existing files
        module_name = os.path.split(file_name)[-1]
        f = open(file_name+'.py','w')
        f.write('import scipy.io.data_store as data_store\n')
        f.write('import %s\n' % module_name)
        f.write('data_store._load(%s)' % module_name)
        f.close()
Esempio n. 12
0
            libdir = os.path.dirname(loader_path)
        else:
            libdir = loader_path

        for ln in libname_ext:
            libpath = os.path.join(libdir, ln)
            if os.path.exists(libpath):
                try:
                    return ctypes.cdll[libpath]
                except OSError:
                    ## defective lib file
                    raise
        ## if no successful return in the libname_ext loop:
        raise OSError("no file with expected extension")

    ctypes_load_library = deprecate(load_library, "ctypes_load_library",
                                    "load_library")


def _num_fromflags(flaglist):
    num = 0
    for val in flaglist:
        num += _flagdict[val]
    return num


_flagnames = [
    "C_CONTIGUOUS",
    "F_CONTIGUOUS",
    "ALIGNED",
    "WRITEABLE",
    "OWNDATA",
Esempio n. 13
0
        minus_ones = shape.count(-1)
        if minus_ones == 0:
            pass
        elif minus_ones == 1:
            known_dimensions_size = -np.product(shape, axis=0) * dt.itemsize
            unknown_dimension_size, illegal = divmod(self.remaining_bytes(),
                                                     known_dimensions_size)
            if illegal:
                raise ValueError("unknown dimension doesn't match filesize")
            shape[shape.index(-1)] = unknown_dimension_size
        else:
            raise ValueError(
                "illegal -1 count; can only specify one unknown dimension")
        sz = dt.itemsize * np.product(shape)
        dt_endian = self._endian_from_dtype(dt)
        buf = self.file.read(sz)
        arr = np.ndarray(shape=shape, dtype=dt, buffer=buf, order=order)
        if (not endian == 'dtype') and (dt_endian != endian):
            return arr.byteswap()
        return arr.copy()


npfile = np.deprecate(npfile,
                      message="""
You can achieve the same effect as using npfile using numpy.save and
numpy.load.

You can use memory-mapped arrays and data-types to map out a
file format for direct manipulation in NumPy.
""")
Esempio n. 14
0
        if minus_ones == 0:
            pass
        elif minus_ones == 1:
            known_dimensions_size = -np.product(shape,axis=0) * dt.itemsize
            unknown_dimension_size, illegal = divmod(self.remaining_bytes(),
                                                     known_dimensions_size)
            if illegal:
                raise ValueError("unknown dimension doesn't match filesize")
            shape[shape.index(-1)] = unknown_dimension_size
        else:
            raise ValueError(
                "illegal -1 count; can only specify one unknown dimension")
        sz = dt.itemsize * np.product(shape)
        dt_endian = self._endian_from_dtype(dt)
        buf = self.file.read(sz)
        arr = np.ndarray(shape=shape,
                         dtype=dt,
                         buffer=buf,
                         order=order)
        if (not endian == 'dtype') and (dt_endian != endian):
            return arr.byteswap()
        return arr.copy()

npfile = np.deprecate(npfile, message="""
You can achieve the same effect as using npfile using numpy.save and
numpy.load.

You can use memory-mapped arrays and data-types to map out a
file format for direct manipulation in NumPy.
""")
Esempio n. 15
0
              'find_edges':ImageFilter.FIND_EDGES,
              'smooth':ImageFilter.SMOOTH,
              'smooth_more':ImageFilter.SMOOTH_MORE,
              'sharpen':ImageFilter.SHARPEN
              }

    im = toimage(arr)
    if ftype not in _tdict.keys():
        raise ValueError("Unknown filter type.")
    return fromimage(im.filter(_tdict[ftype]))


def radon(arr,theta=None):
    """`radon` is deprecated in scipy 0.11, and will be removed in 0.12

    For this functionality, please use the "radon" function in scikits-image.

    """
    if theta is None:
        theta = mgrid[0:180]
    s = zeros((arr.shape[1],len(theta)), float)
    k = 0
    for th in theta:
        im = imrotate(arr,-th)
        s[:,k] = sum(im,axis=0)
        k += 1
    return s


radon = numpy.deprecate(radon)
Esempio n. 16
0
clapack = _DeprecatedImport("scipy.linalg.blas.clapack", "scipy.linalg.lapack")
flapack = _DeprecatedImport("scipy.linalg.blas.flapack", "scipy.linalg.lapack")

# Expose all functions (only flapack --- clapack is an implementation detail)
empty_module = None
from scipy.linalg._flapack import *

del empty_module

_dep_message = """The `*gegv` family of routines has been deprecated in
LAPACK 3.6.0 in favor of the `*ggev` family of routines.
The corresponding wrappers will be removed from SciPy in
a future release."""

cgegv = _np.deprecate(cgegv, old_name="cgegv", message=_dep_message)
dgegv = _np.deprecate(dgegv, old_name="dgegv", message=_dep_message)
sgegv = _np.deprecate(sgegv, old_name="sgegv", message=_dep_message)
zgegv = _np.deprecate(zgegv, old_name="zgegv", message=_dep_message)

# Modyfy _flapack in this scope so the deprecation warnings apply to
# functions returned by get_lapack_funcs.
_flapack.cgegv = cgegv
_flapack.dgegv = dgegv
_flapack.sgegv = sgegv
_flapack.zgegv = zgegv

# some convenience alias for complex functions
_lapack_alias = {
    "corghr": "cunghr",
    "zorghr": "zunghr",
Esempio n. 17
0
from info import __doc__

from numpy import deprecate

# These are all deprecated (until the end deprecated tag)
from npfile import npfile
from data_store import save, load, create_module, create_shelf
from array_import import read_array, write_array
from pickler import objload, objsave

from numpyio import packbits, unpackbits, bswap, fread, fwrite, \
     convert_objectarray

fread = deprecate(fread, message="""
scipy.io.fread can be replaced with NumPy I/O routines such as
np.load, np.fromfile as well as NumPy's memory-mapping capabilities.
""")

fwrite = deprecate(fwrite, message="""
scipy.io.fwrite can be replaced with NumPy I/O routines such as np.save,
np.savez and x.tofile.  Also, files can be directly memory-mapped into NumPy
arrays which is often a better way of reading large files.
""")

bswap = deprecate(bswap, message="""
scipy.io.bswap can be replaced with the byteswap method on an array.
out = scipy.io.bswap(arr) --> out = arr.byteswap(True)
""")

packbits = deprecate(packbits, message="""
The functionality of scipy.io.packbits is now available as numpy.packbits
Esempio n. 18
0
def _bessel_diff_formula(v, z, n, L, phase):
    # from AMS55.
    # L(v,z) = J(v,z), Y(v,z), H1(v,z), H2(v,z), phase = -1
    # L(v,z) = I(v,z) or exp(v*pi*i)K(v,z), phase = 1
    # For K, you can pull out the exp((v-k)*pi*i) into the caller
    p = 1.0
    s = L(v - n, z)
    for i in xrange(1, n + 1):
        p = phase * (p * (n - i + 1)) / i  # = choose(k, i)
        s += p * L(v - n + i * 2, z)
    return s / (2.**n)


bessel_diff_formula = np.deprecate(
    _bessel_diff_formula,
    message="bessel_diff_formula is a private function, do not use it!")


def jvp(v, z, n=1):
    """Return the nth derivative of Jv(z) with respect to z.
    """
    if not isinstance(n, int) or (n < 0):
        raise ValueError("n must be a non-negative integer.")
    if n == 0:
        return jv(v, z)
    else:
        return _bessel_diff_formula(v, z, n, jv, -1)


#        return (jvp(v-1,z,n-1) - jvp(v+1,z,n-1))/2.0
Esempio n. 19
0
    """

    if r is None:
        r = np_matrix_rank(X)

    V, D, U = L.svd(X, full_matrices=0)
    order = np.argsort(D)
    order = order[::-1]
    value = []
    for i in range(r):
        value.append(V[:, order[i]])
    return np.asarray(np.transpose(value)).astype(np.float64)


StepFunction = np.deprecate(StepFunction,
                            old_name='statsmodels.tools.tools.StepFunction',
                            new_name='statsmodels.distributions.StepFunction')
monotone_fn_inverter = np.deprecate(monotone_fn_inverter,
                                    old_name='statsmodels.tools.tools'
                                    '.monotone_fn_inverter',
                                    new_name='statsmodels.distributions'
                                    '.monotone_fn_inverter')
ECDF = np.deprecate(ECDF,
                    old_name='statsmodels.tools.tools.ECDF',
                    new_name='statsmodels.distributions.ECDF')


def unsqueeze(data, axis, oldshape):
    """
    Unsqueeze a collapsed array
Esempio n. 20
0
        gk *= 1.05
        id = _gen_unique_rand(gk)

    j = np.floor(id * 1. / m).astype(tp)
    i = (id - j * m).astype(tp)
    vals = np.random.rand(k).astype(dtype)
    return coo_matrix((vals, (i, j)), shape=(m, n)).asformat(format)


#################################
# Deprecated functions
################################

__all__ += ['speye', 'spidentity', 'spkron', 'lil_eye', 'lil_diags']

spkron = np.deprecate(kron, old_name='spkron', new_name='scipy.sparse.kron')
speye = np.deprecate(eye, old_name='speye', new_name='scipy.sparse.eye')
spidentity = np.deprecate(identity,
                          old_name='spidentity',
                          new_name='scipy.sparse.identity')


def lil_eye((r, c), k=0, dtype='d'):
    """Generate a lil_matrix of dimensions (r,c) with the k-th
    diagonal set to 1.

    Parameters
    ----------

    r,c : int
        row and column-dimensions of the output.
Esempio n. 21
0
# THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
# OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
# DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
# GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
# WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
# NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

import numpy
from filters import *
from fourier import *
from interpolation import *
from measurements import *
from morphology import *
from io import *

# doccer is moved to scipy.misc in scipy 0.8
from scipy.misc import doccer
doccer = numpy.deprecate(doccer, old_name='doccer',
                         new_name='scipy.misc.doccer')

from info import __doc__
__version__ = '2.0'

from numpy.testing import Tester
test = Tester().test
Esempio n. 22
0
    """

    if r is None:
        r = rank(X)

    V, D, U = L.svd(X, full_matrices=0)
    order = np.argsort(D)
    order = order[::-1]
    value = []
    for i in range(r):
        value.append(V[:, order[i]])
    return np.asarray(np.transpose(value)).astype(np.float64)


StepFunction = np.deprecate(StepFunction,
                            old_name='statsmodels.tools.tools.StepFunction',
                            new_name='statsmodels.distributions.StepFunction')
monotone_fn_inverter = np.deprecate(
    monotone_fn_inverter,
    old_name='statsmodels.tools.tools.monotone_fn_inverter',
    new_name='statsmodels.distributions.monotone_fn_inverter')
ECDF = np.deprecate(ECDF,
                    old_name='statsmodels.tools.tools.ECDF',
                    new_name='statsmodels.distributions.ECDF')


def unsqueeze(data, axis, oldshape):
    """
    Unsqueeze a collapsed array

    >>> from numpy import mean
Esempio n. 23
0
using HDF5 or .npz files instead.
""")(_create_module)

def _create_shelf(file_name,data):
    """Use this to write the data to a new file
    """
    shelf_name = file_name.split('.')[0]
    f = dumb_shelve.open(shelf_name,'w')
    for i in data.keys():
#       print 'saving...',i
        f[i] = data[i]
#   print 'done'
    f.close()

create_shelf = deprecate_with_doc("""
This is an internal function used with scipy.io.save_as_module

If you are saving arrays into a module, you should think about using
HDF5 or .npz files instead.
""")(_create_shelf)


def save_as_module(file_name=None,data=None):
    """ Save the dictionary "data" into
        a module and shelf named save
    """
    _create_module(file_name)
    _create_shelf(file_name,data)

save = deprecate(save_as_module, 'save', 'save_as_module')
Esempio n. 24
0
File: vq.py Progetto: ssps12/scipy
    if obs.ndim != code_book.ndim:
        raise ValueError("Observation and code_book should have the same rank")

    if obs.ndim == 1:
        obs = obs[:, np.newaxis]
        code_book = code_book[:, np.newaxis]

    dist = cdist(obs, code_book)
    code = dist.argmin(axis=1)
    min_dist = dist[np.arange(len(code)), code]
    return code, min_dist


# py_vq2 was equivalent to py_vq
py_vq2 = np.deprecate(py_vq, old_name='py_vq2', new_name='py_vq')


def _kmeans(obs, guess, thresh=1e-5):
    """ "raw" version of k-means.

    Returns
    -------
    code_book
        The lowest distortion codebook found.
    avg_dist
        The average distance a observation is from a code in the book.
        Lower means the code_book matches the data better.

    See Also
    --------
Esempio n. 25
0
from .sf_error import SpecialFunctionWarning, SpecialFunctionError

from ._ufuncs import *

from .basic import *
from ._logsumexp import logsumexp, softmax
from . import specfun
from . import orthogonal
from .orthogonal import *
from .spfun_stats import multigammaln
from ._ellip_harm import ellip_harm, ellip_harm_2, ellip_normal
from .lambertw import lambertw
from ._spherical_bessel import (spherical_jn, spherical_yn, spherical_in,
                                spherical_kn)

from numpy import deprecate
hyp2f0 = deprecate(hyp2f0, message="hyp2f0 is deprecated in SciPy 1.2")
hyp1f2 = deprecate(hyp1f2, message="hyp1f2 is deprecated in SciPy 1.2")
hyp3f0 = deprecate(hyp3f0, message="hyp3f0 is deprecated in SciPy 1.2")
del deprecate

__all__ = [s for s in dir() if not s.startswith('_')]

from numpy.dual import register_func
register_func('i0',i0)
del register_func

from scipy._lib._testutils import PytestTester
test = PytestTester(__name__)
del PytestTester
Esempio n. 26
0
        loader_path = os.path.abspath(loader_path)
        if not os.path.isdir(loader_path):
            libdir = os.path.dirname(loader_path)
        else:
            libdir = loader_path

        for ln in libname_ext:
            try:
                libpath = os.path.join(libdir, ln)
                return ctypes.cdll[libpath]
            except OSError, e:
                pass

        raise e

    ctypes_load_library = deprecate(load_library, 'ctypes_load_library',
                                    'load_library')


def _num_fromflags(flaglist):
    num = 0
    for val in flaglist:
        num += _flagdict[val]
    return num


_flagnames = [
    'C_CONTIGUOUS', 'F_CONTIGUOUS', 'ALIGNED', 'WRITEABLE', 'OWNDATA',
    'UPDATEIFCOPY'
]

Esempio n. 27
0
def _create_shelf(file_name, data):
    """Use this to write the data to a new file
    """
    shelf_name = file_name.split('.')[0]
    f = dumb_shelve.open(shelf_name, 'w')
    for i in data.keys():
        #       print 'saving...',i
        f[i] = data[i]


#   print 'done'
    f.close()

create_shelf = deprecate_with_doc("""
This is an internal function used with scipy.io.save_as_module

If you are saving arrays into a module, you should think about using
HDF5 or .npz files instead.
""")(_create_shelf)


def save_as_module(file_name=None, data=None):
    """ Save the dictionary "data" into
        a module and shelf named save
    """
    _create_module(file_name)
    _create_shelf(file_name, data)


save = deprecate(save_as_module, 'save', 'save_as_module')
Esempio n. 28
0
    d_ks = ksstat(z, stats.norm.cdf, alternative='two_sided')

    if pvalmethod == 'approx':
        pval = pval_lf(d_ks, nobs)
    elif pvalmethod == 'table':
        #pval = pval_lftable(d_ks, nobs)
        pval = lilliefors_table.prob(d_ks, nobs)

    return d_ks, pval


lilliefors = kstest_normal

lillifors = np.deprecate(lilliefors, 'lillifors', 'lilliefors',
                               "Use lilliefors, lillifors will be "
                               "removed in 0.9 \n(Note: misspelling missing 'e')")


#old version:
#------------

tble = '''\
00 20 15 10 05 01 .1
4 .303 .321 .346 .376 .413 .433
5 .289 .303 .319 .343 .397 .439
6 .269 .281 .297 .323 .371 .424
7 .252 .264 .280 .304 .351 .402
8 .239 .250 .265 .288 .333 .384
9 .227 .238 .252 .274 .317 .365
10 .217 .228 .241 .262 .304 .352
Esempio n. 29
0
    dz = get_slice_spacing(series)
    return dx, dy, dz


@csv_series
def get_image_size(series: Series):
    rows = get_common_tag(series, 'Rows')
    columns = get_common_tag(series, 'Columns')
    slices = len(series)
    return rows, columns, slices


# ------------------ DEPRECATED ------------------------


get_image_plane = np.deprecate(get_slices_plane, old_name='get_image_plane')
get_xyz_spacing = np.deprecate(get_voxel_spacing, old_name='get_xyz_spacing')


@np.deprecate
def get_axes_permutation(row: pd.Series):
    return np.abs(get_orientation_matrix(row)).argmax(axis=0)


@np.deprecate
@csv_series
def get_image_position_patient(series: Series):
    """Returns ImagePositionPatient stacked into array."""
    return np.stack(list(map(_get_image_position_patient, series)))

Esempio n. 30
0
from io import StringIO
from typing import Any, Dict

import numpy as np

AR: np.ndarray[Any, np.dtype[np.float64]]
AR_DICT: Dict[str, np.ndarray[Any, np.dtype[np.float64]]]
FILE: StringIO

def func(a: int) -> bool: ...

reveal_type(np.deprecate(func))  # E: def (a: builtins.int) -> builtins.bool
reveal_type(np.deprecate())  # E: _Deprecate

reveal_type(np.deprecate_with_doc("test"))  # E: _Deprecate
reveal_type(np.deprecate_with_doc(None))  # E: _Deprecate

reveal_type(np.byte_bounds(AR))  # E: Tuple[builtins.int, builtins.int]
reveal_type(np.byte_bounds(np.float64()))  # E: Tuple[builtins.int, builtins.int]

reveal_type(np.who(None))  # E: None
reveal_type(np.who(AR_DICT))  # E: None

reveal_type(np.info(1, output=FILE))  # E: None

reveal_type(np.source(np.interp, output=FILE))  # E: None

reveal_type(np.lookfor("binary representation", output=FILE))  # E: None

reveal_type(np.safe_eval("1 + 1"))  # E: Any
Esempio n. 31
0
from .sf_error import SpecialFunctionWarning, SpecialFunctionError

from ._ufuncs import *

from .basic import *
from ._logsumexp import logsumexp, softmax
from . import specfun
from . import orthogonal
from .orthogonal import *
from .spfun_stats import multigammaln
from ._ellip_harm import ellip_harm, ellip_harm_2, ellip_normal
from .lambertw import lambertw
from ._spherical_bessel import (spherical_jn, spherical_yn, spherical_in,
                                spherical_kn)

from numpy import deprecate
hyp2f0 = deprecate(hyp2f0, message="hyp2f0 is deprecated in SciPy 1.2")
hyp1f2 = deprecate(hyp1f2, message="hyp1f2 is deprecated in SciPy 1.2")
hyp3f0 = deprecate(hyp3f0, message="hyp3f0 is deprecated in SciPy 1.2")
del deprecate

__all__ = [s for s in dir() if not s.startswith('_')]

from numpy.dual import register_func
register_func('i0', i0)
del register_func

from scipy._lib._testutils import PytestTester
test = PytestTester(__name__)
del PytestTester
Esempio n. 32
0
        'find_edges': ImageFilter.FIND_EDGES,
        'smooth': ImageFilter.SMOOTH,
        'smooth_more': ImageFilter.SMOOTH_MORE,
        'sharpen': ImageFilter.SHARPEN
    }

    im = toimage(arr)
    if ftype not in _tdict.keys():
        raise ValueError("Unknown filter type.")
    return fromimage(im.filter(_tdict[ftype]))


def radon(arr, theta=None):
    """`radon` is deprecated in scipy 0.11, and will be removed in 0.12

    For this functionality, please use the "radon" function in scikits-image.

    """
    if theta is None:
        theta = mgrid[0:180]
    s = zeros((arr.shape[1], len(theta)), float)
    k = 0
    for th in theta:
        im = imrotate(arr, -th)
        s[:, k] = sum(im, axis=0)
        k += 1
    return s


radon = numpy.deprecate(radon)
Esempio n. 33
0
    """
    return getattr(results, '_results', results)


class Bunch(dict):
    """
    Returns a dict-like object with keys accessible via attribute lookup.
    """
    def __init__(self, **kw):
        dict.__init__(self, kw)
        self.__dict__ = self


webuse = np.deprecate(webuse,
                      old_name='statsmodels.tools.tools.webuse',
                      new_name='statsmodels.datasets.webuse',
                      message='webuse will be removed from the tools '
                      'namespace in the 0.7.0 release. Please use the'
                      ' new import.')


def _ensure_2d(x, ndarray=False):
    """

    Parameters
    ----------
    x : array, Series, DataFrame or None
        Input to verify dimensions, and to transform as necesary
    ndarray : bool
        Flag indicating whether to always return a NumPy array. Setting False
        will return an pandas DataFrame when the input is a Series or a
        DataFrame.
Esempio n. 34
0
#Use this to add a new axis to an array
#compatibility only
NewAxis = None

#deprecated
UFuncType = type(um.sin)
UfuncType = type(um.sin)
ArrayType = mu.ndarray
arraytype = mu.ndarray

LittleEndian = (sys.byteorder == 'little')

from numpy import deprecate

# backward compatibility
arrayrange = deprecate(functions.arange, 'arrayrange', 'arange')

# deprecated names
matrixmultiply = deprecate(mu.dot, 'matrixmultiply', 'dot')


def DumpArray(m, fp):
    m.dump(fp)


def LoadArray(fp):
    import cPickle
    return cPickle.load(fp)


def array_constructor(shape, typecode, thestr, Endian=LittleEndian):
Esempio n. 35
0
# Use this to add a new axis to an array
# compatibility only
NewAxis = None

# deprecated
UFuncType = type(um.sin)
UfuncType = type(um.sin)
ArrayType = mu.ndarray
arraytype = mu.ndarray

LittleEndian = sys.byteorder == "little"

from numpy import deprecate

# backward compatibility
arrayrange = deprecate(functions.arange, "arrayrange", "arange")

# deprecated names
matrixmultiply = deprecate(mu.dot, "matrixmultiply", "dot")


def DumpArray(m, fp):
    m.dump(fp)


def LoadArray(fp):
    import cPickle

    return cPickle.load(fp)

Esempio n. 36
0

def _bessel_diff_formula(v, z, n, L, phase):
    # from AMS55.
    # L(v,z) = J(v,z), Y(v,z), H1(v,z), H2(v,z), phase = -1
    # L(v,z) = I(v,z) or exp(v*pi*i)K(v,z), phase = 1
    # For K, you can pull out the exp((v-k)*pi*i) into the caller
    p = 1.0
    s = L(v-n, z)
    for i in xrange(1, n+1):
        p = phase * (p * (n-i+1)) / i   # = choose(k, i)
        s += p*L(v-n + i*2, z)
    return s / (2.**n)


bessel_diff_formula = np.deprecate(_bessel_diff_formula,
    message="bessel_diff_formula is a private function, do not use it!")


def jvp(v,z,n=1):
    """Return the nth derivative of Jv(z) with respect to z.
    """
    if not isinstance(n,int) or (n < 0):
        raise ValueError("n must be a non-negative integer.")
    if n == 0:
        return jv(v,z)
    else:
        return _bessel_diff_formula(v, z, n, jv, -1)
#        return (jvp(v-1,z,n-1) - jvp(v+1,z,n-1))/2.0


def yvp(v,z,n=1):
Esempio n. 37
0
File: vq.py Progetto: BranYang/scipy
    if obs.ndim != code_book.ndim:
        raise ValueError("Observation and code_book should have the same rank")

    if obs.ndim == 1:
        obs = obs[:, np.newaxis]
        code_book = code_book[:, np.newaxis]

    dist = cdist(obs, code_book)
    code = dist.argmin(axis=1)
    min_dist = dist[np.arange(len(code)), code]
    return code, min_dist


# py_vq2 was equivalent to py_vq
py_vq2 = np.deprecate(py_vq, old_name='py_vq2', new_name='py_vq')


def _kmeans(obs, guess, thresh=1e-5):
    """ "raw" version of k-means.

    Returns
    -------
    code_book
        the lowest distortion codebook found.
    avg_dist
        the average distance a observation is from a code in the book.
        Lower means the code_book matches the data better.

    See Also
    --------
Esempio n. 38
0
__all__ = ['who', 'source', 'info', 'doccer', 'pade',
           'comb', 'factorial', 'factorial2', 'factorialk', 'logsumexp']

from . import doccer
from .common import *
from numpy import who as _who, source as _source, info as _info
import numpy as np
from scipy.interpolate._pade import pade as _pade
from scipy.special import (comb as _comb, logsumexp as _lsm,
        factorial as _fact, factorial2 as _fact2, factorialk as _factk)

import sys

_msg = ("Importing `%(name)s` from scipy.misc is deprecated in scipy 1.0.0. Use "
        "`scipy.special.%(name)s` instead.")
comb = np.deprecate(_comb, message=_msg % {"name": _comb.__name__})
logsumexp = np.deprecate(_lsm, message=_msg % {"name": _lsm.__name__})
factorial = np.deprecate(_fact, message=_msg % {"name": _fact.__name__})
factorial2 = np.deprecate(_fact2, message=_msg % {"name": _fact2.__name__})
factorialk = np.deprecate(_factk, message=_msg % {"name": _factk.__name__})

_msg = ("Importing `pade` from scipy.misc is deprecated in scipy 1.0.0. Use "
        "`scipy.interpolate.pade` instead.")
pade = np.deprecate(_pade, message=_msg)

_msg = ("Importing `%(name)s` from scipy.misc is deprecated in scipy 1.0.0. Use "
        "`numpy.%(name)s` instead.")
who = np.deprecate(_who, message=_msg % {"name": "who"})
source = np.deprecate(_source, message=_msg % {"name": "source"})

@np.deprecate(message=_msg % {"name": "info.(..., toplevel='scipy')"})
Esempio n. 39
0
            libdir = os.path.dirname(loader_path)
        else:
            libdir = loader_path

        for ln in libname_ext:
            libpath = os.path.join(libdir, ln)
            if os.path.exists(libpath):
                try:
                    return ctypes.cdll[libpath]
                except OSError:
                    ## defective lib file
                    raise
        ## if no successful return in the libname_ext loop:
        raise OSError("no file with expected extension")

    ctypes_load_library = deprecate(load_library, "ctypes_load_library", "load_library")


def _num_fromflags(flaglist):
    num = 0
    for val in flaglist:
        num += _flagdict[val]
    return num


_flagnames = ["C_CONTIGUOUS", "F_CONTIGUOUS", "ALIGNED", "WRITEABLE", "OWNDATA", "UPDATEIFCOPY"]


def _flags_fromnum(num):
    res = []
    for key in _flagnames:
Esempio n. 40
0
    while id.size < k:
        gk *= 1.05
        id = _gen_unique_rand(gk)

    j = np.floor(id * 1. / m).astype(tp)
    i = (id - j * m).astype(tp)
    vals = np.random.rand(k).astype(dtype)
    return coo_matrix((vals, (i, j)), shape=(m, n)).asformat(format)

#################################
# Deprecated functions
################################

__all__ += [ 'speye','spidentity', 'spkron', 'lil_eye', 'lil_diags' ]

spkron = np.deprecate(kron, old_name='spkron', new_name='scipy.sparse.kron')
speye = np.deprecate(eye, old_name='speye', new_name='scipy.sparse.eye')
spidentity = np.deprecate(identity, old_name='spidentity',
                                    new_name='scipy.sparse.identity')


def lil_eye((r,c), k=0, dtype='d'):
    """Generate a lil_matrix of dimensions (r,c) with the k-th
    diagonal set to 1.

    Parameters
    ----------

    r,c : int
        row and column-dimensions of the output.
    k : int
Esempio n. 41
0
# Backward compatibility
from scipy._lib._util import DeprecatedImport as _DeprecatedImport
clapack = _DeprecatedImport("scipy.linalg.blas.clapack", "scipy.linalg.lapack")
flapack = _DeprecatedImport("scipy.linalg.blas.flapack", "scipy.linalg.lapack")

# Expose all functions (only flapack --- clapack is an implementation detail)
empty_module = None
from scipy.linalg._flapack import *
del empty_module

_dep_message = """The `*gegv` family of routines has been deprecated in
LAPACK 3.6.0 in favor of the `*ggev` family of routines.
The corresponding wrappers will be removed from SciPy in
a future release."""

cgegv = _np.deprecate(cgegv, old_name='cgegv', message=_dep_message)
dgegv = _np.deprecate(dgegv, old_name='dgegv', message=_dep_message)
sgegv = _np.deprecate(sgegv, old_name='sgegv', message=_dep_message)
zgegv = _np.deprecate(zgegv, old_name='zgegv', message=_dep_message)

# Modyfy _flapack in this scope so the deprecation warnings apply to
# functions returned by get_lapack_funcs.
_flapack.cgegv = cgegv
_flapack.dgegv = dgegv
_flapack.sgegv = sgegv
_flapack.zgegv = zgegv

# Patching EVR Methods to handle value ranges
_evr_doc = """
w,z,info = {name}(a,[jobz,range,uplo,il,iu,lwork,overwrite_a,vl,vu])
Esempio n. 42
0
    d_ks = ksstat(z, test_d, alternative='two_sided')

    if pvalmethod == 'approx':
        pval = pval_lf(d_ks, nobs)
        # check pval is in desired range
        if pval > 0.1:
            pval = lilliefors_table.prob(d_ks, nobs)
    elif pvalmethod == 'table':
        pval = lilliefors_table.prob(d_ks, nobs)

    return d_ks, pval


lilliefors = kstest_fit
lillifors = np.deprecate(
    lilliefors, 'lillifors', 'lilliefors', "Use lilliefors, lillifors will be "
    "removed in 0.9 \n(Note: misspelling missing 'e')")

# namespace aliases
from functools import partial
kstest_normal = kstest_fit
kstest_exponential = partial(kstest_fit, dist='exp')

# old version:
# ------------
'''
tble = \
00 20 15 10 05 01 .1
4 .303 .321 .346 .376 .413 .433
5 .289 .303 .319 .343 .397 .439
6 .269 .281 .297 .323 .371 .424
Esempio n. 43
0
__all__ = ['bicg','bicgstab','cg','cgs','gmres','qmr']

# Deprecated on January 26, 2008

from scipy.sparse.linalg import isolve
from numpy import deprecate

for name in __all__:
    oldfn = getattr(isolve, name)
    oldname='scipy.linalg.' + name
    newname='scipy.sparse.linalg.' + name
    newfn = deprecate(oldfn, old_name=oldname, new_name=newname)
    exec(name + ' = newfn')
Esempio n. 44
0
    This function is deprecated in scipy 0.11 and will be removed for 0.12

    Parameters
    ----------
    file_name : str, optional
        File name of the module to save.
    data : dict, optional
        The dictionary to store in the module.

    """
    _create_module(file_name)
    _create_shelf(file_name,data)


save_as_module = np.deprecate(save_as_module)


def _load(module):
    """ Load data into module from a shelf with
        the same name as the module.
    """
    dir,filename = os.path.split(module.__file__)
    filebase = filename.split('.')[0]
    fn = os.path.join(dir, filebase)
    f = dumb_shelve.open(fn, "r")
    #exec( 'import ' + module.__name__)
    for i in f.keys():
        exec( 'import ' + module.__name__+ ';' +
              module.__name__+'.'+i + '=' + 'f["' + i + '"]')
Esempio n. 45
0
    """

    if r is None:
        r = rank(X)

    V, D, U = L.svd(X, full_matrices=0)
    order = np.argsort(D)
    order = order[::-1]
    value = []
    for i in range(r):
        value.append(V[:,order[i]])
    return np.asarray(np.transpose(value)).astype(np.float64)

StepFunction = np.deprecate(StepFunction,
                old_name = 'statsmodels.tools.tools.StepFunction',
                new_name = 'statsmodels.distributions.StepFunction')
monotone_fn_inverter = np.deprecate(monotone_fn_inverter,
                old_name = 'statsmodels.tools.tools.monotone_fn_inverter',
                new_name = 'statsmodels.distributions.monotone_fn_inverter')
ECDF = np.deprecate(ECDF,
                old_name = 'statsmodels.tools.tools.ECDF',
                new_name = 'statsmodels.distributions.ECDF')


def unsqueeze(data, axis, oldshape):
    """
    Unsqueeze a collapsed array

    >>> from numpy import mean
    >>> from numpy.random import standard_normal
Esempio n. 46
0
from __future__ import annotations

from io import StringIO
from typing import Any

import numpy as np

FILE = StringIO()
AR: np.ndarray[Any, np.dtype[np.float64]] = np.arange(10).astype(np.float64)


def func(a: int) -> bool:
    ...


np.deprecate(func)
np.deprecate()

np.deprecate_with_doc("test")
np.deprecate_with_doc(None)

np.byte_bounds(AR)
np.byte_bounds(np.float64())

np.info(1, output=FILE)

np.source(np.interp, output=FILE)

np.lookfor("binary representation", output=FILE)
Esempio n. 47
0
def irfft2(a, s=None, axes=(-2, -1)):
    """
    Compute the 2-dimensional inverse fft of a real array.

    Parameters
    ----------
    a : array (real)
        input array
    s : sequence (int)
        shape of the inverse fft
    axis : int
        axis over which to compute the inverse fft

    Notes
    -----
    This is really irfftn with different default.

    """

    return irfftn(a, s, axes)


# Deprecated names
from numpy import deprecate
refft = deprecate(rfft, 'refft', 'rfft')
irefft = deprecate(irfft, 'irefft', 'irfft')
refft2 = deprecate(rfft2, 'refft2', 'rfft2')
irefft2 = deprecate(irfft2, 'irefft2', 'irfft2')
refftn = deprecate(rfftn, 'refftn', 'rfftn')
irefftn = deprecate(irfftn, 'irefftn', 'irfftn')
Esempio n. 48
0
]

from . import doccer
from .common import *
from numpy import who as _who, source as _source, info as _info
import numpy as np
from scipy.interpolate._pade import pade as _pade
from scipy.special import (comb as _comb, logsumexp as _lsm, factorial as
                           _fact, factorial2 as _fact2, factorialk as _factk)

import sys

_msg = (
    "Importing `%(name)s` from scipy.misc is deprecated in scipy 1.0.0. Use "
    "`scipy.special.%(name)s` instead.")
comb = np.deprecate(_comb, message=_msg % {"name": _comb.__name__})
logsumexp = np.deprecate(_lsm, message=_msg % {"name": _lsm.__name__})
factorial = np.deprecate(_fact, message=_msg % {"name": _fact.__name__})
factorial2 = np.deprecate(_fact2, message=_msg % {"name": _fact2.__name__})
factorialk = np.deprecate(_factk, message=_msg % {"name": _factk.__name__})

_msg = ("Importing `pade` from scipy.misc is deprecated in scipy 1.0.0. Use "
        "`scipy.interpolate.pade` instead.")
pade = np.deprecate(_pade, message=_msg)

_msg = (
    "Importing `%(name)s` from scipy.misc is deprecated in scipy 1.0.0. Use "
    "`numpy.%(name)s` instead.")
who = np.deprecate(_who, message=_msg % {"name": "who"})
source = np.deprecate(_source, message=_msg % {"name": "source"})
Esempio n. 49
0
from info import __doc__

from numpy import deprecate

# These are all deprecated (until the end deprecated tag)
from npfile import npfile
from data_store import save, load, create_module, create_shelf
from array_import import read_array, write_array
from pickler import objload, objsave

from numpyio import packbits, unpackbits, bswap, fread, fwrite, \
     convert_objectarray

fread = deprecate(fread,
                  message="""
scipy.io.fread can be replaced with NumPy I/O routines such as
np.load, np.fromfile as well as NumPy's memory-mapping capabilities.
""")

fwrite = deprecate(fwrite,
                   message="""
scipy.io.fwrite can be replaced with NumPy I/O routines such as np.save,
np.savez and x.tofile.  Also, files can be directly memory-mapped into NumPy
arrays which is often a better way of reading large files.
""")

bswap = deprecate(bswap,
                  message="""
scipy.io.bswap can be replaced with the byteswap method on an array.
out = scipy.io.bswap(arr) --> out = arr.byteswap(True)
""")
Esempio n. 50
0
def irfft2(a, s=None, axes=(-2,-1)):
    """
    Compute the 2-dimensional inverse fft of a real array.

    Parameters
    ----------
    a : array (real)
        input array
    s : sequence (int)
        shape of the inverse fft
    axis : int
        axis over which to compute the inverse fft

    Notes
    -----
    This is really irfftn with different default.

    """

    return irfftn(a, s, axes)

# Deprecated names
from numpy import deprecate
refft = deprecate(rfft, 'refft', 'rfft')
irefft = deprecate(irfft, 'irefft', 'irfft')
refft2 = deprecate(rfft2, 'refft2', 'rfft2')
irefft2 = deprecate(irfft2, 'irefft2', 'irfft2')
refftn = deprecate(rfftn, 'refftn', 'rfftn')
irefftn = deprecate(irfftn, 'irefftn', 'irfftn')
Esempio n. 51
0
    True
    >>> wgs72.f == 0.003352779454167505
    True
    >>> wgs72.name
    'WGS 72'
    >>> wgs72 == (6378135.0, 0.003352779454167505, 'WGS 72')
    True
    """
    if isinstance(name, str):
        name = name.lower().replace(' ', '').partition('/')[0]
    ellipsoid_id = ELLIPSOID_IX.get(name, name)

    return ELLIPSOID[ellipsoid_id]


select_ellipsoid = deprecate(get_ellipsoid, old_name='select_ellipsoid', new_name='get_ellipsoid')


def unit(vector, norm_zero_vector=1, norm_zero_axis=0):
    """
    Convert input vector to a vector of unit length.

    Parameters
    ----------
    vector : 3 x m array
        m column vectors
    norm_zero_vector : one or NaN
        Defines the fill value used for zero length vectors.
    norm_zero_axis : 0, 1 or 2
        Defines the direction that zero length vectors will point after
        the normalization is done.
Esempio n. 52
0
# Backward compatibility
from scipy._lib._util import DeprecatedImport as _DeprecatedImport
clapack = _DeprecatedImport("scipy.linalg.blas.clapack", "scipy.linalg.lapack")
flapack = _DeprecatedImport("scipy.linalg.blas.flapack", "scipy.linalg.lapack")

# Expose all functions (only flapack --- clapack is an implementation detail)
empty_module = None
from scipy.linalg._flapack import *
del empty_module

_dep_message = """The `*gegv` family of routines has been deprecated in
LAPACK 3.6.0 in favor of the `*ggev` family of routines.
The corresponding wrappers will be removed from SciPy in
a future release."""

cgegv = _np.deprecate(cgegv, old_name='cgegv', message=_dep_message)
dgegv = _np.deprecate(dgegv, old_name='dgegv', message=_dep_message)
sgegv = _np.deprecate(sgegv, old_name='sgegv', message=_dep_message)
zgegv = _np.deprecate(zgegv, old_name='zgegv', message=_dep_message)

# Modyfy _flapack in this scope so the deprecation warnings apply to
# functions returned by get_lapack_funcs.
_flapack.cgegv = cgegv
_flapack.dgegv = dgegv
_flapack.sgegv = sgegv
_flapack.zgegv = zgegv

# some convenience alias for complex functions
_lapack_alias = {
    'corghr': 'cunghr',
    'zorghr': 'zunghr',
Esempio n. 53
0
    """
    Compute the 2-dimensional inverse fft of a real array.

    Parameters
    ----------
    a : array (real)
        input array
    s : sequence (int)
        shape of the inverse fft
    axis : int
        axis over which to compute the inverse fft

    Notes
    -----
    This is really irfftn with different default.

    """

    return irfftn(a, s, axes)


# Deprecated names
from numpy import deprecate

refft = deprecate(rfft, "refft", "rfft")
irefft = deprecate(irfft, "irefft", "irfft")
refft2 = deprecate(rfft2, "refft2", "rfft2")
irefft2 = deprecate(irfft2, "irefft2", "irfft2")
refftn = deprecate(rfftn, "refftn", "rfftn")
irefftn = deprecate(irfftn, "irefftn", "irfftn")
Esempio n. 54
0
    offset = offsets[freq]
    from pandas import DatetimeIndex  # pylint: disable=E0611
    date_range = DatetimeIndex(start=start_date, freq=offset, periods=n)

    return data, date_range


def get_logdet(m):
    from statsmodels.tools.linalg import logdet_symm
    return logdet_symm(m)


get_logdet = np.deprecate(
    get_logdet, "statsmodels.tsa.vector_ar.util.get_logdet",
    "statsmodels.tools.linalg.logdet_symm",
    "get_logdet is deprecated and will be removed in "
    "0.8.0")


def norm_signif_level(alpha=0.05):
    return stats.norm.ppf(1 - alpha / 2)


def acf_to_acorr(acf):
    diag = np.diag(acf[0])
    # numpy broadcasting sufficient
    return acf / np.sqrt(np.outer(diag, diag))


def varsim(coefs, intercept, sig_u, steps=100, initvalues=None, seed=None):
Esempio n. 55
0
    filebase = filename.split('.')[0]
    fn = os.path.join(dir, filebase)
    f = dumb_shelve.open(fn, "r")
    #exec( 'import ' + module.__name__)
    for i in f.keys():
        exec('import ' + module.__name__ + ';' + module.__name__ + '.' + i +
             '=' + 'f["' + i + '"]')


#       print i, 'loaded...'
#   print 'done'

load = deprecate(_load,
                 message="""
This is an internal function used with scipy.io.save_as_module

If you are saving arrays into a module, you should think about using
HDF5 or .npz files instead.
""")


def _create_module(file_name):
    """ Create the module file.
    """
    if not os.path.exists(file_name + '.py'):  # don't clobber existing files
        module_name = os.path.split(file_name)[-1]
        f = open(file_name + '.py', 'w')
        f.write('import scipy.io.data_store as data_store\n')
        f.write('import %s\n' % module_name)
        f.write('data_store._load(%s)' % module_name)
        f.close()