Esempio n. 1
0
        def thunk():
            in_shape = inputs[0][0].shape
            full_batch_size, num_channels_rolled, height, width = in_shape
            assert height == width  # else convroll doesn't make sense
            assert full_batch_size % 4 == 0
            assert num_channels_rolled % 4 == 0

            num_channels = num_channels_rolled // 4
            batch_size = full_batch_size // 4
            out_shape = (full_batch_size, num_channels, height, width)
            
            example_size = num_channels * height * width
            map_size = height

            out = outputs[0]

            # only allocate if there is no previous allocation of the right size.
            if out[0] is None or out[0].shape != out_shape:
                out[0] = cuda.CudaNdarray.zeros(out_shape)

            x_block = 16
            y_block = 16
            block = (x_block, y_block, 1)

            x_grid = int(np.ceil(float(example_size) / x_block))
            y_grid = int(np.ceil(float(full_batch_size) / y_block))
            grid = (x_grid, y_grid, 1)

            kernel(inputs[0][0], out[0], np.intc(batch_size), np.intc(num_channels), np.intc(map_size), block=block, grid=grid)
Esempio n. 2
0
    def __init__(self,
                 fc4,
                 supercell,
                 primitive,
                 mesh,
                 band_indices=None,
                 frequency_factor_to_THz=VaspToTHz,
                 is_nosym=False,
                 symprec=1e-3,
                 cutoff_frequency=1e-4,
                 log_level=False,
                 lapack_zheev_uplo='L'):
        self._fc4 = fc4
        self._supercell = supercell
        self._primitive = primitive
        self._mesh = np.intc(mesh)
        if band_indices is None:
            self._band_indices = [
                np.arange(primitive.get_number_of_atoms() * 3)]
        else:
            self._band_indices = band_indices
        self._frequency_factor_to_THz = frequency_factor_to_THz
        self._is_nosym = is_nosym
        self._symprec = symprec
        self._cutoff_frequency = cutoff_frequency
        self._log_level = log_level
        self._lapack_zheev_uplo = lapack_zheev_uplo

        self._band_indices_flatten = np.intc(
            [x for bi in self._band_indices for x in bi])

        self._frequency_shifts = None
Esempio n. 3
0
 def _run_c(self, g_skip=None):
     import anharmonic._phono3py as phono3c
     if g_skip is None:
         g_skip = np.zeros_like(self._interaction_strength_reduced, dtype="bool")
     assert g_skip.shape == self._interaction_strength_reduced.shape
     self._set_phonon_c()
     masses = np.double(self._primitive.get_masses())
     p2s = np.intc(self._primitive.get_primitive_to_supercell_map())
     s2p = np.intc(self._primitive.get_supercell_to_primitive_map())
     atc=np.intc(self._triplet_cut_super) # int type
     atc_prim = np.intc(self._triplet_cut_prim) # int type
     phono3c.interaction(self._interaction_strength_reduced,
                         self._frequencies,
                         self._eigenvectors,
                         self._triplets_at_q_reduced.copy(),
                         self._grid_address,
                         self._mesh,
                         self._fc3,
                         atc,
                         atc_prim,
                         g_skip,
                         self._svecs,
                         self._multiplicity,
                         np.double(masses),
                         p2s,
                         s2p,
                         self._band_indices,
                         self._symmetrize_fc3_q,
                         self._cutoff_frequency,
                         self._cutoff_hfrequency,
                         self._cutoff_delta)
     phono3c.interaction_degeneracy_grid(self._interaction_strength_reduced,
                                         self._degenerates,
                                         self._triplets_at_q_reduced.astype('intc').copy(),
                                         self._band_indices.astype('intc'))
Esempio n. 4
0
def get_reduced_pairs_permute_sym(pairs,
                                 mesh,
                                 first_mapping,
                                 first_rotation,
                                 second_mapping):
    mesh = np.array(mesh)
    pair_numbers = np.array([len(pair) for pair in pairs], dtype="intc")
    grid_points = np.array([pair[0][0] for pair in pairs], dtype="intc")
    pairs_all = np.vstack(pairs)
    pairs_mapping = np.arange(len(pairs_all)).astype("intc")
    sequences = np.array([[0,1]] * len(pairs_all), dtype="byte")

    num_irred_pairs =  spg.reduce_pairs_permute_sym(pairs_mapping,
                                           sequences,
                                           pairs_all.astype("intc"),
                                           np.intc(grid_points).copy(),
                                           np.intc(pair_numbers).copy(),
                                           mesh.astype("intc"),
                                           np.intc(first_mapping).copy(),
                                           np.intc(first_rotation).copy(),
                                           np.intc(second_mapping).copy())
    assert len(np.unique(pairs_mapping)) == num_irred_pairs
    unique_pairs, indices = np.unique(pairs_mapping, return_inverse=True)
    pairs_map = []
    pair_sequence = []
    num_pairs = 0
    for i, pairs_at_q in enumerate(pairs):
        pairs_map.append(indices[num_pairs:num_pairs+len(pairs_at_q)])
        pair_sequence.append(sequences[num_pairs:num_pairs+len(pairs_at_q)])
        num_pairs += len(pairs_at_q)
    return unique_pairs,pairs_map, pair_sequence
    def route_flow(self, receiver, dem='topographic__elevation'):
        #main
        self._dem = self._grid['node'][dem]
        """
        if receiver==None:
            self._flow_receiver = self._flow_dirs_d8(self._dem)
        else:
            self._flow_receiver = receiver
        """
        self._flow_receiver = receiver
        #(self._flow_receiver, ss) = grid_flow_directions(self._grid, self._dem)

        method = 'python'
        if method=='cython':
            from flow_direction_over_flat_cython import adjust_flow_direction
            self._flow_receiver = adjust_flow_direction(self._dem, np.intc(self._flow_receiver),
                                                        np.intc(self._boundary), np.intc(self._close_boundary),
                                                        np.intc(self._open_boundary), np.intc(self._neighbors))
        else:
            flat_mask, labels = self._resolve_flats()
            self._flow_receiver = self._flow_dirs_over_flat_d8(flat_mask, labels)


        #a, q, s = flow_accum_bw.flow_accumulation(self._flow_receiver, self._open_boundary, node_cell_area=self._grid.forced_cell_areas)

        #self._grid['node']['flow_receiver'] = self._flow_receiver

        return self._flow_receiver
Esempio n. 6
0
 def setNeighborPair(self, s1, s2, w):
     """Create an edge (s1, s2) with weight w.
     w should be of type int or float (python primitive type).
     s1 should be smaller than s2."""
     if not (0 <= s1 < s2 < self.numSites):
         raise IndexOutOfBoundError()
     _cgco.gcoSetNeighborPair(self.handle, np.intc(s1), np.intc(s2), self._convertPairwiseTerm(w))
    def set_kappa_at_s_c(self, s):
        import anharmonic._phono3py as phono3c
        kappa = np.zeros_like(self._kappa[s])
        rec_lat = np.linalg.inv(self._primitive.get_cell())
        for t, temp in enumerate(self._temperatures):
            gouterm_temp = np.zeros((self._frequencies.shape[0], self._frequencies.shape[1], 6), dtype="double")
            phono3c.phonon_gb33_multiply_dvector_gb3_dvector_gb3(gouterm_temp,
                                                                 self._b[:,t].copy(),
                                                                 self._F[s,:,t].copy(),
                                                                 np.intc(self._irr_index_mapping).copy(),
                                                                 np.intc(self._kpoint_operations[self._rot_mappings]).copy(),
                                                                 rec_lat.copy())
            kappa[:,t] = gouterm_temp * temp ** 2
            self._F[s, np.where((np.abs(self._qpoints) > self._pp._criteria).any(axis=1)), t] = 0.
            kappa[np.where((np.abs(self._qpoints) > self._pp._criteria).any(axis=1)), t] = 0.
        # l = len(np.where((np.abs(self._qpoints) > self._pp._criteria).any(axis=1))[0])
        # kappa *= np.prod(self._mesh) / np.double(np.prod(self._mesh) - l)

        kappa *= self._kappa_factor / np.prod(self._mesh)

        #modified for my own interest


        kappa_max = kappa.sum(axis=(0,2)).max(axis=-1)
        rkappa = np.sum(np.abs(kappa - self._kappa[s]), axis=(0, 2)) # over qpoints and nbands
        for i in range(6):
            self._rkappa[s, :, i] = rkappa[:, i] /  kappa_max
        self._kappa[s] = kappa
Esempio n. 8
0
def get_reduced_triplets_permute_sym(triplets,
                                     mesh,
                                     first_mapping,
                                     first_rotation,
                                     second_mapping):
    mesh = np.array(mesh)
    triplet_numbers = np.array([len(tri) for tri in triplets], dtype="intc")
    grid_points = np.array([triplet[0][0] for triplet in triplets], dtype="intc")
    triplets_all = np.vstack(triplets)
    triplets_mapping = np.arange(len(triplets_all)).astype("intc")
    sequences = np.array([[0,1,2]] * len(triplets_all), dtype="byte")

    num_irred_triplets =  spg.reduce_triplets_permute_sym(triplets_mapping,
                                           sequences,
                                           triplets_all.astype("intc"),
                                           np.intc(grid_points).copy(),
                                           np.intc(triplet_numbers).copy(),
                                           mesh.astype("intc"),
                                           np.intc(first_mapping).copy(),
                                           np.intc(first_rotation).copy(),
                                           np.intc(second_mapping).copy())
    assert len(np.unique(triplets_mapping)) == num_irred_triplets
    unique_triplets, indices = np.unique(triplets_mapping, return_inverse=True)
    triplets_map = []
    triplet_sequence = []
    num_triplets = 0
    for i, triplets_at_q in enumerate(triplets):
        triplets_map.append(indices[num_triplets:num_triplets+len(triplets_at_q)])
        triplet_sequence.append(sequences[num_triplets:num_triplets+len(triplets_at_q)])
        num_triplets += len(triplets_at_q)
    return unique_triplets,triplets_map, triplet_sequence
Esempio n. 9
0
 def thunk():
     
     # inputs
     A = inputs[0][0]
     B = inputs[1][0]
     
     # dimensions
     m = A.shape[0]
     n = A.shape[1]
     k = B.shape[1]
     assert n == B.shape[0] # Otherwise GEMM is impossible
     assert n%16 == 0 # Block size
     
     # output
     output_shape = (m, k)
     C = outputs[0]
     # only allocate if there is no previous allocation of the right size.
     if C[0] is None or C[0].shape != output_shape:
         C[0] = cuda.CudaNdarray.zeros(output_shape)
     
     # Launching GEMM GPU kernel            
     block_size = 16
     block = (block_size,block_size,1)
     grid = (k / block_size+1, m / block_size+1) # better too many blocks than too little
     gemm_kernel(A,B,C[0], np.intc(m), np.intc(n), np.intc(k), block= block, grid=grid)
Esempio n. 10
0
def get_mappings(mesh,
                 rotations,
                 is_shift=np.zeros(3, dtype='intc'),
                 is_time_reversal=True,
                 qpoints=np.double([])):
    """
    Return k-point map to the irreducible k-points and k-point grid points .

    The symmetry is searched from the input rotation matrices in real space.

    is_shift=[0, 0, 0] gives Gamma center mesh and the values 1 give
    half mesh distance shifts.
    """

    mapping = np.zeros(np.prod(mesh), dtype='intc')
    rot_mapping = np.zeros(np.prod(mesh), dtype="intc")
    mesh_points = np.zeros((np.prod(mesh), 3), dtype='intc')
    qpoints = np.double(qpoints).copy()
    if qpoints.shape == (3,):
        qpoints = np.double([qpoints])
    spg.stabilized_reciprocal_mesh(mesh_points,
                                   mapping,
                                   rot_mapping,
                                   np.intc(mesh).copy(),
                                   np.intc(is_shift),
                                   is_time_reversal * 1,
                                   np.intc(rotations).copy(),
                                   np.double(qpoints))

    return mapping,  rot_mapping
Esempio n. 11
0
        def thunk():
            in_shape = inputs[0][0].shape
            rows, cols = in_shape

            assert rows % 4 == 0

            out_shape = (rows, 4 * cols)
            
            batch_size = rows // 4
            num_features = cols

            out = outputs[0]

            # only allocate if there is no previous allocation of the right size.
            if out[0] is None or out[0].shape != out_shape:
                out[0] = cuda.CudaNdarray.zeros(out_shape)

            x_block = 16
            y_block = 16
            block = (x_block, y_block, 1)

            x_grid = int(np.ceil(float(in_shape[1]) / x_block))
            y_grid = int(np.ceil(float(in_shape[0]) / y_block))
            grid = (x_grid, y_grid, 1)

            kernel(inputs[0][0], out[0], np.intc(batch_size), np.intc(num_features), block=block, grid=grid)
 def X_router_Y_add_O(self, alpha, X, Y, beta, O, result = None):
     '''
     xi, yi is vector
     X, Y is matrix
     
     X=[x1, x2, x3]
     Y=[y1, y2, y3]
     X_router_Y_add_O = a * (x1 outer y1 + x2 outer y2 + x3 outer y3) + b * O
     
     X_router_Y_add_O(float alpha, float* X, float* Y, float beta, float* O, float* result, uint r_col,
     uint r_row, uint XY_col)      
     '''
     if result is None:
         O_col = O.shape[0]
         O_row = O.shape[1]
         XY_col = X.shape[0]
         self.X_router_Y_add_O_kernel(np.float32(alpha), X.gpudata, Y.gpudata, \
                                      np.float32(beta), O.gpudata, \
                                      O.gpudata, np.intc(O_col), np.intc(O_row), np.intc(XY_col), \
                                      block = (32, 32, 1), \
                                      grid = (int(O_row / 32) + 1, int(O_col / 32) + 1) \
                                      )
     else:
         O_col = O.shape[0]
         O_row = O.shape[1]
         XY_col = X.shape[0]
         self.X_router_Y_add_O_kernel(np.float32(alpha), X.gpudata, Y.gpudata, \
                                      np.float32(beta), O.gpudata, \
                                      result.gpudata, np.intc(O_col), np.intc(O_row), np.intc(XY_col), \
                                      block = (32, 32, 1), \
                                      grid = (int(O_row / 32) + 1, int(O_col / 32) + 1) \
                                      )
 def x_cadd_Y_as_Y(self, alpha, x, beta, Y, result = None):
     '''       
     result[i,j] = alpha*x[j] + beta*Y[i,j]
     
     x_radd_Y_as_Y(float alpha, float* x, float beta, float* Y, float* result,
                 uint Y_col, uint Y_row)
     '''
     if result is None:
         Y_col = Y.shape[0]
         Y_row = Y.shape[1]
         self.x_cadd_Y_as_Y_kernel(np.float32(alpha), x.gpudata, \
                                   np.float32(beta), Y.gpudata, \
                                   Y.gpudata, np.intc(Y_col), np.intc(Y_row), \
                                   block = (32, 32, 1), \
                                   grid = (int(Y_row / 32) + 1, int(Y_col / 32) + 1) \
                                   )
     else:
         Y_col = Y.shape[0]
         Y_row = Y.shape[1]
         self.x_cadd_Y_as_Y_kernel(np.float32(alpha), x.gpudata, \
                                   np.float32(beta), Y.gpudata, \
                                   result.gpudata, np.intc(Y_col), np.intc(Y_row), \
                                   block = (32, 32, 1), \
                                   grid = (int(Y_row / 32) + 1, int(Y_col / 32) + 1) \
                                   )
Esempio n. 14
0
def get_triplets_reciprocal_mesh_at_q(fixed_grid_number,
                                      mesh,
                                      rotations,
                                      is_time_reversal=True,
                                      is_return_map=False,
                                      is_return_rot_map=False):

    weights = np.zeros(np.prod(mesh), dtype='intc')
    third_q = np.zeros(np.prod(mesh), dtype='intc')
    mesh_points = np.zeros((np.prod(mesh), 3), dtype='intc')
    mapping = np.zeros(np.prod(mesh), dtype='intc')
    rot_mapping = np.zeros(np.prod(mesh), dtype='intc')

    spg.triplets_reciprocal_mesh_at_q(weights,
                                      mesh_points,
                                      third_q,
                                      mapping,
                                      rot_mapping,
                                      fixed_grid_number,
                                      np.intc(mesh).copy(),
                                      is_time_reversal * 1,
                                      np.intc(rotations).copy())
    assert len(mapping[np.unique(mapping)]) == len(weights[np.nonzero(weights)]), \
        "At grid %d, number of irreducible mapping: %d is not equal to the number of irreducible triplets%d"%\
            (fixed_grid_number, len(mapping[np.unique(mapping)]), len(weights[np.nonzero(weights)]))
    if not is_return_map and not is_return_rot_map:
        return weights, third_q, mesh_points
    elif not is_return_rot_map:
        return weights, third_q,mesh_points, mapping
    else:
        return weights, third_q,mesh_points, mapping, rot_mapping
Esempio n. 15
0
    def _calculate_fc4_normal_c(self):
        import anharmonic._phono4py as phono4c
        svecs, multiplicity = get_smallest_vectors(self._supercell,
                                                   self._primitive,
                                                   self._symprec)
        p2s = np.intc(self._primitive.get_primitive_to_supercell_map())
        s2p = np.intc(self._primitive.get_supercell_to_primitive_map())
        gp = self._grid_point
        self._set_phonon_c([gp])
        self._set_phonon_c(self._quartets_at_q)

        phono4c.fc4_normal_for_frequency_shift(
            self._fc4_normal,
            self._frequencies,
            self._eigenvectors,
            gp,
            self._quartets_at_q,
            self._grid_address,
            self._mesh,
            np.double(self._fc4),
            svecs,
            multiplicity,
            self._masses,
            p2s,
            s2p,
            self._band_indices,
            self._cutoff_frequency)
Esempio n. 16
0
def get_csr_matrix(A):
    '''get csr matrix from dolfin without copying data

    cf. http://code.google.com/p/pyamg/source/browse/branches/2.0.x/Examples/DolfinFormulation/demo.py
    '''
    (row,col,data) = A.data()
    return csr_matrix( (data,intc(col),intc(row)), shape=(A.size(0),A.size(1)) )
 def x_cmul_Y_as_Y(self, alpha, x, x0, Y, y0, beta, result = None):
     '''       
     result[i,j] = alpha*(x[i] + x0) * (Y[i,j] + y0) + beta
     
     x_cmul_Y_as_Y(float alpha, float* x, float x0, float* Y, float y0, float beta,
                     float* result, uint Y_col, uint Y_row)
     '''
     if result is None:
         Y_col = Y.shape[0]
         Y_row = Y.shape[1]
         self.x_cmul_Y_as_Y_kernel(np.float32(alpha), x.gpudata, np.float32(x0), \
                                   Y.gpudata, np.float32(y0), np.float32(beta), \
                                   Y.gpudata, np.intc(Y_col), np.intc(Y_row), \
                                   block = self._2d_block, \
                                   grid = self._2d_grid(Y_col, Y_row) \
                                   )
     else:
         Y_col = Y.shape[0]
         Y_row = Y.shape[1]
         self.x_cmul_Y_as_Y_kernel(np.float32(alpha), x.gpudata, np.float32(x0), \
                                   Y.gpudata, np.float32(y0), np.float32(beta), \
                                   result.gpudata, np.intc(Y_col), np.intc(Y_row), \
                                   block = self._2d_block, \
                                   grid = self._2d_grid(Y_col, Y_row) \
                                   )
Esempio n. 18
0
    def calculate_gh_at_sigma_and_temp(self):
        import anharmonic._phono3py as phono3c
        if self._is_precondition:
            out = self._collision_out[self._isigma, :, self._itemp]
            out_reverse = np.where(self._frequencies>self._cutoff_frequency, 1 / out, 0)
            self._z[self._isigma, :, self._itemp] = self._r[self._isigma, :, self._itemp] * out_reverse[..., np.newaxis]
        else:
            self._z[self._isigma, :, self._itemp] = self._r[self._isigma, :, self._itemp]

        self._z[:, np.where(np.any(np.abs(self._qpoints) > self._pp._criteria, axis=1))] = 0
        zr0 = np.zeros(3, dtype="double")
        phono3c.phonon_3_multiply_dvector_gb3_dvector_gb3(zr0,
                                                        self._z_prev[self._isigma,:,self._itemp].copy(),
                                                        self._r_prev[self._isigma,:,self._itemp].copy(),
                                                        np.intc(self._irr_index_mapping).copy(),
                                                        np.intc(self._kpoint_operations[self._rot_mappings]),
                                                        np.double(np.linalg.inv(self._primitive.get_cell())).copy())
        #Flexibly preconditioned CG: r(i+1)-r(i) instead of r(i+1)
        r = self._r[self._isigma,:,self._itemp] - self._r_prev[self._isigma,:,self._itemp]
        # r = self._r[self._isigma,:,self._itemp]
        zr1 = np.zeros(3, dtype="double")
        phono3c.phonon_3_multiply_dvector_gb3_dvector_gb3(zr1,
                                                        self._z[self._isigma,:,self._itemp].copy(),
                                                        r.copy(),
                                                        np.intc(self._irr_index_mapping).copy(),
                                                        np.intc(self._kpoint_operations[self._rot_mappings]),
                                                        np.double(np.linalg.inv(self._primitive.get_cell())).copy())
        zr1_over_zr0 = np.where(np.abs(zr0>0), zr1/zr0, 0)
        self._p[self._isigma,:,self._itemp] = self._z[self._isigma,:,self._itemp] +\
                                              zr1_over_zr0 * self._p_prev[self._isigma,:,self._itemp]

        self._p[:, np.where(np.any(np.abs(self._qpoints) > self._pp._criteria, axis=1))] = 0
Esempio n. 19
0
    def __init__(self,
                 fc4,
                 supercell,
                 primitive,
                 mesh,
                 temperatures=None,
                 band_indices=None,
                 frequency_factor_to_THz=VaspToTHz,
                 is_nosym=False,
                 symprec=1e-3,
                 cutoff_frequency=1e-4,
                 log_level=False,
                 lapack_zheev_uplo='L'):
        self._fc4 = fc4
        self._supercell = supercell
        self._primitive = primitive
        self._masses = np.double(self._primitive.get_masses())
        self._mesh = np.intc(mesh)
        if temperatures is None:
            self._temperatures = np.double([0])
        else:
            self._temperatures = np.double(temperatures)
        num_band = primitive.get_number_of_atoms() * 3
        if band_indices is None:
            self._band_indices = np.arange(num_band, dtype='intc')
        else:
            self._band_indices = np.intc(band_indices)
        self._frequency_factor_to_THz = frequency_factor_to_THz
        self._is_nosym = is_nosym
        self._symprec = symprec
        self._cutoff_frequency = cutoff_frequency
        self._log_level = log_level
        self._lapack_zheev_uplo = lapack_zheev_uplo

        symmetry = Symmetry(primitive, symprec=symprec)
        self._point_group_operations = symmetry.get_pointgroup_operations()

        self._grid_address = None
        self._bz_map = None
        self._set_grid_address()
        
        self._grid_point = None
        self._quartets_at_q = None
        self._weights_at_q = None

        self._phonon_done = None
        self._frequencies = None
        self._eigenvectors = None
        self._dm = None
        self._nac_q_direction = None

        self._frequency_shifts = None
        
        # Unit to THz of Delta
        self._unit_conversion = (EV / Angstrom ** 4 / AMU ** 2
                                 / (2 * np.pi * THz) ** 2
                                 * Hbar * EV / (2 * np.pi * THz) / 8
                                 / np.prod(self._mesh))

        self._allocate_phonon()
Esempio n. 20
0
def get_kpoint_group(mesh,  point_group_operations, qpoints=[[0.,0.,0.]], is_time_reversal=True):
    reverse_kpt_group = np.zeros((len(point_group_operations) * 2, 3, 3), dtype="intc")
    num_kpt_rots = spg.kpointgroup(reverse_kpt_group,
                                    np.intc(point_group_operations).copy(),
                                    np.intc(mesh).copy(),
                                    np.double(qpoints).copy(),
                                    is_time_reversal)
    return reverse_kpt_group[:num_kpt_rots]
Esempio n. 21
0
def to_scipy_csr(mat, dtype=None, imagify=False):
    (row,col,data) = mat.data()   # get sparse data
    col = intc(col)
    row = intc(row)
    n = mat.size(0)
    if imagify: data = data*1j
    Asp = csr_matrix( (data,col,row), shape=(n,n), dtype=dtype)
    return Asp
Esempio n. 22
0
def concatenation_cols(concatenate_cols_kernel,A,A_conc,A_rows,A_cols):
    
    assert A_rows%32 == 0 # concatenation step
    
    block_size = 64 
    block = (block_size,1,1)
    grid = (A_cols/block_size+1,1)
    concatenate_cols_kernel(A,A_conc, np.intc(A_rows), np.intc(A_cols), block= block, grid=grid)
Esempio n. 23
0
		def thunk():
			n = inputs[1][0].shape[1]  # Number of bit pairs
			m = n / inputs[0][0].size  # Gene length
			t = 512                    # Number of threads
			z = outputs[0]
			z[0] = cuda.CudaNdarray.zeros(inputs[1][0].shape)
			grid = (int(np.ceil(n / 512.)), 1)
			choose_cuda(z[0], inputs[0][0], inputs[1][0], 
				np.intc(n), np.intc(m),
				block=(512,1,1), grid=grid)
Esempio n. 24
0
def gemm(gemm_kernel,A,B,C,A_rows,A_cols,B_cols):

    # dimensions
    assert A_cols%16 == 0 # Block size

    # Launching GEMM GPU kernel            
    block_size = 16
    block = (block_size,block_size,1)
    grid = (B_cols / block_size+1, A_rows / block_size+1) # better too many blocks than too little
    gemm_kernel(A,B,C, np.intc(A_rows), np.intc(A_cols), np.intc(B_cols), block= block, grid=grid)
Esempio n. 25
0
def get_symmetry_dataset(cell, tolerance=1e-5):
    """Return crystal symmetry information by analyzing Cell object.

    number: International space group number

    international: International symbol

    hall: Hall symbol

    transformation_matrix:
    Transformation matrix from lattice of input cell to Bravais lattice
    L^bravais = L^original * Tmat

    origin shift: Origin shift in the setting of 'Bravais lattice'

    rotations, translations:
    Rotation matrices and translation vectors
    Space group operations are obtained by
    [(r,t) for r, t in zip(rotations, translations)]

    wyckoffs: Wyckoff letters

    """
    points = np.array(cell.get_points(), dtype='double', order='C')
    lattice = np.array(cell.get_lattice(), dtype='double', order='C')
    numbers = np.array(cell.get_numbers(), dtype='intc')
    
    keys = ('number',
            'international',
            'hall_number',
            'hall',
            'transformation_matrix',
            'origin_shift',
            'rotations',
            'translations',
            'wyckoffs',
            'equivalent_atoms')
    dataset = {}
    for key, data in zip(keys,
                         spg.get_dataset(lattice, points, numbers, tolerance)):
        dataset[key] = data

    dataset['international'] = dataset['international'].strip()
    dataset['hall'] = dataset['hall'].strip()
    dataset['transformation_matrix'] = np.double(
        dataset['transformation_matrix'])
    dataset['origin_shift'] = np.double(dataset['origin_shift'])
    dataset['rotations'] = np.intc(dataset['rotations'])
    dataset['translations'] = np.double(dataset['translations'])
    letters = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ"
    dataset['wyckoffs'] = [letters[x] for x in dataset['wyckoffs']]
    dataset['equivalent_atoms'] = np.intc(dataset['equivalent_atoms'])
    dataset['international_standard'] =  standard_HM_symbols[dataset['number']]

    return dataset
Esempio n. 26
0
 def get_kappa_residual_at_s_t(self, s, t):
     import anharmonic._phono3py as phono3c
     rec_lat = np.linalg.inv(self._primitive.get_cell())
     dkappa = np.zeros((self._frequencies.shape[0], self._frequencies.shape[1], 6), dtype="double")
     phono3c.phonon_gb33_multiply_dvector_gb3_dvector_gb3(dkappa,
                                                          self._b[:,t].copy(),
                                                          self._R[s,:,t].copy(),
                                                          np.intc(self._irr_index_mapping).copy(),
                                                          np.intc(self._kpoint_operations[self._rot_mappings]).copy(),
                                                          rec_lat.copy())
     dkappa = np.sum(self._grid_weights[:, np.newaxis, np.newaxis] * np.abs(dkappa), axis=(0,1))
     return dkappa * self._temperatures[t] ** 2 * self._kappa_factor / np.prod(self._mesh)
Esempio n. 27
0
def uncompress(data, uncompressed_size):
    _0 = numpy.intc(0)
    _1 = numpy.intc(1)
    _2 = numpy.intc(2)
    _128 = numpy.intc(128)
    _255 = numpy.intc(255)

    n, r, s, p = _0, _0, _0, _0
    i, d = _1, _1
    f = _255 & data[_0]

    ptrs = numpy.zeros(256, dtype = numpy.intc)
    uncompressed = numpy.zeros(uncompressed_size, dtype = numpy.uint8)
    idx = numpy.arange(uncompressed_size, dtype = numpy.intc)

    while s < uncompressed_size:
        pp = p + _1

        if f & i:
            r = ptrs[data[d]]
            n = _2 + data[d + _1]
            uncompressed[idx[s:s + n]] = uncompressed[r:r + n]

            ptrs[(uncompressed[p]) ^ (uncompressed[pp])] = p
            if s == pp:
                ptrs[(uncompressed[pp]) ^ (uncompressed[pp + _1])] = pp

            d += _2
            r += _2
            s = s + n
            p = s

        else:
            uncompressed[s] = data[d]

            if pp == s:
                ptrs[(uncompressed[p]) ^ (uncompressed[pp])] = p
                p = pp

            s += _1
            d += _1

        if i == _128:
            if s < uncompressed_size:
                f = _255 & data[d]
                d += _1
                i = _1
        else:
            i += i

    return uncompressed
Esempio n. 28
0
    def createGeneralGraph(self, numSites, numLabels, energyIsFloat=False):
        """Create a general graph with specified number of sites and labels. 
        If energyIsFloat is set to True, then automatic scaling and rounding
        will be applied to convert all energies to integers when running graph
        cuts. Then the final energy will be converted back to floats after the
        computation."""
        self.tempArray = np.empty(1, dtype=np.intc)
        self.energyTempArray = np.empty(1, dtype=np.longlong)
        _cgco.gcoCreateGeneralGraph(np.intc(numSites), np.intc(numLabels), self.tempArray)

        self.handle = self.tempArray[0]
        self.numSites = np.intc(numSites)
        self.numLabels = np.intc(numLabels)
        self.energyIsFloat = energyIsFloat
Esempio n. 29
0
 def set_kappa_at_s_c(self, s):
     import anharmonic._phono3py as phono3c
     kappa = np.zeros_like(self._kappa[s])
     rec_lat = np.linalg.inv(self._primitive.get_cell())
     for t, temp in enumerate(self._temperatures):
         gouterm_temp = np.zeros((self._frequencies.shape[0], self._frequencies.shape[1], 6), dtype="double")
         phono3c.phonon_gb33_multiply_dvector_gb3_dvector_gb3(gouterm_temp,
                                                              self._b[:,t].copy(),
                                                              self._F[s,:,t].copy(),
                                                              np.intc(self._irr_index_mapping).copy(),
                                                              np.intc(self._kpoint_operations[self._rot_mappings]).copy(),
                                                              rec_lat.copy())
         kappa[:,t] = gouterm_temp * temp ** 2
     self._kappa[s] = kappa * self._kappa_factor
Esempio n. 30
0
def get_symmetry_dataset(bulk, symprec=1e-5, angle_tolerance=-1.0):
    """
    number: International space group number
    international: International symbol
    hall: Hall symbol
    transformation_matrix:
      Transformation matrix from lattice of input cell to Bravais lattice
      L^bravais = L^original * Tmat
    origin shift: Origin shift in the setting of 'Bravais lattice'
    rotations, translations:
      Rotation matrices and translation vectors
      Space group operations are obtained by
        [(r,t) for r, t in zip(rotations, translations)]
    wyckoffs:
      Wyckoff letters
    """
    positions = bulk.get_scaled_positions().copy()
    lattice = bulk.get_cell().T.copy()
    numbers = np.intc(bulk.get_atomic_numbers()).copy()
    keys = ('number',
            'international',
            'hall',
            'transformation_matrix',
            'origin_shift',
            'rotations',
            'translations',
            'wyckoffs',
            'equivalent_atoms')
    dataset = {}
    for key, data in zip(keys, spg.dataset(lattice,
                                           positions,
                                           numbers,
                                           symprec,
                                           angle_tolerance)):
        dataset[key] = data

    dataset['international'] = dataset['international'].strip()
    dataset['hall'] = dataset['hall'].strip()
    dataset['transformation_matrix'] = np.double(
        dataset['transformation_matrix'])
    dataset['origin_shift'] = np.double(dataset['origin_shift'])
    dataset['rotations'] = np.intc(dataset['rotations'])
    dataset['translations'] = np.double(dataset['translations'])
    letters = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ"
    dataset['wyckoffs'] = [letters[x] for x in dataset['wyckoffs']]
    dataset['equivalent_atoms'] = np.intc(dataset['equivalent_atoms'])

    return dataset
Esempio n. 31
0
def _dgamma(x):
    res = 1.0

    if x <= 0.0:
        if x == np.floor(x):
            return np.nan
        if x <= -20.0:
            return _π / (_dgamma(-x) * _dsinpi(x) * x)

        while x < 0:
            res /= x
            x += 1

    if x <= 10 and x == np.floor(x):
        res *= FACTORIALS[np.intc(x) - 1]
    elif x < _root_ε:
        res *= 1.0 / x - _γ
    else:
        res *= _lanczos_sum(x)
        xgh = x + _lanczos_g - 0.5
        log_xgh = np.log(xgh)
        xlog_xgh = x * log_xgh
        if xlog_xgh > _MAXEXP:
            if 0.5 * xlog_xgh > _MAXEXP:
                return np.copysign(np.inf, res)
            hp = xgh**(0.5 * x - 0.25)
            res *= hp / np.exp(xgh)
            res *= hp
        else:
            res *= xgh**(x - 0.5) / np.exp(xgh)

    return res
Esempio n. 32
0
def set_srid(geometry, srid, **kwargs):
    """Returns a geometry with its SRID set.

    Parameters
    ----------
    geometry : Geometry or array_like
    srid : int
    **kwargs
        For other keyword-only arguments, see the
        `NumPy ufunc docs <https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs>`_.

    See also
    --------
    get_srid

    Examples
    --------
    >>> point = Geometry("POINT (0 0)")
    >>> with_srid = set_srid(point, 4326)
    >>> get_srid(point)
    0
    >>> get_srid(with_srid)
    4326
    """
    return lib.set_srid(geometry, np.intc(srid), **kwargs)
Esempio n. 33
0
def get_point(geometry, index, **kwargs):
    """Returns the nth point of a linestring or linearring.

    Parameters
    ----------
    geometry : Geometry or array_like
    index : int or array_like
        Negative values count from the end of the linestring backwards.
    **kwargs
        For other keyword-only arguments, see the
        `NumPy ufunc docs <https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs>`_.

    See also
    --------
    get_num_points

    Examples
    --------
    >>> line = Geometry("LINESTRING (0 0, 1 1, 2 2, 3 3)")
    >>> get_point(line, 1)
    <pygeos.Geometry POINT (1 1)>
    >>> get_point(line, -2)
    <pygeos.Geometry POINT (2 2)>
    >>> get_point(line, [0, 3]).tolist()
    [<pygeos.Geometry POINT (0 0)>, <pygeos.Geometry POINT (3 3)>]
    >>> get_point(Geometry("LINEARRING (0 0, 1 1, 2 2, 0 0)"), 1)
    <pygeos.Geometry POINT (1 1)>
    >>> get_point(Geometry("MULTIPOINT (0 0, 1 1, 2 2, 3 3)"), 1) is None
    True
    >>> get_point(Geometry("POINT (1 1)"), 0) is None
    True
    """
    return lib.get_point(geometry, np.intc(index), **kwargs)
Esempio n. 34
0
def get_triplets_reciprocal_mesh_at_q(fixed_grid_number,
                                      mesh,
                                      rotations,
                                      is_time_reversal=True):

    weights = np.zeros(np.prod(mesh), dtype='intc')
    third_q = np.zeros(np.prod(mesh), dtype='intc')
    mesh_points = np.zeros((np.prod(mesh), 3), dtype='intc')

    spg.triplets_reciprocal_mesh_at_q(weights, mesh_points, third_q,
                                      fixed_grid_number,
                                      np.intc(mesh).copy(),
                                      is_time_reversal * 1,
                                      np.intc(rotations).copy())

    return weights, third_q, mesh_points
Esempio n. 35
0
    def sc(self):
        """Simple-cubic crystal.

        This cell is characterized by having an atom in each of its vertices.

        Returns
        -------
        dict
            A `dict` with the keys `natoms`, `box`, `x`, `y`, `z`, the number
            of atoms, the box size and the xyz of the atoms, respectively.

        Raises
        ------
        ValueError
            If the number of atoms does not correspond with the number of
            sites that a sc crystal structure has.
        """
        nside = np.cbrt(self.natoms, dtype=np.float32)
        tmp = np.intc(nside)
        if nside % tmp != 0:
            raise ValueError("Number of atoms must be a power of three")

        s_range = range(int(nside))
        positions = list(it.product(s_range, repeat=3))

        positions = np.array(positions, dtype=np.float32)
        positions = np.transpose(positions) * (self.box_size / nside)

        return {
            "natoms": self.natoms,
            "box": np.full(3, self.box_size, dtype=np.float32),
            "x": positions[0],
            "y": positions[1],
            "z": positions[2],
        }
Esempio n. 36
0
    def __init__(self):
        #id vars
        self.id_list = [
            np.intc(random.randrange(0, 2147483647)) for i in range(50)
        ]
        self.id_list.sort(reverse=True)

        #rand_string vars
        self.alphabet = string.ascii_lowercase

        #cursos vars (deve ter alguma maneira de fazer isso mais bonito)
        self.curso_list = list()
        for _i in range(5):
            temp_str = ''
            for _j in range(19):
                temp_str = temp_str + (random.choice(self.alphabet))
            self.curso_list.append(temp_str)

        #cpf vars
        self.cpf_list = [
            random.randrange(10000000000, 99999999999) for i in range(30)
        ]
        self.cpf_list.sort(reverse=True)

        #date vars
        self.start_date = datetime.date(1970, 1, 1)
        self.end_date = datetime.date(2020, 10, 26)
        self.time_between = self.end_date - self.start_date
        self.days_between = self.time_between.days
Esempio n. 37
0
 def thunk():
     z = outputs[0]
     if z[0] is None or z[0].shape!=inputs[0][0].shape:
         z[0] = cuda.CudaNdarray.zeros(inputs[0][0].shape)
     grid = (int(numpy.ceil(inputs[0][0].size / 512.)),1)
     pycuda_fct(inputs[0][0], z[0], numpy.intc(inputs[0][0].size),
                block=(512,1,1), grid=grid)
Esempio n. 38
0
    def add_g4_function(self, eta, zeta, lambd):
        """
        Add a new symmetric function of type G4
        """

        NNcpp.AddSymG4(self._SymFunc, np.double(eta), np.double(zeta),
                       np.intc(lambd))
Esempio n. 39
0
    def step(self, action):
        action_array = np.array([0, 0, 0, 0, 0, 0, 0], dtype=np.intc)

        if self.continuous:
            assert isinstance(action,
                              np.float), "{}_{}".format(type(action), action)
            assert action >= -5.1 and action <= 5.1
            action = np.intc(action * 100)
            action_array[3] = 1  # move forward
            action_array[0] = action  # control direction
        else:
            assert isinstance(action,
                              np.int), "{}_{}".format(type(action), action)
            assert action >= 0 and action < 3
            if action == 0:  # turn left
                action_array[0] = -64
            elif action == 1:  # turn right
                action_array[0] = 64
            else:  # move forward
                action_array[3] = 1

        reward = self.lab.step(action_array)
        done = not self.lab.is_running()
        if done:
            obs = self.old_obs
        else:
            obs = self.get_obs()
            self.old_obs = obs
        info = {'dm_lab_events': self.lab.events()}

        return obs, reward, done, info
Esempio n. 40
0
def what_is_int():
    '''
    - Python's "int" type is of arbitrary precision
        - However, when "int" is used as an arg/kwarg for the "dtype" parameter, it is equivalent to "np.int_". Confusing!
    - "np.int_" and "np.intc" are aliases for real underlying NumPy scalar types
        - The values of those aliases depend on the operating system
            - On my system, "np.int_" creates an object whose class is "numpy.int64"
                - "np.int_" has the same precision as a C long
            - On my system, "np.intc" creates an object whose class is "numpy.int32"
                - "np.intc" has the same precision as a C int
        - If I want some size other than those specified by the aliases, I'll have to use a class with an explicit size, e.g. np.int32
    '''
    print(np.int_ is np.int64)  # True
    print(np.intc is np.int32)  # True
    # No error because 1 certainly fits within the size of a C long
    ary = np.array(1, dtype=int)
    print(type(ary.dtype))
    print(ary.dtype)  # int64
    #print(int(10**50)) # 100000000000000000000000000000000000000000000000000
    #np.array(10**50, dtype=int) # OverflowError: Python int too large to convert to C long
    print(type(np.int_))  # <class 'type'>
    scalar = np.int_(10)
    print(type(scalar))  # <class 'numpy.int64'>
    scalar = np.int32(10)
    print(type(scalar))  # <class 'numpy.int32'>
    scalar = np.intc(10)
    print(type(scalar))  # <class 'numpy.int32'>
Esempio n. 41
0
 def __new__(cls, x=0):
     if isinstance(x, afnumpy.ndarray):
         return x.astype(cls)
     elif isinstance(x, numbers.Number):
         return numpy.intc(x)
     else:
         return afnumpy.array(x).astype(cls)
    def key_points_tap(self, yellow):
        yellow_heights = []
        yellow_points = []
        yellow_widths = []

        yellow_cp = yellow.copy()
        # 按结构树模式找所有轮廓
        cnts, _ = cv2.findContours(yellow_cp, cv2.RETR_TREE,
                                   cv2.CHAIN_APPROX_SIMPLE)
        # print("count:",len(cnts))
        # 按区域大小排序,将所有轮廓存储下来
        flag = 0
        if len(cnts) == 0:
            flag = -1  #未检测到黄色区域
        else:
            if len(cnts) >= 3:
                length = 3
            else:
                length = len(cnts)
            for i in range(length):
                cnt_one = sorted(cnts, key=cv2.contourArea, reverse=True)[i]
                box = cv2.minAreaRect(cnt_one)
                width = box[1][0]
                height = box[1][1]
                yellow_points.append(np.intc(cv2.boxPoints(box)))
                yellow_widths.append(width)
                yellow_heights.append(height)
                flag = 1

        if flag == -1:
            return -1, 0, 0, flag
        else:
            return yellow_points, yellow_widths, yellow_heights, flag
 def expansion(self, niters=-1):
     """Do alpha-expansion for specified number of iterations.
     Return total energy after the expansion moves.
     If niters is set to -1, the algorithm will run until convergence."""
     _cgco.gcoExpansion(self.handle, np.intc(niters),
                        self.energy_temp_array)
     return self._convert_energy_back(self.energy_temp_array[0])
def read_edge_params_hco(fname_params, NUM_EDGES, MODEL_LIST):

    #define a dictionary to store params:
    params_dict = OrderedDict()

    #open params file:
    fh_mpr = open(fname_params, 'r')

    #skip header line:
    next(fh_mpr)

    for line in fh_mpr:
        if not line.strip():
            continue

        #split the line:
        fields = line.strip().split()

        if (int(float(fields[0])) not in MODEL_LIST):
            continue

        # initialize the lists for all parameter types:
        PARAM_arr = np.zeros(NUM_EDGES, dtype=np.intc)
        for i in range(1, len(fields)):
            PARAM_arr[i - 1] = np.intc(float(fields[i]))

        # insert the params in the dictionary:
        params_dict[int(fields[0])] = PARAM_arr
    fh_mpr.close()
    return params_dict
Esempio n. 45
0
def FFTdist(NoteSeqS,NoteDurS,Hz,det):
    FFT_seq=[]
    for a in range (0,len(NoteSeqS)):#helps that 64 IS a valid multiple...not sure how to construct
        for b in range (0,NoteDurS[a]):
            if (NoteSeqS[a]==-1):
                FFT_seq.append(ScaleRoot)
            else:
                FFT_seq.append(NoteSeqS[a])
            #FFT_seq.append(NoteSeqS[a])
            
    FFT_seq = FFT_seq#*64 # streatches length...so no trend
    if det==True:
        FFT_det=scipy.signal.detrend(FFT_seq)
    else:
        FFT_det = FFT_seq
    
    U_fft = scipy.fftpack.rfft(FFT_det)
    U_psd = U_fft * U_fft.conjugate()
        
    N = len(FFT_det)
    fs = Hz#Hz
    df = fs/float(N)
    freq = numpy.arange(0,fs,df)
    Nfi = numpy.intc(numpy.floor(N/2))
    testfreq =  freq[1:Nfi+1]
    xU_psd = U_psd/df/N**2
    sU_psd = numpy.real(xU_psd[1:Nfi+1])
    
    Log_testfreq = numpy.log10(testfreq)
    Log_sU_psd = numpy.log10(sU_psd)
    
    m1,b1 = numpy.polyfit(Log_testfreq,Log_sU_psd,1)
    return m1*-1
Esempio n. 46
0
def get_symmetry(bulk, symprec=1e-5, angle_tolerance=-1.0):
    """
    Return symmetry operations as hash.
    Hash key 'rotations' gives the numpy integer array
    of the rotation matrices for scaled positions
    Hash key 'translations' gives the numpy double array
    of the translation vectors in scaled positions
    """

    # Atomic positions have to be specified by scaled positions for spglib.
    positions = bulk.get_scaled_positions().copy()
    lattice = bulk.get_cell().T.copy()
    numbers = np.intc(bulk.get_atomic_numbers()).copy()

    # Get number of symmetry operations and allocate symmetry operations
    # multi = spg.multiplicity(cell, positions, numbers, symprec)
    multi = 48 * bulk.get_number_of_atoms()
    rotation = np.zeros((multi, 3, 3), dtype='intc')
    translation = np.zeros((multi, 3))

    # Get symmetry operations
    magmoms = bulk.get_magnetic_moments()
    if magmoms == None:
        num_sym = spg.symmetry(rotation, translation, lattice, positions,
                               numbers, symprec, angle_tolerance)
    else:
        num_sym = spg.symmetry_with_collinear_spin(rotation, translation,
                                                   lattice, positions, numbers,
                                                   magmoms, symprec,
                                                   angle_tolerance)

    return {
        'rotations': rotation[:num_sym].copy(),
        'translations': translation[:num_sym].copy()
    }
Esempio n. 47
0
    def populate_intervals(self, interval_nbr):
        if self.c_var == 0.3:
            mean_1 = 13
            std_1 = 13
            size_1 = 0.2 * N_SAMPLES

            mean_2 = 13
            std_2 = 0.5
        elif self.c_var == 0.7:
            mean_1 = 6
            std_1 = 6
            size_1 = 0.4 * N_SAMPLES

            mean_2 = 13
            std_2 = 13
        else:
            mean_1 = 3
            std_1 = 1
            size_1 = PARAMS_CV_1_TO_10[self.c_var - 1][0] * N_SAMPLES

            mean_2 = PARAMS_CV_1_TO_10[self.c_var - 1][1]
            std_2 = PARAMS_CV_1_TO_10[self.c_var - 1][2]

        size_2 = N_SAMPLES - size_1

        norm_1 = np.random.normal(mean_1, std_1, int(size_1))
        norm_2 = np.random.normal(mean_2, std_2, int(size_2))

        bimodal = np.concatenate([norm_1, norm_2])
        self.bimodal = np.intc((np.round(bimodal[bimodal > 1])))

        self.intervals = np.random.choice(self.bimodal, interval_nbr)
Esempio n. 48
0
def get_grid_triplets_at_q(q_grid_point, grid_points, third_q, weights, mesh):
    num_ir_tripltes = (weights > 0).sum()
    triplets = np.zeros((num_ir_tripltes, 3), dtype='intc')
    spg.grid_triplets_at_q(triplets, q_grid_point, grid_points, third_q,
                           weights,
                           np.intc(mesh).copy())
    return triplets
Esempio n. 49
0
def format_value(value, dtype):
    """
    Set the datatype for a single value.

    Arguments:
        value (Series): non-iterable value to set.

        dtype (str): scalar data type.
    """
    if dtype in ('date', 'datetime', 'timestamp', 'time'):
        value = np.datetime64(pd.to_datetime(value))
    elif dtype in ('int', 'integer', 'bigint'):
        value = np.int_(value)
    elif dtype == 'mediumint':
        value = np.intc(value)
    elif dtype == 'smallint':
        value = np.short(value)
    elif dtype in ('tinyint', 'bit'):
        value = np.byte(value)
    elif dtype in (
            'float', 'real',
            'double'):  # approximate numeric data types for saving memory
        value = np.single(value)
    elif dtype in ('decimal', 'dec', 'numeric',
                   'money'):  # exact numeric data types
        value = np.double(value)
    elif dtype in ('bool', 'boolean'):
        value = np.bool_(value)
    elif dtype in ('char', 'varchar', 'binary', 'text', 'string'):
        value = np.str_(value)
    else:
        value = np.str_(value)

    return value
Esempio n. 50
0
    def _pinv_multithread(self, matrices):
        inv_matrices = []
        try:
            import anharmonic._forcefit as forcefit

            multi = len(matrices)
            row_nums = np.intc([m.shape[0] for m in matrices])
            info = np.zeros(len(row_nums), dtype='intc')
            max_row_num = max(row_nums)
            column_num = matrices[0].shape[1]
            mats_in = np.zeros((multi, max_row_num * column_num),
                               dtype='double')
            for i in range(multi):
                mats_in[i, :row_nums[i] * column_num] = matrices[i].flatten()
            mats_out = np.zeros_like(mats_in)
            forcefit.pinv_mt(mats_in, mats_out, row_nums, max_row_num,
                             column_num, self._pinv_cutoff, info)
            inv_matrices = [
                mats_out[i, :row_nums[i] * column_num].reshape(column_num, -1)
                for i in range(multi)
            ]
        except ImportError:
            for mat in matrices:
                inv_mat = np.linalg.pinv(mat)
                inv_matrices.append(inv_mat)
        return inv_matrices
Esempio n. 51
0
def loop(scr, max_value):
    scr.clear()

    height, width = scr.getmaxyx()

    prefix = intc(100)

    scr.addstr(0, 0, ' ' * width * (height - 1), 1 << 8)
    try:
        scr.addstr(height - 1, 0, ' ' * width, 1 << 8)
    except:
        pass
    scr.refresh()
    with open('err.txt', 'w') as err:
        while (True):
            colors = color_gen(max_value)
            for y in range(2, height - 1):
                for x in range(0, 36):
                    try:
                        scr.addstr(y, x, '▓', next(colors))
                        #scr.addstr(y, x, ' ', next(colors) )
                        #scr.addstr(y, x, '▄', next(colors) )
                    except Exception as e:
                        pass
                        #err.write(str(repr(e.args)))
                        #err.write(str(repr(e)))

            scr.addstr(0, 0, '{}x{}'.format(height, width), 250 << 8)

            scr.refresh()
            scr.timeout(300)
            scr.getch()
Esempio n. 52
0
def show2(arr):
    print("按字母顺序排序:")
    ls1= arr[:,0]
    ls2= np.intc(arr[:,1])
    d = dict(zip(ls1,ls2))
    for k in sorted(d):
        print('{:>30}{:>20}' .format(k, d[k]))
Esempio n. 53
0
 def expansionOnAlpha(self, label):
     """Do one alpha-expansion move for the specified label.
     Return True if the energy decreases, return False otherwise."""
     if not (0 <= label < self.numLabels):
         raise IndexOutOfBoundError()
     _cgco.gcoExpansionOnAlpha(self.handle, np.intc(label), self.tempArray)
     return self.tempArray[0] == 1
Esempio n. 54
0
def get_interior_ring(geometry, index, **kwargs):
    """Returns the nth interior ring of a polygon.

    Parameters
    ----------
    geometry : Geometry or array_like
    index : int or array_like
        Negative values count from the end of the interior rings backwards.
    **kwargs
        For other keyword-only arguments, see the
        `NumPy ufunc docs <https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs>`_.

    See also
    --------
    get_exterior_ring
    get_num_interior_rings

    Examples
    --------
    >>> polygon_with_hole = Geometry("POLYGON((0 0, 0 10, 10 10, 10 0, 0 0), (2 2, 2 4, 4 4, 4 2, 2 2))")
    >>> get_interior_ring(polygon_with_hole, 0)
    <pygeos.Geometry LINEARRING (2 2, 2 4, 4 4, 4 2, 2 2)>
    >>> get_interior_ring(Geometry("POINT (1 1)"), 0) is None
    True
    """
    return lib.get_interior_ring(geometry, np.intc(index), **kwargs)
Esempio n. 55
0
    def _set_nosym(self):
        translations = []
        rotations = []

        if 'get_supercell_to_unitcell_map' in dir(self.__cell):
            s2u_map = self.__cell.get_supercell_to_unitcell_map()
            positions = self.__cell.get_scaled_positions()

            for i, j in enumerate(s2u_map):
                if j == 0:
                    ipos0 = i
                    break

            for i, p in zip(s2u_map, positions):
                if i == 0:
                    trans = p - positions[ipos0]
                    trans -= np.floor(trans)
                    translations.append(trans)
                    rotations.append(np.eye(3, dtype='intc'))

            self.map_atoms = s2u_map
        else:
            rotations.append(np.eye(3, dtype=int))
            translations.append(np.zeros(3, dtype='double'))
            self.map_atoms = range(self.__cell.get_number_of_atoms())

        self.symmetry_operations = {
            'rotations': np.intc(rotations),
            'translations': np.array(translations, dtype='double')
        }
        self.international_table = 'P1 (1)'
        self.wyckoff_letters = ['a'] * self.__cell.get_number_of_atoms()
Esempio n. 56
0
def Candidate_Add(choices, itsct, col_index, dim, answer_found):
    #If it's deep enough, then the datas in the tree are a set of available resolution, turning answer_foun to True to stop searching.
    if col_index + 1 == dim:
        answer_found = True
        print("Done")
    #Otherwise, keep searching to the deeper node.
    if col_index + 1 < dim and not answer_found:
        itsct_temp = itsct_update(itsct, choices.data,
                                  col_index)  #Intersection table update
        row_cnddt = np.where(
            itsct_temp[:, col_index +
                       1] == 0)[0]  #Find available candidate choices
        if np.size(row_cnddt
                   ) != 0:  #If it's not a deadlock, try those candidates.
            #Calculate the number of blocking for choosing each candidate.
            row_cnddt_itsct = np.array([])
            for e in row_cnddt:
                itsct_cnddt_temp = itsct_update(itsct_temp, e, col_index + 1)
                row_cnddt_itsct = np.append(row_cnddt_itsct,
                                            np.sum(itsct_cnddt_temp))
            row_cnddt_itsct = np.intc(row_cnddt_itsct)
            #Choose the candidate node in the increasing order of the number of blocking
            for e in row_cnddt[np.argsort(row_cnddt_itsct)]:
                #If the answer has been found, it will stop adding other children by breaking the for loop.
                if answer_found:
                    break
                #Otherwise, it will keep trying another candidate node, after removing the previous fail node if exists.
                elif len(choices.children) != 0:
                    choices.children.pop()
                choices.children.append(Node(e))
                answer_found = Candidate_Add(choices.children[-1], itsct_temp,
                                             col_index + 1, dim, answer_found)
    return answer_found
Esempio n. 57
0
def get_point(geometry, index):
    """Returns the nth point of a linestring or linearring.

    Parameters
    ----------
    geometry : Geometry or array_like
    index : int or array_like
        Negative values count from the end of the linestring backwards.

    See also
    --------
    get_num_points

    Examples
    --------
    >>> line = Geometry("LINESTRING (0 0, 1 1, 2 2, 3 3)")
    >>> get_point(line, 1)
    <pygeos.Geometry POINT (1 1)>
    >>> get_point(line, -2)
    <pygeos.Geometry POINT (2 2)>
    >>> get_point(line, [0, 3]).tolist()
    [<pygeos.Geometry POINT (0 0)>, <pygeos.Geometry POINT (3 3)>]
    >>> get_point(Geometry("LINEARRING (0 0, 1 1, 2 2, 0 0)"), 1)
    <pygeos.Geometry POINT (1 1)>
    >>> get_point(Geometry("MULTIPOINT (0 0, 1 1, 2 2, 3 3)"), 1) is None
    True
    >>> get_point(Geometry("POINT (1 1)"), 0) is None
    True
    """
    return ufuncs.get_point(geometry, np.intc(index))
Esempio n. 58
0
def prep_colors(colors, font_color):
    init_c = curses.init_color
    init_p = curses.init_pair

    # The on-all-color font fg.
    init_c(font_color[0], *font_color[1])

    ## Experimenting with half height block as fg character for 2x vertical resolution.
    ## This guy : '▄'

    # For now make the max val just have 2x max
    cn = colors[0][0]
    init_c(cn, *colors[0][1])
    init_p(cn, cn, cn)
    # For fg == 1 lower.
    # BG is "actual" value.
    for color_num, color_values in colors[1:]:
        init_c(color_num, *color_values)
        init_p(color_num, color_num, color_num-1)

    # Real black on white even with weird terminal colors/themes.
    init_c(98, 0,0,0)
    init_p(98, 98, colors[-1][0])

    return intc(len(colors)-1)
Esempio n. 59
0
 def test_numpy(self):
     """NumPy objects get serialized to readable JSON."""
     l = [
         np.float32(12.5),
         np.float64(2.0),
         np.float16(0.5),
         np.bool(True),
         np.bool(False),
         np.bool_(True),
         np.unicode_("hello"),
         np.byte(12),
         np.short(12),
         np.intc(-13),
         np.int_(0),
         np.longlong(100),
         np.intp(7),
         np.ubyte(12),
         np.ushort(12),
         np.uintc(13),
         np.ulonglong(100),
         np.uintp(7),
         np.int8(1),
         np.int16(3),
         np.int32(4),
         np.int64(5),
         np.uint8(1),
         np.uint16(3),
         np.uint32(4),
         np.uint64(5),
     ]
     l2 = [l, np.array([1, 2, 3])]
     roundtripped = loads(dumps(l2, cls=EliotJSONEncoder))
     self.assertEqual([l, [1, 2, 3]], roundtripped)
Esempio n. 60
0
def get_geometry(geometry, index):
    """Returns the nth geometry from a collection of geometries.

    Parameters
    ----------
    geometry : Geometry or array_like
    index : int or array_like
        Negative values count from the end of the collection backwards.

    Notes
    -----
    - simple geometries act as length-1 collections
    - out-of-range values return None

    See also
    --------
    get_num_geometries

    Examples
    --------
    >>> multipoint = Geometry("MULTIPOINT (0 0, 1 1, 2 2, 3 3)")
    >>> get_geometry(multipoint, 1)
    <pygeos.Geometry POINT (1 1)>
    >>> get_geometry(multipoint, -1)
    <pygeos.Geometry POINT (3 3)>
    >>> get_geometry(multipoint, 5) is None
    True
    >>> get_geometry(Geometry("POINT (1 1)"), 0)
    <pygeos.Geometry POINT (1 1)>
    >>> get_geometry(Geometry("POINT (1 1)"), 1) is None
    True
    """
    return ufuncs.get_geometry(geometry, np.intc(index))