Esempio n. 1
0
def custom2pdb(coords, proteinnet_id, route):
    """ Takes a custom representation and turns into a .pdb file. 
        Inputs:
        * coords: array/tensor of shape (3 x N) or (N x 3). in Angstroms.
                  same order as in the proteinnnet is assumed (same as raw pdb file)
        * proteinnet_id: str. proteinnet id format (<class>#<pdb_id>_<chain_number>_<chain_id>)
                         see: https://github.com/aqlaboratory/proteinnet/
        * route: str. destin route.
        Output: tuple of routes: (original, generated) for the structures. 
    """
    # convert to numpy
    if isinstance(coords, torch.Tensor):
        coords = coords.detach().cpu().numpy()
    # ensure (1, N, 3)
    if coords.shape[1] == 3:
        coords = coords.T
    coords = np.newaxis(coords, axis=0)
    # get pdb id and chain num
    pdb_name, chain_num = proteinnet_id.split("#")[-1].split("_")[:-1]
    pdb_destin = "/".join(route.split("/")[:-1])+"/"+pdb_name+".pdb"
    # download pdb file and select appropiate 
    download_pdb(pdb_name, pdb_destin)
    clean_pdb(pdb_destin, chain_num=chain_num)
    # load trajectory scaffold and replace coordinates - assumes same order
    scaffold = mdtraj.load_pdb(pdb_destin)
    scaffold.xyz = coords
    scaffold.save(route)
    return pdb_destin, route
Esempio n. 2
0
def PCA(Y, components):
	"""
	run PCA, retrieving the first (components) principle components
	return [s0, eig, w0]
	s0: factors
	w0: weights
	"""

	N,D = Y.shape
	sv = linalg.svd(Y, full_matrices=0);
	[s0, w0] = [sv[0][:, 0:components], np.dot(np.diag(sv[1]), sv[2]).T[:, 0:components]]
	v = s0.std(axis=0)
	s0 /= v;
	w0 *= v;
	return [s0, w0]

	if N>D:
		sv = linalg.svd(Y, full_matrices=0);
		[s0, w0] = [sv[0][:, 0:components], np.dot(np.diag(sv[1]), sv[2]).T[:, 0:components]]
		v = s0.std(axis=0)
		s0 /= v;
		w0 *= v;
		return [s0, w0]
	else:
		K=np.cov(Y)
		sv = linalg.eigh(K)
		std_var = np.sqrt(sv[0])
		pc = sv[1]*std_var[np.newaxis(),0]
		#
		#ipdb.set_trace()
		return [pc,std_var]
Esempio n. 3
0
        def on_train_batch_begin(self, batch, logs=None):
            if batch % self.freq or self.finished:
                return
            while batch >= self._batch:
                x, y = self.yield_batch()

            if self.max_images==-1:
                self.max_images=x.shape[0]

            if x.ndim==3:
                np.newaxis(x, axis=0)
            if x.shape[0]>self.max_images:
                x = x[:self.max_images,...]
                y = y[:self.max_images,...]

            x = x.numpy()
            y = np.argmax(y.numpy(),axis=1)
            if self.encoder:
                y = self.encoder.decode(y)
            for i in range(x.shape[0]):
                # self.add_log(x[i,...], counter=i, name = f'{self.name}-{y[i]}-batch_{str(self._batch).zfill(3)}')
                self.add_log(x[i,...], counter=self._count+i, name = f'{self.name}-{y[i]}')
            print(f'Batch {self._batch}: Logged {np.max([x.shape[0],self.max_images])} {self.name} images to neptune')
Esempio n. 4
0
 [[0 0 0 0 0 0]
  [2 0 0 0 0 0]
  [0 3 0 0 0 0]
  [0 0 4 0 0 0]
  [0 0 0 5 0 0]
  [0 0 0 0 6 6]]
'''
d3[:, ::-1]
d3[d3 > 3] = 100
d3[5, 5] = 0
print(d3)
'''
[[0 0 0 0 0 0]
 [2 0 0 0 0 0]
 [0 3 0 0 0 0]
 [0 0 4 0 0 0]
 [0 0 0 5 0 0]
 [0 0 0 0 6 0]]
'''
np.stack()
np.hstack()
np.dstack()
np.concatenate()
np.tile()
np.newaxis()
np.repeat()
np.where()
np.argmax()
np.dot()
np.transpose()
Esempio n. 5
0
template = cv2.imread('building2.jpg', 0)
w, h = template.shape[::-1]
res = cv2.matchTemplate(gray, template, cv2.TM_CCOEFF_NORMED)
threshold = 0.5
loc = np.where(res >= threshold)
for pt in zip(*loc[::-1]):
    cv2.rectangle(img, pt, (pt[0] + w, pt[1] + h), (255, 0, 255), 2)

cv2.imshow('Detected', img)

# to seperate the car from the background
img = cv2.imread('car.jpg')
mask = np.zeros(img.shape[:2], np.uint8)

bgdModel = np.zeros((1, 65), np.float64)
fgdModel = np.zeros((1, 65), np.float64)

rect = (0, 0, 480, 640)

cv2.grabCut(img, mask, rect, bgdModel, fgdModel, 5, cv2.GC_INIT_WITH_RECT)
mask2 = np.where((mask == 2) | (mask == 0), 0, 1).astype('uint8')
img = img * mask2[:, :, np.newaxis]

plt.imshow(img)
plt.colorbar()
plt.show()
img2 = img[::np.newaxis()]
cv2.imshow('img', img2)

cv2.waitKey(0)
cv2.destroyAllWindows()