def uniform_dist(min_size, max_size, n_pos, scale_fac, G_nodes, folNm):
    neg_comp_list_init = []
    n_each = int(np_ceil(float(n_pos) /
                         (max_size - min_size + 1)))  # Uniform distribution
    n_each = int(np_ceil(n_each * scale_fac))

    neg_comp_list_init_append = neg_comp_list_init.append
    # Negative complexes - random walks from random seeds with incremental steps from min_size to max_size
    for n in range(min_size, max_size + 1):
        for k in range(n_each):
            # Pick a random seed node
            neg_comp_list_init_append(random_graph(n, G_nodes, folNm))
    return neg_comp_list_init
Esempio n. 2
0
def parse_matrix_part(matrix, szSub, ovSub):
    assert matrix.ndim == 3
    assert np_ndim(szSub) == 1
    assert len(szSub) == 3
    assert np_ndim(ovSub) == 1
    assert len(ovSub) == 3

    matrix_shape = np_asarray(matrix.shape, dtype=int)
    len_each_section, _, _ = szSub
    shift_length, _, _ = ovSub

    len_each_section_range = np_arange(len_each_section)

    matrix_shape = np_ceil((matrix_shape - szSub + 1)/ovSub).astype(int)
    num_rows_overlap, num_elements, num_beams = matrix_shape
    result_matrix = np_zeros((np_prod(szSub), np_prod(matrix_shape)))
    cnt = 0
    for i in range(num_beams):
        for j in range(num_elements):
            for k in range(num_rows_overlap):
                index_1 = len_each_section_range + k * shift_length
                index_2 = j
                index_3 = i
                tmp = matrix[index_1, index_2, index_3]
                result_matrix[:, cnt] = tmp
                cnt += 1

    return result_matrix
def same_dist(scale_fac, G_nodes, sizes, folNm):
    neg_comp_list_init = []
    ct_sizes = {}
    for sz in sizes:
        if sz in ct_sizes:
            ct_sizes[sz] += 1
        else:
            ct_sizes[sz] = 1
    neg_comp_list_init_append = neg_comp_list_init.append
    wrong_size_ct = 0
    for sz in ct_sizes:
        nk = int(np_ceil(ct_sizes[sz] * scale_fac))
        for k in range(nk):
            neg_comp = random_graph(sz, G_nodes, folNm)
            neg_comp_sz = len(neg_comp.nodes())
            if neg_comp_sz in ct_sizes:
                if ct_sizes[neg_comp_sz] > 0:
                    ct_sizes[neg_comp_sz] -= 1
                else:
                    wrong_size_ct += 1
            else:
                wrong_size_ct += 1
            neg_comp_list_init_append(neg_comp)

    print("Wrong sizes count ", wrong_size_ct)
    return neg_comp_list_init
Esempio n. 4
0
def binomial_distribution_two_tailed_range(n: int, p: float, sds: float):
    """
    Calculates range of `x` values that span `sds` standard deviations
    from the mean of a binomial distribution with parameters `n` and `p`: `Binom(n,p)`
    """
    M = n * p
    sd = math_sqrt(n * p * (1 - p))
    (x_from,
     x_to) = max(0,
                 np_floor(M - sds * sd) - 1), min(n,
                                                  np_ceil(M + sds * sd) + 1)
    # (y_from, y_to) = binomial_distribution.pmf(x_from, n, p), binomial_distribution.pmf(x_to, n, p)
    return int(x_from), int(x_to)
Esempio n. 5
0
def test_uccsd_ansatz_circuit(sample_molecule, h2_programs):

    n_spatial_orbitals = sample_molecule.n_orbitals
    n_occupied = int(np_ceil(sample_molecule.n_electrons / 2))
    n_virtual = n_spatial_orbitals - n_occupied
    n_single_amplitudes = n_occupied * n_virtual
    # make a mock-packed_amplitudes of length (2 * n_single_amplitudes)
    packed_amplitudes = [1]*(2 * n_single_amplitudes + int(comb(n_single_amplitudes, 2)))

    ansatz = uccsd_ansatz_circuit(packed_amplitudes, sample_molecule.n_orbitals,
                                  sample_molecule.n_electrons)

    assert isinstance(ansatz, Program)
    assert ansatz.out() == h2_programs.out()
def pick_top_weight_neigs(neig_list, perc, inputs):
    n_maxs = len(neig_list)

    if n_maxs == 0:
        return None

    if n_maxs > inputs['min_thres_neig_sorted']:
        n_maxs = int(np_ceil(perc * len(neig_list)))
    else:
        return neig_list

    imp_neigs = dict(
        sorted(neig_list.items(),
               key=lambda elem: elem[1]['weight'],
               reverse=True)[:n_maxs])
    return imp_neigs
Esempio n. 7
0
def find_max_neig(neig_list,g1,perc,model,scaler,inputs):

    n_maxs = len(neig_list)
    if n_maxs == 0:
        return None    
    if n_maxs > 10:
        # Ascending order         
        n_maxs = int(np_ceil(perc*len(neig_list)))    
    
    neig_key_list = [k for k in neig_list]
    neig_wt_list = [float(neig_list[k]['weight']) for k in neig_list]
    sorted_ind = np_argsort(neig_wt_list)
    sorted_wts = [{'weight':val} for val in np_sort(neig_wt_list)][-n_maxs:]
    sorted_neig_keys = [neig_key_list[i] for i in sorted_ind][-n_maxs:]
    imp_neigs = dict(zip(sorted_neig_keys,sorted_wts))
    
    folNm = inputs['folNm']
    
    if len(imp_neigs) == 1:
        imp_neig = list(imp_neigs.keys())[0]
        wt = imp_neigs[imp_neig]
        wt_edge = wt['weight']          
        node_to_add = imp_neig
        #ADD ALL EDGES OF NEW NODE TO ORIG GRAPH
        with open(folNm+"/"+node_to_add,'rb') as f:
            its_neig_list = pickle_load(f)      
                    
        orig_nodes = g1.nodes()
        all_nodesWedges = set(orig_nodes).intersection(its_neig_list)
        
        for node in all_nodesWedges:
            wt = its_neig_list[node]
            wt_edge = wt['weight']
            g1.add_edge(node_to_add,node,weight=wt_edge)        
        (score_imp_neig,comp_bool) = get_score(g1,model,scaler,inputs['model_type'])
        g1.remove_node(node_to_add)
    else:
        scores = {}
        for neig in imp_neigs:
            # Add to graph 
            wt = imp_neigs[neig]
            wt_edge = wt['weight']          
            node_to_add = neig
            #ADD ALL EDGES OF NEW NODE TO ORIG GRAPH
            with open(folNm+"/"+node_to_add,'rb') as f:
                its_neig_list = pickle_load(f)                              
            orig_nodes = g1.nodes()
            all_nodesWedges = set(orig_nodes).intersection(its_neig_list)
            
            for node in all_nodesWedges:
                wt = its_neig_list[node]
                wt_edge = wt['weight']
                g1.add_edge(node_to_add,node,weight=wt_edge)
            # Check score
            (score_curr,comp_bool) = get_score(g1,model,scaler,inputs['model_type'])         
            scores[neig] = score_curr
            g1.remove_node(node_to_add)
            
            
        imp_neig = max(iter(scores.items()), key=operator_itemgetter(1))[0]  
        score_imp_neig = scores[imp_neig]

    return(imp_neig,score_imp_neig)
 dz.deredden_lines(cHbeta, reduc_lineslog_df)
 
 #Measure Hbeta flux
 Hbeta_wavelengths = reduc_lineslog_df.loc['H1_4861A', ['Wave1', 'Wave2', 'Wave3', 'Wave4', 'Wave5', 'Wave6']].values
 Hbeta_dist = random.normal(reduc_lineslog_df.loc['H1_4861A'].line_Int.nominal_value, reduc_lineslog_df.loc['H1_4861A'].line_Int.std_dev, MC_length)
 
 #Insert new section in pdf
 with dz.pdfDoc.create(Section('HII Galaxy: {}'.format(objName))):
     
     dz.add_page()
     
     #------Plot Oxygen lines 
     element_lines = reduc_lineslog_df.loc[(reduc_lineslog_df.index.isin(oxygen_emision))].index.values
     if len(element_lines) > 0: 
         dz.FigConf(plotStyle='seaborn-colorblind', Figtype = 'grid', plotSize = sizing_dict, 
            n_columns = int(len(element_lines)), n_rows = int(np_ceil(len(element_lines)/n_columns)))
                  
         for j in range(len(element_lines)):    
              
             #Define plotting regions
             regions_wavelengths = reduc_lineslog_df.loc[element_lines[j], ['Wave1', 'Wave2', 'Wave3', 'Wave4', 'Wave5', 'Wave6']].values
             idcs_obj, idcs_stellar = searchsorted(wave_reduc, regions_wavelengths), searchsorted(wave_stellar, regions_wavelengths)
             subwave_solar, subFlux_solar = wave_stellar[idcs_stellar[0]:idcs_stellar[5]], flux_stellar[idcs_stellar[0]:idcs_stellar[5]]
             subWwave, subFlux = wave_reduc[idcs_obj[0]:idcs_obj[5]], flux_reduc[idcs_obj[0]:idcs_obj[5]]
             subWwave_emis, subFlux_emis = wave_emis[idcs_obj[0]:idcs_obj[5]], flux_emis[idcs_obj[0]:idcs_obj[5]]
             dz.data_plot(subWwave, subFlux, label='', linestyle='step', graph_axis=dz.Axis[j])   
             dz.data_plot(subwave_solar, subFlux_solar, label='', linestyle='step', graph_axis=dz.Axis[j])
         
             dz.FigWording(xlabel='', ylabel='', title=element_lines[j], graph_axis=dz.Axis[j])
         
         plt.tight_layout()
Esempio n. 9
0
def ceil(x: Tensor, inplace=False) -> Tensor:
    ceiled = x if inplace else deepcopy(x)
    ceiled.name += ' (ceiled)'
    ceiled.value = np_ceil(x.value)

    return ceiled
Esempio n. 10
0
            reduc_lineslog_df.loc['H1_4861A'].line_Int.std_dev, MC_length)

        #Insert new section in pdf
        with dz.pdfDoc.create(Section('HII Galaxy: {}'.format(objName))):

            dz.add_page()

            #------Plot Oxygen lines
            element_lines = reduc_lineslog_df.loc[(
                reduc_lineslog_df.index.isin(oxygen_emision))].index.values
            if len(element_lines) > 0:
                dz.FigConf(plotStyle='seaborn-colorblind',
                           Figtype='grid',
                           plotSize=sizing_dict,
                           n_columns=int(len(element_lines)),
                           n_rows=int(np_ceil(len(element_lines) / n_columns)))

                for j in range(len(element_lines)):

                    #Define plotting regions
                    regions_wavelengths = reduc_lineslog_df.loc[
                        element_lines[j],
                        ['Wave1', 'Wave2', 'Wave3', 'Wave4', 'Wave5', 'Wave6'
                         ]].values
                    idcs_obj, idcs_stellar = searchsorted(
                        wave_reduc, regions_wavelengths), searchsorted(
                            wave_stellar, regions_wavelengths)
                    subwave_solar, subFlux_solar = wave_stellar[
                        idcs_stellar[0]:idcs_stellar[5]], flux_stellar[
                            idcs_stellar[0]:idcs_stellar[5]]
                    subWwave, subFlux = wave_reduc[
Esempio n. 11
0
    def plot_coverage(self,
            plt_figure_title: str,
            title: str = "Coverage of {method_name}\nsamples: n1 = {sample_size1}, n2 = {sample_size2}",
            theme: plot_styles = "default",
            colors: Tuple[str,str,str,str,str] = ("gray", "purple", "white", "#b8df96", "green")
            ):
        """
        Plots the `matplotlib.pyplot` figure given the data from previous coverage calculation and
        some captions and formatting.
        """
        if self.coverage is None: raise NoCoverageException(
            "you have to calculate coverage first before plotting it")

        # this unpacked defaultdict trouble allows for optional formatting placeholders
        title = title.format(**defaultdict(str, 
            method_name  = self.method_name,
            sample_size1 = self.sample_size1,
            sample_size2 = self.sample_size2
        ))


        plt.style.use(theme)

        """
        Colorbar range depends on confidence level.
        Sets vmin to a point 10 times farther from 100% than the confidence

        for confidence=95% show colorbar from 50% to 100%;
        for confidence=99% show colorbar from 90% to 100%;
        for confidence=99.9% show colorbar from 99% to 100%;
        """
        vmin = 100 - ( (100-(self.confidence*100))*10 )
        vmax = 100

        """
        In LinearSegmentedColormap specified color points have to span from 0 to 1,
        where 0 would correspond to vmin, and 1 to vmax.

        the 5 specified colors will form a gradient by marking at points below.
        For confidence=95%: (50, 90, 95, 97.5, 100)
        For confidence=99%: (90, 98, 99, 99.5, 100)

        But because the following value is constant, visually, the colorbar itself will always have
        the same gradient regardless of the given `confidence` value
        """
        nodes = (0.0, 0.8, 0.9, 0.95, 1.0)

        cmap = LinearSegmentedColormap.from_list("", list(zip(nodes, colors)))
        cmap.set_under(colors[0])

        fig, ax = plt.subplots()
        fig.canvas.set_window_title(plt_figure_title)

        """
        Would be great if matplotlib supported float128/longdouble. Instead, it converts data
        to float64 with a warning:
            "UserWarning: Casting input data from 'float128' to 'float64' for imshow"

        But!
        float128 precision could possible be utilized while using float64 in this case.
        If we were to display not the value (the coverage, 0-100), but the difference between
        the expected coverage (confidence) and the actual coverage, float64 would do a lot better.
        This can be done, but some adjustments have to be made to colorbar and labels.
        """
        im = ax.imshow(float64(np_array(self.coverage)),
            cmap=cmap,
            norm=Normalize(float(vmin), vmax, True)
        )

        # precision of "8" decimal places should be more than enough for colorbar ticks
        cb = fig.colorbar(im, format=ticker.FuncFormatter(lambda x, pos: (f'%.8f' % x).rstrip('0').rstrip('.')))
        # plot a dashed black line over *confidence* point on a colorbar
        cb.ax.plot([0, 100], [self.confidence*100, self.confidence*100], '_:k')

        # rewriting autogenerated colorbar ticks by adding one that corresponds to `confidence`
        colorbar_ticks = cb.ax.get_yticks()
        colorbar_ticks = np_append(colorbar_ticks, float(self.confidence*100))
        cb.set_ticks(colorbar_ticks)


        plt.title(title, fontsize="large", fontweight="bold")


        # this is reasonable number of ticks so that tick labels won't overlap
        max_num_xticks = 7
        max_num_yticks = 20

        xticks_period = int(np_ceil(len(self.proportions)/max_num_xticks))
        yticks_period = int(np_ceil(len(self.proportions)/max_num_yticks))

        xperiodic_probs = [float(v) for v in self.proportions[::xticks_period]]
        yperiodic_probs = [float(v) for v in self.proportions[::yticks_period]]

        ax.xaxis.set_major_locator(ticker.MultipleLocator(xticks_period))
        ax.yaxis.set_major_locator(ticker.MultipleLocator(yticks_period))
        ax.tick_params(axis='x', labelsize=8)
        ax.tick_params(axis='y', labelsize=9)
        ax.tick_params(top=False)
        ax.tick_params(right=False)
        # ax.xaxis.set_tick_params(labeltop=False)
        # ax.yaxis.set_tick_params(labelright=False)

        # auto-calculated ticks are fine except for redundant first and last ticks
        xticks = ax.get_xticks().tolist()[1:-1]
        yticks = ax.get_yticks().tolist()[1:-1]
        ax.set_xticks(xticks)
        ax.set_yticks(yticks)
        ax.set_xticklabels(xperiodic_probs)
        ax.set_yticklabels(yperiodic_probs)


        self.figure = fig
        return self.figure