Esempio n. 1
0
def test_upsample_component(n_max_range, frequencies):
    for shape in B_N_COEFF_MAP.keys():
        for n, f in zip(n_max_range, frequencies):
            terms = arange(1, n + 1)
            coefficients = B_N_COEFF_MAP[shape](terms)
            upsampled = cy_builder_utils.upsample_component(
                0.9, 45., 1., TIME_RANGE, coefficients, terms)
            assert isinstance(upsampled, ndarray)
            mask = npround(upsampled, 8) == \
                   npround(upsample_component(
                       0.9, 45., 1., TIME_RANGE, coefficients, terms), 8
                   )
            assert all(mask)
Esempio n. 2
0
 def _map_fn(x):
     if b.float_max - b.float_min == 0.0:
         return 0.0
     else:
         return floor(npround(
             ((x - b.float_min) * b.int_max)/(b.float_max - b.float_min)
             ))
Esempio n. 3
0
def category_capital_flow(category: str, date: datetime.date):
    """行业资金净流量

    Args:
        category: 行业代码
        date: 起始日期

    Returns:
        行业资金净流量
    """
    stocks = stocks_of_target_category(category=category)
    flow = models.CapitalFlow.objects.filter(secucode__in=stocks,
                                             date__gte=date).values(
                                                 'date', 'netvalue')
    flow: pd.DataFrame = pd.DataFrame(flow)
    flow.netvalue = flow.netvalue.astype(float)
    flow = flow.groupby('date').sum()
    flow = flow.reset_index()
    flow.date = flow.date.shift(-1)
    d = flow.iloc[-2, 0]
    last = models.TradingDays.objects.filter(date__gt=d).first().date
    flow.iloc[-1, 0] = last
    flow['netvalue'] /= 1e6
    flow['MA3'] = flow['netvalue'].rolling(3).mean()
    flow['MA5'] = flow['netvalue'].rolling(5).mean()
    flow['MA10'] = flow['netvalue'].rolling(10).mean()
    flow['SIGMA5'] = flow['netvalue'].rolling(5).std() * 0.3
    flow['MA5_HIGH'] = flow['MA5'] + flow['SIGMA5']
    flow['MA5_LOW'] = flow['MA5'] - flow['SIGMA5']
    flow = npround(flow, 2)
    flow = flow.dropna(how='any')
    flow = flow.reset_index()
    return flow
Esempio n. 4
0
 def _redo_bd_nrml(self):
    """
          Create nrml for cylinder body (without bottom) ,pointing outward
          -----------------------
          Note: only check those element with 'body' tag
          Note: all elements should be taged 'body'
    """
    print ("Create nrml for cylinder body (without bottom) ,pointing outward")
    flag = True
    for i in self.elems:
       if self.elems[i][0] != 'body':
          flag = False
    if not flag:
       print ("Please make sure all elements is defined as 'body'")
       return
    self.rev_nm={}
    for i in self.nrmls:
       info = self.nrmls[i]
       # xyz = array(self.nodes[info[0]],dtype='float64')
       xyz=np.array(self.nodes[info[0]])
       xyz[2] = 0.
       nrml = xyz/norm(xyz)#normalize vector 
       self.nrmls[i] = (info[0],nrml[0],nrml[1],nrml[2])
       nrml = npround(nrml,self.__dp)
       key = (info[0],nrml[0],nrml[1],nrml[2])
       self.rev_nm[key] = i
    return
Esempio n. 5
0
    def convert_weight(self, *args):

        # Function to take an input weight from the scale and convert
        # it for the selected planet

        factor = {
            'Mercury': 0.378,
            'Venus': 0.91,
            'Earth': 1,
            'Moon': 0.1656,
            'Mars': 0.379,
            'Ryugu': 0.0000125,
            'Bennu': 0.00000102,
            'Ceres': 0.0284,
            'Jupiter': 2.53,
            'Saturn': 1.07,
            'Titan': 0.1381,
            'Uranus': 0.91,
            'Neptune': 1.14,
            'Pluto': 0.0635
        }

        if self.current_world != 'Bennu':
            #self.kg_label.text = str(round(self.kg*factor[self.current_world])) + ' kg'
            self.lb_label.text = str(
                round(self.kg * factor[self.current_world] * 2.20462)) + ' lbs'
        else:
            #self.kg_label.text = str(npround(self.kg*factor[self.current_world], 5)) + ' kg'
            self.lb_label.text = str(
                npround(self.kg * factor[self.current_world] * 2.20462,
                        5)) + ' lbs'
Esempio n. 6
0
def round(x, decimals=0):
    r"""Round value to desired precision

    Args:
        x (float or iterable of floats): Value(s) to round
        decimals (int): Number of decimal places for rounding; decimals=0 rounds to integers

    """
    return npround(x, decimals=decimals)
Esempio n. 7
0
 def _update_all_nrml(self,vector):
    '''
        update all nrmls with given vector
    '''
    print ("vector will be auto normalized")
    assert(len(vector)==3)
    self.rev_nm={}
    for i in self.nrmls:
       info = self.nrmls[i]
       xyz = array(vector,dtype='float64')
       nrml = xyz/norm(xyz)#normalize vector 
       self.nrmls[i] = (info[0],nrml[0],nrml[1],nrml[2])
       nrml = npround(nrml,self.__dp)
       key = (info[0],nrml[0],nrml[1],nrml[2])
       self.rev_nm[key] = i
Esempio n. 8
0
	def visit_polygon(self,polygon):
		""" Adds the fields to edit a polygon's basic qualities, like position """
		
		# grab the coordinates from the polygon
		coords = polygon.coordinates
		# back up its coordinates, if they are not already backed up
		try: polygon.pure_coordinates
		except: polygon.pure_coordinates = polygon.coordinates.copy()
		
		# define their center as their mean along each axis
		mcoords = npround(npmean(coords,0),0)
		
		coordview = tk.Label(self.window,text='Origin')
		coord_setter = tk.Frame(self.window)
		text_vars = tuple(StringVar() for i in range(4))
		
		# loops don't create new scopes but methods do
		# also it's pretty cool that i gets implied by the loop variable
		def add_entry(event=None): 
			""" Adds an entry field to modify a given axis """
			textVar = text_vars[i]
			textVar.set(str(mcoords[i]))
			e = tk.Entry(coord_setter,textvariable=textVar,width=12)
			e.grid(column=i,row=0)				
			def shift_poly(event = None):
				""" Applies the transformation to shift the polygon, does not redraw canvas """
				try: # it could be that they entered a non-float
					dx = tuple(mcoords[j] - float(text_vars[j].get()) for j in range(4))
				except Exception as e: # in which case, just ignore it
					dx = 0
				# shift each coordinate by the displacement implied by the entry field
				coords = [ [el + dx[j] for j,el in \
						enumerate(coord)] for coord in polygon.pure_coordinates]
				# update the polygon's coordinates (it expects a numpy object)
				polygon.coordinates = nparray(coords)
				polygon._dirty()
			
			# bind to the entry field update-on-entry
			e.bind('<Return>', shift_poly  )
			
		# add all four entry widgets to update 3 axes plus homogeneous	
		for i in range(4): add_entry(i)
		
		self.fields.append(coordview)
		self.fields.append(coord_setter)
Esempio n. 9
0
    def random_walk(self, d=None, plot_h=None) -> None:
        '''Let all population walk randomly'''
        walk_left = self.move_per_day.copy()
        # Every day, people start from home
        pos = self.home.copy()
        # Some travel less, some more
        while npany(walk_left):
            walk_left -= 1

            # All randomly move an edge-length
            pos += nparray(npround(
                (nprandom.random(size=pos.shape) * 2 - 1) *
                self.rms_v.T[:, None]) * (walk_left != 0).T[:, None],
                           dtype=pos.dtype)

            # Can't jump beyond boundary
            # So, reflect exploration
            # pos = pos.clip(min=0, max=self.p_max-1)
            pos = nparray(npnot(pos > (self.p_max-1)) * npabs(pos),
                          dtype=pos.dtype)\
                + nparray((pos > (self.p_max-1)) * (2 * (self.p_max - 1) - pos),
                          dtype=pos.dtype)
            for indiv in range(self.pop_size):
                # TODO: A ufunc or async map would have been faster
                if walk_left[indiv]:
                    self.calc_exposure(indiv, pos)
            if plot_h.contam_dots:
                strain_persist = self.strain_types[-1].persistence
                host_types = []
                host_types.append(
                    (pos *
                     (npnot(self.active[:, None]) * self.susceptible[:, None] >
                      self.resist_def)).tolist())
                host_types.append((pos * self.active[:, None]).tolist())
                host_types.append((
                    pos *
                    (npnot(self.active[:, None]) *
                     (self.susceptible[:, None] <= self.resist_def))).tolist())
                pathn_pers = []
                for pers in range(int(strain_persist))[::-1]:
                    pathn_pers.append(
                        npnonzero(self.space_contam == (pers + 1)))
                plot_h.update_contam(host_types, pathn_pers)
        return
ts = traj_df.index[1] - traj_df.index[0]
prec = -int(floor(log10(ts)))
while not isclose(ts % 10**-prec, 0):
    prec += 1
# print(f'precision: {prec}')
print(f'First time point: {traj_df.index.values[0]}, {prec} decimal places')

# dtt = (dt.now()-t1).total_seconds()
# print(f'loaded : {options["file"]}, time taken: {dtt:.2f} sec')

## read time bins
## subsample a bit for 'burnett'
if 'timebins' in keys:
    if options['timebins'] == 'default':
        timebins = [0] + list(arange(ts,1.0,ts)) + list(arange(1.0,3.0,ts*2)) \
                       + list(npround(logspace(log10(3.0),log10(duration),500)/ts)*ts)
    elif options['timebins'] == 'eb':
        timebins = list(
            npround(linspace(duration,
                             traj_df.index.max() * 0.9, 10000)))
        # print(f'time bins: {timebins}')
    elif options['timebins'] == 'burnett':
        timebins = None
        # traj_df = traj_df[::2]
        # print('Timebins are "burnett", use every 2nd point, re-do precision')
        # traj_df.index -= traj_df.index.values[0]
        ts = traj_df.index[1] - traj_df.index[0]
        prec = -int(floor(log10(ts)))
        while not isclose(ts % 10**-prec, 0):
            prec += 1
    else:
Esempio n. 11
0
def round(x):
    r"""Absolute value
    """
    return npround(x)
Esempio n. 12
0
def mint(X,
         n_bins=10,
         n_neighbors=10,
         pattern_length='standard',
         eps=1,
         prune=True,
         max_nmb_candidates=2000,
         not_discretized=True):
    gamma_eps = gammaln(eps) / l2

    def not_equal(l1, l2):
        for v, w in zip(l1, l2):
            if v != w:
                return True
        return False

    def not_greater(l1, l2):
        for v, w in zip(l1, l2):
            if v > w:
                return False
        return True

    def get_gain_min(pid1, pid2):
        lo1, u1, usg1, g1 = patterns[pid1]
        lo2, u2, usg2, g2 = patterns[pid2]
        l = minimum(lo1, lo2)
        u = maximum(u1, u2)
        size = sum([log(v, 2) for v in (u - l) + 1])
        usg = usg1 + usg2
        c = (l, u, usg, usg * size - gammaln(usg + eps) / l2)
        cands[(pid1, pid2)] = c
        gains[(pid1, pid2)] = g1 + g2 - c[3]

    def prune_it(L_total):
        max_border = X_dun.max(axis=0)
        min_border = X_dun.min(axis=0)
        cands.clear()
        gains.clear()
        # compute candidates
        candidates = list(patterns.keys())
        cand_inds = [(k1, k2) for i, k1 in enumerate(candidates)
                     for k2 in candidates[i + 1:]]
        for f, l in cand_inds:
            get_gain_min(f, l)
        new_id = max(patterns.keys())
        new_patterns = []
        # start minimization: computing the candidates
        n_old_patterns = len(patterns) + 1
        while n_old_patterns > len(patterns):
            sorted_gains = sorted(gains.items(),
                                  key=operator.itemgetter(1),
                                  reverse=True)
            included = defaultdict(lambda: [])
            # creating the candidates for merging (more than a pair)
            for (pid1, pid2), _ in sorted_gains:
                if patterns.get(pid1) and patterns.get(pid2):
                    l, u, _, _ = cands[(pid1, pid2)]
                    for pid, (pl, pu, _, _) in patterns.items():
                        if (pid != pid1) and (pid != pid2):
                            if not_greater(l, pl) & not_greater(pu, u):
                                included[(pid1, pid2)].append(pid)
                    if len(included) == max_nmb_candidates:
                        break
                else:
                    del gains[(pid1, pid2)], cands[(pid1, pid2)]
            # getting the gains for candidates that includes for than a pair of patterns
            new_gains = {key: gains[key] for key in included.keys()}
            sorted_new_gains = sorted(new_gains.items(),
                                      key=operator.itemgetter(1),
                                      reverse=False)
            n_old_patterns = len(patterns)
            new_patterns.clear()
            #print('new iteration ', n_old_patterns, mid_time - time.time())
            while len(sorted_new_gains) > 0:
                # greedy strategy: chosing the best pair
                # (don't consider how many other patterns the candidate includes)
                (pid1, pid2), _ = sorted_new_gains.pop()
                if patterns.get(pid1) and patterns.get(pid2)\
                        and not_equal(cands[(pid1, pid2)][1], max_border)\
                        and not_equal(cands[(pid1, pid2)][0], min_border):
                    # avoid creating the pattern enveloping the whole space
                    n_patterns = len(patterns)
                    accepted_patterns = [
                    ]  # list of patterns included in the candidate pattern
                    l, u, usg_total, _ = cands[(pid1, pid2)]
                    size = sum([log(v, 2) / l2 for v in (u - l) + 1
                                ])  # the size of the candidate pattern
                    L_delta_stable = l_n[n_patterns] + gammaln(G+eps*n_patterns)/l2\
                        - gammaln(eps*n_patterns)/l2 + l_cell + patterns[pid1][3]\
                        + patterns[pid2][3] - usg_total*size + gamma_eps
                    d_pt = 1  # reduction in the number of patterns in the model
                    L_delta_old = L_delta_stable - l_n[n_patterns-d_pt]\
                        - gammaln(G+eps*(n_patterns-d_pt))/l2\
                        + gammaln(eps*(n_patterns-d_pt))/l2\
                        + gammaln(usg_total+eps)/l2
                    for pid in included[(pid1, pid2)]:
                        # start to add patterns that could improve the total length
                        if patterns.get(pid):
                            _, _, usg, g = patterns[pid]
                            d_pt_i = d_pt + 1
                            usg_total_i = usg_total + usg
                            L_delta_stable_i = l_cell + g - usg * size + gamma_eps
                            L_delta_variable = - l_n[n_patterns-d_pt_i]\
                                - gammaln(G+eps*(n_patterns-d_pt_i))/l2\
                                + gammaln(eps*(n_patterns-d_pt_i))/l2\
                                + gammaln(usg_total_i+eps)/l2
                            L_delta = L_delta_stable + L_delta_stable_i + L_delta_variable
                            if L_delta > L_delta_old:  # accept merging
                                d_pt = d_pt_i
                                usg_total = usg_total_i
                                accepted_patterns.append(pid)
                                L_delta_stable += L_delta_stable_i
                                L_delta_old = L_delta
                    # checki if a new candidate allows for a shorter length
                    if L_delta_old > 0:  # add pattern if it reduces the total length
                        new_id += 1
                        patterns[new_id] = (l, u, usg_total, usg_total*size\
                                            - gammaln(usg_total+eps)/l2)
                        del patterns[pid1], patterns[pid2]
                        for pid in accepted_patterns:
                            del patterns[pid]
                        accepted_patterns.clear()
                        new_patterns.append(new_id)
                        L_total -= L_delta_old
            # compute new candidates
            for pid1 in new_patterns:
                for pid2 in patterns:
                    if pid1 != pid2:
                        get_gain_min(pid1, pid2)
        return L_total

    n_neighbors += 1
    # reduce the number of columns if there are some const-value ones
    col_selected = [i for i in range(X.shape[1]) if len(unique(X[:, i])) > 1]
    if X.shape[1] > len(col_selected):
        X = X[:, col_selected]
    G, M = X.shape
    l_n = {key: un_int(key)
           for key in range(0, 10 * max(G, M) + 1)}  # length of int
    # discretization
    if not_discretized:
        est = KBinsDiscretizer(n_bins=n_bins,
                               encode='ordinal',
                               strategy='uniform').fit(X)
        X_discr = est.transform(X).astype(int)
        L_CT_base = l_n[G] + l_n[M] + l_n[
            n_bins]  #+ M*log(binom(G-1, n_bins - 1),2)
        if pattern_length == 'minimal':
            l_cell = M * log(n_bins, 2)
        elif pattern_length == 'standard':
            l_cell = M * log(n_bins * (n_bins - 1) / 2 + n_bins, 2)
        #l_cell = M*log(n_bins*(n_bins-1)/2,2)
        #l_cell = 2*M*log(n_bins,2)
        else:
            raise ValueError("Invalid pattern length type.")
    else:
        n_bins_list = [
            max(vals) - min(vals) + 1
            for vals in [unique(X[:, i]) for i in range(M)]
        ]
        X_discr = X
        L_CT_base = l_n[G] + l_n[M] + sum(
            [l_n[n_bins] for n_bins in n_bins_list])
        if pattern_length == 'minimal':
            l_cell = sum([log(n_bins, 2) for n_bins in n_bins_list])
        elif pattern_length == 'standard':
            l_cell = sum([
                log(n_bins * (n_bins - 1) / 2 + n_bins, 2)
                for n_bins in n_bins_list
            ])
        else:
            raise ValueError("Invalid pattern length type.")
    # remove repetitive rows
    X_dun, inverse_indices, counts = unique(X_discr,
                                            return_counts=True,
                                            return_inverse=True,
                                            axis=0)
    #print('elementary ', X_dun.shape)
    n_neighbors = min(n_neighbors, X_dun.shape[0])
    # to reconstruct original indices
    new2original = {i: set() for i in range(X_dun.shape[0])}
    for i, v in enumerate(inverse_indices):
        new2original[v].add(i)
    # computing the standard total length (the reconstruction error is 0)
    n_patterns = X_dun.shape[0]
    L_CT_var = l_n[n_patterns] + n_patterns * l_cell
    L_DCT_init = gammaln(G+eps*n_patterns)/l2 - gammaln(eps*n_patterns)/l2\
               - sum([gammaln(usg+eps)/l2 - gamma_eps for usg in counts])
    L_total = L_CT_base + L_CT_var + L_DCT_init
    # standard param on patterns
    n_patterns_stand = n_patterns
    L_total_stand = L_total
    # --- time check ---
    start_time = time.time()
    tree = KDTree(X_dun, leaf_size=int(n_bins * .5))
    # computing candidates using 'n_neighbors' closest points
    patterns = {i: (row, row, cnt, -gammaln(cnt+eps)/l2) for i,(row, cnt) \
                in enumerate(zip(X_dun, counts))}
    neighbours = {
        i: set(
            tree.query(array(x).reshape(1, -1),
                       k=n_neighbors,
                       return_distance=False)[0][1:])
        for i, x in enumerate(X_dun)
    }
    del tree
    cand_inds = set([(i, j) if i < j else (j, i)
                     for i, lst in neighbours.items() for j in lst])
    # computing the length gains for candidates
    print('starts', len(cand_inds))
    # start length minimization
    cands = {}
    gains = {}
    cand_to_add = set([])  # to store individual patterns for candidate update
    while len(cand_inds) > 0:
        for f, l in cand_inds:
            get_gain_min(f, l)
        cand_inds.clear()
        sorted_gains = sorted(gains.items(),
                              key=operator.itemgetter(1),
                              reverse=False)
        L_total_old = L_total + 1
        while (L_total <= L_total_old) and (len(sorted_gains) > 0):
            n_patterns = len(patterns)
            new_id = max(patterns.keys()) + 1
            if len(sorted_gains) % 50000 == 0:
                print('gain', len(sorted_gains))
                gc.collect()
            best_inds, best_gain = sorted_gains.pop()
            if patterns.get(best_inds[0]) and patterns.get(best_inds[1]):
                L_delta = l_n[n_patterns] - l_n[n_patterns-1] + l_cell\
                        + gammaln(G+eps*n_patterns)/l2\
                        - gammaln(G+eps*(n_patterns-1))/l2\
                        + gammaln(eps*(n_patterns-1))/l2\
                        - gammaln(eps*n_patterns)/l2 + gamma_eps + best_gain
                if L_delta > 0:
                    patterns[new_id] = cands[best_inds]
                    neighbours[new_id] = set([
                        v for v in neighbours[best_inds[0]].union(neighbours[
                            best_inds[1]]) if patterns.get(v)
                    ])
                    for v in neighbours[new_id]:
                        neighbours[v].add(new_id)
                    del patterns[best_inds[0]], patterns[best_inds[1]], neighbours[best_inds[0]], \
                        neighbours[best_inds[1]]
                    cand_to_add.add(new_id)
                    del gains[best_inds], cands[best_inds]
                    L_total_old = L_total
                    L_total -= L_delta
                else:
                    break
            else:
                del gains[best_inds], cands[best_inds]
        if len(cand_to_add) > 0:
            clean_up = [v for v in cand_to_add if not patterns.get(v)]
            for i in clean_up:
                del cand_to_add[i]
            cand_inds = set([(i, j) if i < j else (j, i) for i in cand_to_add
                             for j in neighbours[i]
                             if (patterns.get(j)) and (i != j)])
            cand_to_add.clear()
    print('start pruning')
    mid_time = time.time()
    mid_L_total = L_total
    mid_n_patterns = len(patterns)
    if prune:
        L_total = prune_it(L_total)
    end_time = time.time()
    # compute pattern extensions
    pattern_inds = {
        k: where((X_dun >= l).all(axis=1) & (X_dun <= u).all(axis=1))[0]
        for k, (l, u, _, _) in patterns.items()
    }
    pattern_true_inds = {}
    for key, lst in pattern_inds.items():
        pattern_true_inds[key] = set([])
        for v in lst:
            pattern_true_inds[key] = pattern_true_inds[key].union(
                new2original[v])
    if prune:
        return pattern_true_inds, npround(L_total, 4), npround(L_total_stand, 4), \
            n_patterns_stand, npround(end_time-start_time, 4),\
            npround(mid_L_total-L_total, 3), mid_n_patterns - len(patterns),\
            npround(end_time-mid_time, 4)
    return pattern_true_inds, npround(L_total, 4), npround(L_total_stand, 4),\
        n_patterns_stand, npround(end_time-start_time, 4)
    ## automatically calculate the NGP if r2 and r4 are available
    if 'r2' in output.columns and 'r4' in output.columns:
        output['a2'] = 0
        iloc1 = output.time.iloc[1]
        output.loc[iloc1:, 'a2'] = (dim / (dim + 2)) * output.loc[
            iloc1:, 'r4'] / output.loc[iloc1:, 'r2']**2 - 1
elif option == 'eb':
    output['eb'] = (output.r4 - output.r2**2) / output.r2**2
    output = output.drop(columns=['r2', 'r4'])
elif option == 'vanhove':
    ## bin the many-start trajectories to get van Hove function
    output = output.set_index('time').stack().reset_index(
        level=1, drop=True).apply(sqrt).reset_index()
    output.columns = ['time', 'r']
    output['gs'] = output.r
    spacebins = npround(arange(0, output.r.max() + 0.03, 0.02), 2)
    # print(f'\nmax r = {output.r.max():.3g} simulation boxes')
    output = output.groupby(['time', pd.cut(output.r,
                                            spacebins)]).gs.agg('count')
    # print('\nafter groupby:')
    # print(output.head(10))
    output = output.reset_index()
    output.r = output.r.apply(lambda x: x.mid)
    # print('\nfinal form:')
    # print(output.head(10))
elif option == 'dx':
    ## this is similar to the van Hove function
    output = output.set_index('time').stack().reset_index(
        level=1, drop=True).reset_index()
    output.columns = ['time', 'dx']
    output['prob'] = output.dx