Esempio n. 1
0
    def uniform_weighting(self, n_regions=5, perc=95):
        from numpy import union1d as union
        from numpy import intersect1d as intersect
        u, s = self.u, self.s
        u_b = np.linspace(0, np.percentile(u, perc), n_regions)
        s_b = np.linspace(0, np.percentile(s, perc), n_regions)

        regions, weights = {}, np.ones(len(u))
        for i in range(n_regions):
            if i == 0:
                region = intersect(np.where(u < u_b[i + 1]),
                                   np.where(s < s_b[i + 1]))
            elif i < n_regions - 1:
                lower_cut = union(np.where(u > u_b[i]), np.where(s > s_b[i]))
                upper_cut = intersect(np.where(u < u_b[i + 1]),
                                      np.where(s < s_b[i + 1]))
                region = intersect(lower_cut, upper_cut)
            else:
                region = union(
                    np.where(u > u_b[i]),
                    np.where(s > s_b[i]))  # lower_cut for last region
            regions[i] = region
            if len(region) > 0:
                weights[region] = n_regions / len(region)
        # set weights accordingly such that each region has an equal overall contribution.
        self.weights = weights * len(u) / np.sum(weights)
        self.u_b, self.s_b = u_b, s_b
def compute_dice_coef(seg1, seg2, labelset=None):
    if labelset is None:
        lbset = np.union(np.unique(seg1), np.unique(seg2))
    else:
        lbset = np.asarray(labelset, dtype=int)
    
    seg1.flat[~np.in1d(seg1, lbset)] = -1
    seg2.flat[~np.in1d(seg2, lbset)] = -1
    
    dicecoef = {}
    for label in lbset:
        l1 = (seg1==label)
        l2 = (seg2==label)
        d = 2*np.sum(l1&l2)/(1e-9 + np.sum(l1) + np.sum(l2))
        dicecoef[label] = d
    return dicecoef
Esempio n. 3
0
def compute_dice_coef(seg1, seg2, labelset=None):
    if labelset is None:
        lbset = np.union(np.unique(seg1), np.unique(seg2))
    else:
        lbset = np.asarray(labelset, dtype=int)

    seg1.flat[~np.in1d(seg1, lbset)] = -1
    seg2.flat[~np.in1d(seg2, lbset)] = -1

    dicecoef = {}
    for label in lbset:
        l1 = (seg1 == label)
        l2 = (seg2 == label)
        d = 2 * np.sum(l1 & l2) / (1e-9 + np.sum(l1) + np.sum(l2))
        dicecoef[label] = d
    return dicecoef
Esempio n. 4
0
def aprioriGen(freqSets, k):
    # generate candidate 2-itemsets
    if k == 2:
        Ck = np.array(
            [list(comb) for comb in itertools.combinations(freqSets, 2)])
    else:
        # generate candidate k-itemsets (k > 2)
        Ck = []
        for i in range(0, np.shape(freqSets)[1]):
            for j in range(i + 1, np.shape(freqSets)[1]):
                # Merge a pair of (k-1) frequent itemsets if k-2 items are identical using Fk-1 x Fk-1 method
                L1 = np.sort(freqSets[i, 0:k - 2])
                L2 = np.sort(freqSets[j, 0:k - 2])
                if np.isequal(L1, L2):
                    Ck = np.concatenate(
                        (Ck, np.union(freqSets[i, :], freqSets[j, :])), axis=0)
    return (Ck)
Esempio n. 5
0
def compute_dice_per_slice(seg1, seg2, labelset=None, axis=0):
    if labelset is None:
        lbset = np.union(np.unique(seg1), np.unique(seg2))
    else:
        lbset = np.asarray(labelset, dtype=int)

    seg1.flat[~np.in1d(seg1, lbset)] = -1
    seg2.flat[~np.in1d(seg2, lbset)] = -2

    nslice = seg1.shape[axis]
    s = [slice(None) for d in range(seg1.ndim)]
    dcoefs = {}
    for i in range(nslice):
        s[axis] = i
        s1 = seg1[s]
        s2 = seg2[s]
        n1 = np.sum(s1 >= 0)
        n2 = np.sum(s2 >= 0)
        if n1 == 0 and n2 == 0:
            continue
        d = 2. * np.sum(s1 == s2) / float(n1 + n2)
        dcoefs[i] = d

    return dcoefs
Esempio n. 6
0
def compute_dice_per_slice(seg1, seg2, labelset=None, axis=0):
    if labelset is None:
        lbset = np.union(np.unique(seg1), np.unique(seg2))
    else:
        lbset = np.asarray(labelset, dtype=int)

    seg1.flat[~np.in1d(seg1, lbset)] = -1
    seg2.flat[~np.in1d(seg2, lbset)] = -2

    nslice = seg1.shape[axis]
    s = [slice(None) for d in range(seg1.ndim)]
    dcoefs = {}
    for i in range(nslice):
        s[axis] = i
        s1 = seg1[s]
        s2 = seg2[s]
        n1 = np.sum(s1>=0)
        n2 = np.sum(s2>=0)
        if n1==0 and n2==0:
            continue
        d = 2.*np.sum(s1==s2)/float(n1 + n2)
        dcoefs[i] = d

    return dcoefs