def test_who_with_0dim_array(self): # ticket #1243 import os import sys oldstdout = sys.stdout sys.stdout = open(os.devnull, 'w') try: try: np.who({'foo': np.array(1)}) except Exception: raise AssertionError("ticket #1243") finally: sys.stdout.close() sys.stdout = oldstdout
def main(): A = Z = 1 R0 = 900 # Build grid rg = np.linspace(100, 150, 18) qq = 1.3 + 0 * np.linspace(0, 1, rg.size)**2 theta = np.linspace(-np.pi, np.pi, 41) vpar = np.multiply.outer(np.linspace(.1, 4, 12), [1, -1]) mu = np.linspace(0, 1, 8) grid = Grid(1, 1, 900, rg, qq, theta, vpar, mu) np.who(grid.__dict__) plt.figure() plt.plot(grid.radius.squeeze(), grid.psi.squeeze()) plt.show()
def test_who_with_0dim_array(self, level=rlevel) : """ticket #1243""" import os, sys sys.stdout = open(os.devnull, 'w') try : tmp = np.who({'foo' : np.array(1)}) sys.stdout = sys.__stdout__ except : sys.stdout = sys.__stdout__ raise AssertionError("ticket #1243")
def test_who_with_0dim_array(self, level=rlevel): """ticket #1243""" import os, sys sys.stdout = open(os.devnull, 'w') try: tmp = np.who({'foo': np.array(1)}) sys.stdout = sys.__stdout__ except: sys.stdout = sys.__stdout__ raise AssertionError("ticket #1243")
def test_who_with_0dim_array(self, level=rlevel): """ticket #1243""" import os, sys oldstdout = sys.stdout sys.stdout = open(os.devnull, 'w') try: try: tmp = np.who({'foo': np.array(1)}) except: raise AssertionError("ticket #1243") finally: sys.stdout.close() sys.stdout = oldstdout
def test_who_with_0dim_array(self, level=rlevel) : """ticket #1243""" import os, sys oldstdout = sys.stdout sys.stdout = open(os.devnull, 'w') try: try: tmp = np.who({'foo' : np.array(1)}) except: raise AssertionError("ticket #1243") finally: sys.stdout.close() sys.stdout = oldstdout
from io import StringIO from typing import Any, Dict import numpy as np AR: np.ndarray[Any, np.dtype[np.float64]] AR_DICT: Dict[str, np.ndarray[Any, np.dtype[np.float64]]] FILE: StringIO def func(a: int) -> bool: ... reveal_type(np.deprecate(func)) # E: def (a: builtins.int) -> builtins.bool reveal_type(np.deprecate()) # E: _Deprecate reveal_type(np.deprecate_with_doc("test")) # E: _Deprecate reveal_type(np.deprecate_with_doc(None)) # E: _Deprecate reveal_type(np.byte_bounds(AR)) # E: Tuple[builtins.int, builtins.int] reveal_type(np.byte_bounds(np.float64())) # E: Tuple[builtins.int, builtins.int] reveal_type(np.who(None)) # E: None reveal_type(np.who(AR_DICT)) # E: None reveal_type(np.info(1, output=FILE)) # E: None reveal_type(np.source(np.interp, output=FILE)) # E: None reveal_type(np.lookfor("binary representation", output=FILE)) # E: None reveal_type(np.safe_eval("1 + 1")) # E: Any
def main(): from grid import Grid # General parameters A = Z = 1 R0 = 900 # Build grid rg = np.linspace(100, 150, 18) qq = 1.3 + 0*np.linspace(0, 1, rg.size)**2 theta = np.linspace(- np.pi, np.pi, 141) vpar = np.multiply.outer(np.linspace(.1, 4, 12), [1, -1]) mu = np.linspace(0, 1, 8) grid = Grid(A, Z, R0, rg, qq, theta, vpar, mu) np.who(grid.__dict__) # Advect particles pot = np.zeros_like(rg) adv = ParticleAdvector(grid, pot) adv.compute_invariants() np.who(adv.__dict__) adv.compute_bounce_point() np.who(adv.__dict__) plt.figure() plt.suptitle('Banana tip') plt.subplot(121) plt.gca().set_title('psi') plt.plot(adv._banana_psi[:, 0]) plt.xlabel('trapped index') plt.subplot(122) plt.gca().set_title('theta') plt.plot(adv._banana_theta[:, 0]) plt.xlabel('trapped index') plt.show() adv.compute_trajectory() np.who(adv.__dict__) plt.figure() plt.suptitle('Trajectory') plt.subplot(121) plt.gca().set_title('psi') plt.plot(theta, adv.psi_path[:, 3].reshape(theta.size, -1)) plt.subplot(122) plt.gca().set_title('vpar') plt.plot(theta, adv.vpar_path[:, 3].reshape(theta.size, -1)) plt.show() # Compute trajectory timing adv.compute_displacement() adv.compute_precession() adv.compute_ballooning() np.who(adv.__dict__) living = np.where( adv.living_path(theta)[..., np.newaxis], 1, np.nan ) time = adv.time_path * living phi = adv._trans * living plt.figure() plt.suptitle('Displacement') plt.subplot(121) plt.gca().set_title('time') plt.plot( theta, time[:, 16].reshape(theta.size, -1), ) plt.subplot(122) plt.gca().set_title('phi') plt.plot( theta, phi[:, 16].reshape(theta.size, -1), ) plt.show() adv.compute_canon() np.who(adv.__dict__) idx = np.argsort(vpar.T.ravel()) plt.figure() plt.subplot(121) plt.plot( vpar.T.ravel()[idx], adv._banana_momentum.T.reshape(vpar.size, -1)[idx], ) plt.subplot(122) plt.plot( vpar.T.ravel()[idx], ( adv._banana_momentum + grid.Z * ( grid.qprofile * adv._ltor + rg[0]**2/2 ) ).T.reshape(vpar.size, -1)[idx], ) plt.show()
import numpy as np np.deprecate(1) # E: No overload variant np.deprecate_with_doc(1) # E: incompatible type np.byte_bounds(1) # E: incompatible type np.who(1) # E: incompatible type np.lookfor(None) # E: incompatible type np.safe_eval(None) # E: incompatible type
# -*- coding: utf-8 -*- """ Created on Fri Oct 11 12:59:39 2019 @author: Enes """ #dir(np) --> np kütüphanesinin fonksiyonlarını gösterir. import numpy as np a = np.arange(10) b = np.ones(20) np.who() #np.tile([1,2],[3,4],3) --->Yan yana üç kere matrisleri kopyalar. 3,2 olsaydı 3 aşağıya 2 sağa kopyalar.. #np.triu(x) --> Matrisi üst üçgen yapar. #np.tril(x) --> Matrisi alt üçgen yapar. #np.var(x) --> Varyansını alır. #np.var(x,axix=0) --> Her sütunun ayrı ayrı varyansını alır. axix=1 ise de satırları yapar. #sum --> toplama demek. #np.sum(x) --> toplar. #np.cumsum --> kümülatif toplama yapar. Verileri toplaya toplaya gider. #pn.prod(x,axix=0) --> x değerlerinin düşey yönde çarpımlarını bulur. axix=1 de yatayda yapar. #pn.cumprod(x,axix=0) #np.hstack((a,b)) --> Yatay yönde a ve b matrislerini yan yana koyar. #np.hstack((a,b)) --> Bu da dikey yönde yapar. #np.stack((a,b),axix=0) --> Böyle kullaırsak da birleştirme yapmaz. Direkt boyut arttırır. #-------------------# #***Önemli, sınavda çıkabilir.*** #r=np.array([2,3,5])