def _random_benchmark(self, random_state: np.random.Generator) -> Benchmark: seed = random_state.integers(UINT_MAX) return self.benchmark_from_seed(seed)
def fixture_x0(rng: np.random.Generator, x0_shape: ShapeType) -> np.ndarray: """Random data from a standard normal distribution.""" return rng.normal(0, 1, size=x0_shape)
def _sample_truncated_integer_gaussian(rng: np.random.Generator, loc: int, scale: int, min_val: int, max_val: int) -> int: sample = None while sample is None or not (min_val <= sample <= max_val): sample = int(rng.normal(loc=loc, scale=scale)) return sample