Esempio n. 1
0
def nuts(data, model, seed=None, iter=None, warmup=None, num_chains=None):
    assert type(data) == dict
    assert type(model) == Model
    assert seed is None or type(seed) == int

    iter, warmup, num_chains = apply_default_hmc_args(iter, warmup, num_chains)

    if seed is None:
        seed = np.random.randint(0, 2**32, dtype=np.uint32).astype(np.int32)
    rng = random.PRNGKey(seed)

    kernel = NUTS(model.fn)
    # TODO: We could use a way of avoid requiring users to set
    # `--xla_force_host_platform_device_count` manually when
    # `num_chains` > 1 to achieve parallel chains.
    mcmc = MCMC(kernel, warmup, iter, num_chains=num_chains)
    mcmc.run(rng, **data)
    samples = mcmc.get_samples()

    # Here we re-run the model on the samples in order to collect
    # transformed parameters. (e.g. `b`, `mu`, etc.) Theses are made
    # available via the return value of the model.
    transformed_samples = run_model_on_samples_and_data(
        model.fn, samples, data)
    all_samples = dict(samples, **transformed_samples)

    loc = partial(location, data, samples, transformed_samples, model.fn)

    return Samples(all_samples, partial(get_param, all_samples), loc)
Esempio n. 2
0
def test_binomial_stable(with_logits):
    # Ref: https://github.com/pyro-ppl/pyro/issues/1706
    warmup_steps, num_samples = 200, 200

    def model(data):
        p = numpyro.sample('p', dist.Beta(1., 1.))
        if with_logits:
            logits = logit(p)
            numpyro.sample('obs',
                           dist.Binomial(data['n'], logits=logits),
                           obs=data['x'])
        else:
            numpyro.sample('obs',
                           dist.Binomial(data['n'], probs=p),
                           obs=data['x'])

    data = {'n': 5000000, 'x': 3849}
    kernel = NUTS(model=model)
    mcmc = MCMC(kernel, warmup_steps, num_samples)
    mcmc.run(random.PRNGKey(2), data)
    samples = mcmc.get_samples()
    assert_allclose(np.mean(samples['p'], 0), data['x'] / data['n'], rtol=0.05)

    if 'JAX_ENABLE_x64' in os.environ:
        assert samples['p'].dtype == np.float64
Esempio n. 3
0
def run_inference(model, args, rng):
    kernel = NUTS(model)
    mcmc = MCMC(kernel,
                args.num_warmup,
                args.num_samples,
                num_chains=args.num_chains)
    mcmc.run(rng)
    return mcmc.get_samples()
Esempio n. 4
0
def run_inference(model, args, rng, X, Y, D_H):
    if args.num_chains > 1:
        rng = random.split(rng, args.num_chains)
    start = time.time()
    kernel = NUTS(model)
    mcmc = MCMC(kernel, args.num_warmup, args.num_samples, num_chains=args.num_chains)
    mcmc.run(rng, X, Y, D_H)
    print('\nMCMC elapsed time:', time.time() - start)
    return mcmc.get_samples()
Esempio n. 5
0
def run_inference(model, args, rng, X, Y):
    start = time.time()
    kernel = NUTS(model)
    mcmc = MCMC(kernel,
                args.num_warmup,
                args.num_samples,
                num_chains=args.num_chains)
    mcmc.run(rng, X, Y)
    print('\nMCMC elapsed time:', time.time() - start)
    return mcmc.get_samples()
Esempio n. 6
0
 def get_samples(rng, data, step_size, trajectory_length,
                 target_accept_prob):
     kernel = kernel_cls(model,
                         step_size=step_size,
                         trajectory_length=trajectory_length,
                         target_accept_prob=target_accept_prob)
     mcmc = MCMC(kernel,
                 warmup_steps,
                 num_samples,
                 num_chains=2,
                 chain_method=chain_method)
     mcmc.run(rng, data)
     return mcmc.get_samples()
Esempio n. 7
0
def test_improper_normal():
    true_coef = 0.9

    def model(data):
        alpha = numpyro.sample('alpha', dist.Uniform(0, 1))
        loc = numpyro.param('loc',
                            0.,
                            constraint=constraints.interval(0., alpha))
        numpyro.sample('obs', dist.Normal(loc, 0.1), obs=data)

    data = true_coef + random.normal(random.PRNGKey(0), (1000, ))
    kernel = NUTS(model=model)
    mcmc = MCMC(kernel, num_warmup=1000, num_samples=1000)
    mcmc.run(random.PRNGKey(0), data)
    samples = mcmc.get_samples()
    assert_allclose(np.mean(samples['loc'], 0), true_coef, atol=0.05)
Esempio n. 8
0
def test_improper_prior():
    true_mean, true_std = 1., 2.
    num_warmup, num_samples = 1000, 8000

    def model(data):
        mean = numpyro.param('mean', 0.)
        std = numpyro.param('std', 1., constraint=constraints.positive)
        return numpyro.sample('obs', dist.Normal(mean, std), obs=data)

    data = dist.Normal(true_mean, true_std).sample(random.PRNGKey(1), (2000, ))
    kernel = NUTS(model=model)
    mcmc = MCMC(kernel, num_warmup, num_samples)
    mcmc.run(random.PRNGKey(2), data)
    samples = mcmc.get_samples()
    assert_allclose(np.mean(samples['mean']), true_mean, rtol=0.05)
    assert_allclose(np.mean(samples['std']), true_std, rtol=0.05)
Esempio n. 9
0
def test_predictive():
    model, data, true_probs = beta_bernoulli()
    mcmc = MCMC(NUTS(model), num_warmup=100, num_samples=100)
    mcmc.run(random.PRNGKey(0), data)
    samples = mcmc.get_samples()

    predictive_samples = predictive(random.PRNGKey(1), model, samples)
    assert predictive_samples.keys() == {"obs"}

    predictive_samples = predictive(random.PRNGKey(1), model, samples,
                                    return_sites=["beta", "obs"])

    # check shapes
    assert predictive_samples["beta"].shape == (100, 5)
    assert predictive_samples["obs"].shape == (100, 1000, 5)

    # check sample mean
    assert_allclose(predictive_samples["obs"].reshape([-1, 5]).mean(0), true_probs, rtol=0.1)
Esempio n. 10
0
def test_dirichlet_categorical(kernel_cls, dense_mass):
    warmup_steps, num_samples = 100, 20000

    def model(data):
        concentration = np.array([1.0, 1.0, 1.0])
        p_latent = numpyro.sample('p_latent', dist.Dirichlet(concentration))
        numpyro.sample('obs', dist.Categorical(p_latent), obs=data)
        return p_latent

    true_probs = np.array([0.1, 0.6, 0.3])
    data = dist.Categorical(true_probs).sample(random.PRNGKey(1), (2000, ))
    kernel = kernel_cls(model, trajectory_length=1., dense_mass=dense_mass)
    mcmc = MCMC(kernel, warmup_steps, num_samples, progress_bar=False)
    mcmc.run(random.PRNGKey(2), data)
    samples = mcmc.get_samples()
    assert_allclose(np.mean(samples['p_latent'], 0), true_probs, atol=0.02)

    if 'JAX_ENABLE_x64' in os.environ:
        assert samples['p_latent'].dtype == np.float64
Esempio n. 11
0
def test_uniform_normal():
    true_coef = 0.9
    num_warmup, num_samples = 1000, 1000

    def model(data):
        alpha = numpyro.sample('alpha', dist.Uniform(0, 1))
        loc = numpyro.sample('loc', dist.Uniform(0, alpha))
        numpyro.sample('obs', dist.Normal(loc, 0.1), obs=data)

    data = true_coef + random.normal(random.PRNGKey(0), (1000, ))
    kernel = NUTS(model=model)
    mcmc = MCMC(kernel, num_warmup=num_warmup, num_samples=num_samples)
    mcmc.run(random.PRNGKey(2),
             data,
             collect_warmup=True,
             collect_fields=('z', 'num_steps', 'adapt_state.step_size'))
    samples = mcmc.get_samples()
    assert len(samples[0]['loc']) == num_warmup + num_samples
    assert_allclose(np.mean(samples[0]['loc'], 0), true_coef, atol=0.05)
Esempio n. 12
0
def test_prior_with_sample_shape():
    data = {
        "J": 8,
        "y": np.array([28.0, 8.0, -3.0, 7.0, -1.0, 1.0, 18.0, 12.0]),
        "sigma": np.array([15.0, 10.0, 16.0, 11.0, 9.0, 11.0, 10.0, 18.0]),
    }

    def schools_model():
        mu = numpyro.sample('mu', dist.Normal(0, 5))
        tau = numpyro.sample('tau', dist.HalfCauchy(5))
        theta = numpyro.sample('theta',
                               dist.Normal(mu, tau),
                               sample_shape=(data['J'], ))
        numpyro.sample('obs', dist.Normal(theta, data['sigma']), obs=data['y'])

    num_samples = 500
    mcmc = MCMC(NUTS(schools_model), num_warmup=500, num_samples=num_samples)
    mcmc.run(random.PRNGKey(0))
    assert mcmc.get_samples()['theta'].shape == (num_samples, data['J'])
Esempio n. 13
0
def test_unnormalized_normal(kernel_cls, dense_mass):
    true_mean, true_std = 1., 2.
    warmup_steps, num_samples = 1000, 8000

    def potential_fn(z):
        return 0.5 * np.sum(((z - true_mean) / true_std)**2)

    init_params = np.array(0.)
    kernel = kernel_cls(potential_fn=potential_fn,
                        trajectory_length=9,
                        dense_mass=dense_mass)
    mcmc = MCMC(kernel, warmup_steps, num_samples)
    mcmc.run(random.PRNGKey(0), init_params=init_params)
    hmc_states = mcmc.get_samples()
    assert_allclose(np.mean(hmc_states), true_mean, rtol=0.05)
    assert_allclose(np.std(hmc_states), true_std, rtol=0.05)

    if 'JAX_ENABLE_x64' in os.environ:
        assert hmc_states.dtype == np.float64
Esempio n. 14
0
def test_logistic_regression(kernel_cls):
    N, dim = 3000, 3
    warmup_steps, num_samples = 1000, 8000
    data = random.normal(random.PRNGKey(0), (N, dim))
    true_coefs = np.arange(1., dim + 1.)
    logits = np.sum(true_coefs * data, axis=-1)
    labels = dist.Bernoulli(logits=logits).sample(random.PRNGKey(1))

    def model(labels):
        coefs = numpyro.sample('coefs', dist.Normal(np.zeros(dim),
                                                    np.ones(dim)))
        logits = np.sum(coefs * data, axis=-1)
        return numpyro.sample('obs', dist.Bernoulli(logits=logits), obs=labels)

    kernel = kernel_cls(model=model, trajectory_length=10)
    mcmc = MCMC(kernel, warmup_steps, num_samples)
    mcmc.run(random.PRNGKey(2), labels)
    samples = mcmc.get_samples()
    assert_allclose(np.mean(samples['coefs'], 0), true_coefs, atol=0.21)

    if 'JAX_ENABLE_x64' in os.environ:
        assert samples['coefs'].dtype == np.float64
Esempio n. 15
0
def test_correlated_mvn():
    # This requires dense mass matrix estimation.
    D = 5

    warmup_steps, num_samples = 5000, 8000

    true_mean = 0.
    a = np.tril(0.5 * np.fliplr(np.eye(D)) +
                0.1 * np.exp(random.normal(random.PRNGKey(0), shape=(D, D))))
    true_cov = np.dot(a, a.T)
    true_prec = np.linalg.inv(true_cov)

    def potential_fn(z):
        return 0.5 * np.dot(z.T, np.dot(true_prec, z))

    init_params = np.zeros(D)
    kernel = NUTS(potential_fn=potential_fn, dense_mass=True)
    mcmc = MCMC(kernel, warmup_steps, num_samples)
    mcmc.run(random.PRNGKey(0), init_params=init_params)
    samples = mcmc.get_samples()
    assert_allclose(np.mean(samples), true_mean, atol=0.02)
    assert onp.sum(onp.abs(onp.cov(samples.T) - true_cov)) / D**2 < 0.02
Esempio n. 16
0
def test_diverging(kernel_cls, adapt_step_size):
    data = random.normal(random.PRNGKey(0), (1000, ))

    def model(data):
        loc = numpyro.sample('loc', dist.Normal(0., 1.))
        numpyro.sample('obs', dist.Normal(loc, 1), obs=data)

    kernel = kernel_cls(model,
                        step_size=10.,
                        adapt_step_size=adapt_step_size,
                        adapt_mass_matrix=False)
    num_warmup = num_samples = 1000
    mcmc = MCMC(kernel, num_warmup, num_samples)
    mcmc.run(random.PRNGKey(1),
             data,
             collect_fields=('z', 'diverging'),
             collect_warmup=True)
    num_divergences = mcmc.get_samples()[1].sum()
    if adapt_step_size:
        assert num_divergences <= num_warmup
    else:
        assert_allclose(num_divergences, num_warmup + num_samples)
Esempio n. 17
0
def main(args):
    jax_config.update('jax_platform_name', args.device)
    print('Simulating data...')
    (transition_prior, emission_prior, transition_prob, emission_prob,
     supervised_categories, supervised_words,
     unsupervised_words) = simulate_data(
         random.PRNGKey(1),
         num_categories=args.num_categories,
         num_words=args.num_words,
         num_supervised_data=args.num_supervised,
         num_unsupervised_data=args.num_unsupervised,
     )
    print('Starting inference...')
    rng = random.PRNGKey(2)
    start = time.time()
    kernel = NUTS(semi_supervised_hmm)
    mcmc = MCMC(kernel, args.num_warmup, args.num_samples)
    mcmc.run(rng, transition_prior, emission_prior, supervised_categories,
             supervised_words, unsupervised_words)
    samples = mcmc.get_samples()
    print('\nMCMC elapsed time:', time.time() - start)
    print_results(samples, transition_prob, emission_prob)
Esempio n. 18
0
def test_beta_bernoulli(kernel_cls):
    warmup_steps, num_samples = 500, 20000

    def model(data):
        alpha = np.array([1.1, 1.1])
        beta = np.array([1.1, 1.1])
        p_latent = numpyro.sample('p_latent', dist.Beta(alpha, beta))
        numpyro.sample('obs', dist.Bernoulli(p_latent), obs=data)
        return p_latent

    true_probs = np.array([0.9, 0.1])
    data = dist.Bernoulli(true_probs).sample(random.PRNGKey(1), (1000, 2))
    kernel = kernel_cls(model=model, trajectory_length=1.)
    mcmc = MCMC(kernel,
                num_warmup=warmup_steps,
                num_samples=num_samples,
                progress_bar=False)
    mcmc.run(random.PRNGKey(2), data)
    samples = mcmc.get_samples()
    assert_allclose(np.mean(samples['p_latent'], 0), true_probs, atol=0.05)

    if 'JAX_ENABLE_x64' in os.environ:
        assert samples['p_latent'].dtype == np.float64
Esempio n. 19
0
def test_chain(use_init_params, chain_method):
    N, dim = 3000, 3
    num_chains = 2
    num_warmup, num_samples = 5000, 5000
    data = random.normal(random.PRNGKey(0), (N, dim))
    true_coefs = np.arange(1., dim + 1.)
    logits = np.sum(true_coefs * data, axis=-1)
    labels = dist.Bernoulli(logits=logits).sample(random.PRNGKey(1))

    def model(labels):
        coefs = numpyro.sample('coefs', dist.Normal(np.zeros(dim),
                                                    np.ones(dim)))
        logits = np.sum(coefs * data, axis=-1)
        return numpyro.sample('obs', dist.Bernoulli(logits=logits), obs=labels)

    kernel = NUTS(model=model)
    mcmc = MCMC(kernel, num_warmup, num_samples, num_chains=num_chains)
    mcmc.chain_method = chain_method
    init_params = None if not use_init_params else \
        {'coefs': np.tile(np.ones(dim), num_chains).reshape(num_chains, dim)}
    mcmc.run(random.PRNGKey(2), labels, init_params=init_params)
    samples = mcmc.get_samples()
    assert samples['coefs'].shape[0] == num_chains * num_samples
    assert_allclose(np.mean(samples['coefs'], 0), true_coefs, atol=0.21)
Esempio n. 20
0
def test_change_point():
    # Ref: https://forum.pyro.ai/t/i-dont-understand-why-nuts-code-is-not-working-bayesian-hackers-mail/696
    warmup_steps, num_samples = 500, 3000

    def model(data):
        alpha = 1 / np.mean(data)
        lambda1 = numpyro.sample('lambda1', dist.Exponential(alpha))
        lambda2 = numpyro.sample('lambda2', dist.Exponential(alpha))
        tau = numpyro.sample('tau', dist.Uniform(0, 1))
        lambda12 = np.where(
            np.arange(len(data)) < tau * len(data), lambda1, lambda2)
        numpyro.sample('obs', dist.Poisson(lambda12), obs=data)

    count_data = np.array([
        13,
        24,
        8,
        24,
        7,
        35,
        14,
        11,
        15,
        11,
        22,
        22,
        11,
        57,
        11,
        19,
        29,
        6,
        19,
        12,
        22,
        12,
        18,
        72,
        32,
        9,
        7,
        13,
        19,
        23,
        27,
        20,
        6,
        17,
        13,
        10,
        14,
        6,
        16,
        15,
        7,
        2,
        15,
        15,
        19,
        70,
        49,
        7,
        53,
        22,
        21,
        31,
        19,
        11,
        18,
        20,
        12,
        35,
        17,
        23,
        17,
        4,
        2,
        31,
        30,
        13,
        27,
        0,
        39,
        37,
        5,
        14,
        13,
        22,
    ])
    kernel = NUTS(model=model)
    mcmc = MCMC(kernel, warmup_steps, num_samples)
    mcmc.run(random.PRNGKey(4), count_data)
    samples = mcmc.get_samples()
    tau_posterior = (samples['tau'] * len(count_data)).astype(np.int32)
    tau_values, counts = onp.unique(tau_posterior, return_counts=True)
    mode_ind = np.argmax(counts)
    mode = tau_values[mode_ind]
    assert mode == 44

    if 'JAX_ENABLE_x64' in os.environ:
        assert samples['lambda1'].dtype == np.float64
        assert samples['lambda2'].dtype == np.float64
        assert samples['tau'].dtype == np.float64
Esempio n. 21
0
def run_inference(dept, male, applications, admit, rng, args):
    kernel = NUTS(glmm)
    mcmc = MCMC(kernel, args.num_warmup, args.num_samples, args.num_chains)
    mcmc.run(rng, dept, male, applications, admit)
    return mcmc.get_samples()
Esempio n. 22
0
def main(args):
    jax_config.update('jax_platform_name', args.device)

    print("Start vanilla HMC...")
    nuts_kernel = NUTS(potential_fn=dual_moon_pe)
    mcmc = MCMC(nuts_kernel, args.num_warmup, args.num_samples)
    mcmc.run(random.PRNGKey(11), init_params=np.array([2., 0.]))
    vanilla_samples = mcmc.get_samples()

    adam = optim.Adam(0.001)
    rng_init, rng_train = random.split(random.PRNGKey(1), 2)
    guide = AutoIAFNormal(dual_moon_model, hidden_dims=[args.num_hidden], skip_connections=True)
    svi = SVI(dual_moon_model, guide, elbo, adam)
    svi_state = svi.init(rng_init)

    print("Start training guide...")
    last_state, losses = lax.scan(lambda state, i: svi.update(state), svi_state, np.zeros(args.num_iters))
    params = svi.get_params(last_state)
    print("Finish training guide. Extract samples...")
    guide_samples = guide.sample_posterior(random.PRNGKey(0), params,
                                           sample_shape=(args.num_samples,))

    transform = guide.get_transform(params)
    unpack_fn = guide.unpack_latent

    _, potential_fn, constrain_fn = initialize_model(random.PRNGKey(0), dual_moon_model)
    transformed_potential_fn = make_transformed_pe(potential_fn, transform, unpack_fn)
    transformed_constrain_fn = lambda x: constrain_fn(unpack_fn(transform(x)))  # noqa: E731

    init_params = np.zeros(guide.latent_size)
    print("\nStart NeuTra HMC...")
    # TODO: exlore why neutra samples are not good
    # Issue: https://github.com/pyro-ppl/numpyro/issues/256
    nuts_kernel = NUTS(potential_fn=transformed_potential_fn)
    mcmc = MCMC(nuts_kernel, args.num_warmup, args.num_samples)
    mcmc.run(random.PRNGKey(10), init_params=init_params)
    zs = mcmc.get_samples()
    print("Transform samples into unwarped space...")
    samples = vmap(transformed_constrain_fn)(zs)
    summary(tree_map(lambda x: x[None, ...], samples))

    # make plots

    # IAF guide samples (for plotting)
    iaf_base_samples = dist.Normal(np.zeros(2), 1.).sample(random.PRNGKey(0), (1000,))
    iaf_trans_samples = vmap(transformed_constrain_fn)(iaf_base_samples)['x']

    x1 = np.linspace(-3, 3, 100)
    x2 = np.linspace(-3, 3, 100)
    X1, X2 = np.meshgrid(x1, x2)
    P = np.clip(np.exp(-dual_moon_pe(np.stack([X1, X2], axis=-1))), a_min=0.)

    fig = plt.figure(figsize=(12, 16), constrained_layout=True)
    gs = GridSpec(3, 2, figure=fig)
    ax1 = fig.add_subplot(gs[0, 0])
    ax2 = fig.add_subplot(gs[0, 1])
    ax3 = fig.add_subplot(gs[1, 0])
    ax4 = fig.add_subplot(gs[1, 1])
    ax5 = fig.add_subplot(gs[2, 0])
    ax6 = fig.add_subplot(gs[2, 1])

    ax1.plot(np.log(losses[1000:]))
    ax1.set_title('Autoguide training log loss (after 1000 steps)')

    ax2.contourf(X1, X2, P, cmap='OrRd')
    sns.kdeplot(guide_samples['x'][:, 0].copy(), guide_samples['x'][:, 1].copy(), n_levels=30, ax=ax2)
    ax2.set(xlim=[-3, 3], ylim=[-3, 3],
            xlabel='x0', ylabel='x1', title='Posterior using AutoIAFNormal guide')

    sns.scatterplot(iaf_base_samples[:, 0], iaf_base_samples[:, 1], ax=ax3, hue=iaf_trans_samples[:, 0] < 0.)
    ax3.set(xlim=[-3, 3], ylim=[-3, 3],
            xlabel='x0', ylabel='x1', title='AutoIAFNormal base samples (True=left moon; False=right moon)')

    ax4.contourf(X1, X2, P, cmap='OrRd')
    sns.kdeplot(vanilla_samples[:, 0].copy(), vanilla_samples[:, 1].copy(), n_levels=30, ax=ax4)
    ax4.plot(vanilla_samples[-50:, 0], vanilla_samples[-50:, 1], 'bo-', alpha=0.5)
    ax4.set(xlim=[-3, 3], ylim=[-3, 3],
            xlabel='x0', ylabel='x1', title='Posterior using vanilla HMC sampler')

    sns.scatterplot(zs[:, 0], zs[:, 1], ax=ax5, hue=samples['x'][:, 0] < 0.,
                    s=30, alpha=0.5, edgecolor="none")
    ax5.set(xlim=[-5, 5], ylim=[-5, 5],
            xlabel='x0', ylabel='x1', title='Samples from the warped posterior - p(z)')

    ax6.contourf(X1, X2, P, cmap='OrRd')
    sns.kdeplot(samples['x'][:, 0].copy(), samples['x'][:, 1].copy(), n_levels=30, ax=ax6)
    ax6.plot(samples['x'][-50:, 0], samples['x'][-50:, 1], 'bo-', alpha=0.2)
    ax6.set(xlim=[-3, 3], ylim=[-3, 3],
            xlabel='x0', ylabel='x1', title='Posterior using NeuTra HMC sampler')

    plt.savefig("neutra.pdf")
    plt.close()