Esempio n. 1
0
 def test_if_run(self):
     X = np.random.randn(64)
     shard_sizes = (int(X.shape[0]/8),)
     X_sharded = BigMatrix("if_test", shape=X.shape,
                           shard_sizes=shard_sizes, write_header=True)
     O_sharded = BigMatrix("if_test_output", shape=X.shape,
                           shard_sizes=shard_sizes, write_header=True)
     X_sharded.free()
     shard_matrix(X_sharded, X)
     f = frontend.lpcompile(f1_if)
     p = f(X_sharded, O_sharded, X_sharded.num_blocks(0))
     num_cores = 1
     executor = fs.ProcessPoolExecutor(num_cores)
     config = npw.config.default()
     p_ex = lp.LambdaPackProgram(p, config=config)
     p_ex.start()
     all_futures = []
     for i in range(num_cores):
         all_futures.append(executor.submit(
             job_runner.lambdapack_run, p_ex, pipeline_width=1, idle_timeout=5, timeout=60))
     p_ex.wait()
     time.sleep(5)
     p_ex.free()
     for i in range(X_sharded.num_blocks(0)):
         Ob = O_sharded.get_block(i)
         Xb = X_sharded.get_block(i)
         if ((i % 2) == 0):
             assert(np.allclose(Ob, 1*Xb))
         else:
             assert(np.allclose(Ob, 2*Xb))
Esempio n. 2
0
    def test_multiple_shard_matrix_multiply(self):
        fexec = lithops.FunctionExecutor(runtime='jsampe/numpy-lithops:04',
                                         log_level='DEBUG')

        X = np.random.randn(16, 16)
        X_shard_sizes = tuple(map(int, np.array(X.shape) / 2))
        X_sharded = BigMatrix("gemm_test_1",
                              shape=X.shape,
                              shard_sizes=X_shard_sizes,
                              storage=fexec.storage)

        Y = np.random.randn(16, 16)
        Y_shard_sizes = tuple(map(int, np.array(Y.shape) / 2))
        Y_sharded = BigMatrix("gemm_test_2",
                              shape=Y.shape,
                              shard_sizes=Y_shard_sizes,
                              storage=fexec.storage)

        shard_matrix(X_sharded, X)
        shard_matrix(Y_sharded, Y)

        XY_sharded = binops.gemm(fexec, X_sharded, Y_sharded, X_sharded.bucket,
                                 1)

        XY_sharded_local = XY_sharded.numpy()
        XY = X.dot(Y)
        X_sharded.free()
        Y_sharded.free()
        XY_sharded.free()
        assert (np.all(np.isclose(XY, XY_sharded_local)))
        os.system("rm -rf /dev/shm/*")
Esempio n. 3
0
def test_cholesky():
    X = np.random.randn(64, 64)
    #X = np.random.randn(4, 4)
    A = X.dot(X.T) + np.eye(X.shape[0])
    shard_size = 16
    #shard_size = 4
    shard_sizes = (shard_size, shard_size)
    A_sharded = BigMatrix("cholesky_test_A",
                          shape=A.shape,
                          shard_sizes=shard_sizes,
                          write_header=True)
    A_sharded.free()
    shard_matrix(A_sharded, A)
    program, meta = cholesky(A_sharded)
    executor = fs.ProcessPoolExecutor(1)
    print("starting program")
    program.start()
    future = executor.submit(job_runner.lambdapack_run,
                             program,
                             timeout=60 * 10,
                             idle_timeout=6)
    #job_runner.lambdapack_run(program, timeout=60, idle_timeout=6)
    program.wait()
    program.free()
    L_sharded = meta["outputs"][0]
    L_npw = L_sharded.numpy()
    L = np.linalg.cholesky(A)
    assert (np.allclose(L_npw, L))
    print("great success!")
Esempio n. 4
0
def test_cholesky_lambda():
    X = np.random.randn(128, 128)
    A = X.dot(X.T) + np.eye(X.shape[0])
    shard_size = 128
    shard_sizes = (shard_size, shard_size)
    A_sharded = BigMatrix("job_runner_test",
                          shape=A.shape,
                          shard_sizes=shard_sizes,
                          write_header=True)
    A_sharded.free()
    shard_matrix(A_sharded, A)
    program, meta = cholesky(A_sharded)
    executor = fs.ProcessPoolExecutor(1)
    print("starting program")
    program.start()
    pwex = pywren.default_executor()
    futures = pwex.map(
        lambda x: job_runner.lambdapack_run(
            program, timeout=60, idle_timeout=6), range(16))
    pywren.wait(futures)
    print("RESULTSSS")
    print([f.result() for f in futures])
    futures = pwex.map(
        lambda x: job_runner.lambdapack_run(
            program, timeout=60, idle_timeout=6), range(16))
    program.wait()
    #program.free()
    L_sharded = meta["outputs"][0]
    L_npw = L_sharded.numpy()
    L = np.linalg.cholesky(A)
    assert (np.allclose(L_npw, L))
    print("great success!")
Esempio n. 5
0
def test_cholesky_multiprocess():
    X = np.random.randn(128, 128)
    A = X.dot(X.T) + 1e9 * np.eye(X.shape[0])
    shard_size = 8
    shard_sizes = (shard_size, shard_size)
    A_sharded = BigMatrix("job_runner_test",
                          shape=A.shape,
                          shard_sizes=shard_sizes,
                          write_header=True)
    A_sharded.free()
    shard_matrix(A_sharded, A)
    program, meta = cholesky(A_sharded)
    executor = fs.ProcessPoolExecutor(8)
    print("starting program")
    program.start()
    futures = []
    for i in range(8):
        future = executor.submit(job_runner.lambdapack_run,
                                 program,
                                 timeout=25)
        futures.append(future)
    print("Waiting for futures")
    fs.wait(futures)
    [f.result() for f in futures]
    futures = []
    for i in range(8):
        future = executor.submit(job_runner.lambdapack_run,
                                 program,
                                 timeout=25)
        futures.append(future)
    print("Waiting for futures..again")
    fs.wait(futures)
    [f.result() for f in futures]
    print("great success!")
    return 0
Esempio n. 6
0
    def test_matmul(self):
        size = 4
        shard_size = 2
        np.random.seed(0)
        A = np.random.randn(size, size)
        B = np.random.randn(size, size)
        C = np.dot(A, B)

        shard_sizes = (shard_size, shard_size)
        A_sharded = BigMatrix("matmul_test_A",
                              shape=A.shape,
                              shard_sizes=shard_sizes,
                              write_header=True)
        A_sharded.free()
        shard_matrix(A_sharded, A)
        B_sharded = BigMatrix("matmul_test_B",
                              shape=B.shape,
                              shard_sizes=shard_sizes,
                              write_header=True)
        B_sharded.free()
        shard_matrix(B_sharded, B)
        Temp = BigMatrix("matmul_test_Temp",
                         shape=[A.shape[0], B.shape[1], B.shape[0], 100],
                         shard_sizes=[
                             A_sharded.shard_sizes[0],
                             B_sharded.shard_sizes[1], 1, 1
                         ],
                         write_header=True)
        C_sharded = BigMatrix("matmul_test_C",
                              shape=C.shape,
                              shard_sizes=shard_sizes,
                              write_header=True)

        b_fac = 2
        config = npw.config.default()
        compiled_matmul = frontend.lpcompile(matmul)
        program = compiled_matmul(A_sharded, B_sharded,
                                  A_sharded.num_blocks(0),
                                  A_sharded.num_blocks(1),
                                  B_sharded.num_blocks(1), b_fac, Temp,
                                  C_sharded)
        program_executable = lp.LambdaPackProgram(program, config=config)
        program_executable.start()
        job_runner.lambdapack_run(program_executable,
                                  pipeline_width=1,
                                  idle_timeout=5,
                                  timeout=60)
        executor = fs.ThreadPoolExecutor(1)
        all_futures = [
            executor.submit(job_runner.lambdapack_run,
                            program_executable,
                            pipeline_width=1,
                            idle_timeout=5,
                            timeout=60)
        ]
        program_executable.wait()
        program_executable.free()
        C_remote = C_sharded.numpy()
        assert (np.allclose(C, C_remote))
 def test_multiple_shard_transpose_matrix(self):
     X = np.random.randn(128, 128)
     shard_sizes = tuple(map(int, np.array(X.shape)/2))
     X_sharded = BigMatrix("test_1", shape=X.shape, shard_sizes=shard_sizes)
     shard_matrix(X_sharded, X)
     X_sharded_local = X_sharded.T.numpy()
     X_sharded.free()
     assert(np.all(X.T == X_sharded_local))
Esempio n. 8
0
 def test_single_multiaxis(self):
     X = np.random.randn(8, 8, 8, 8)
     X_sharded = BigMatrix("multiaxis", shape=X.shape, shard_sizes=X.shape)
     print("BLOCK_IDXS", X_sharded.block_idxs)
     shard_matrix(X_sharded, X)
     print("BLOCK_IDXS_EXIST", X_sharded.block_idxs_exist)
     X_sharded_local = X_sharded.numpy()
     X_sharded.free()
     assert (np.all(X_sharded_local == X))
Esempio n. 9
0
 def test_single_shard_matrix_multiply(self):
     X = np.random.randn(16, 16)
     X_sharded = BigMatrix("gemm_test_0",
                           shape=X.shape,
                           shard_sizes=X.shape)
     shard_matrix(X_sharded, X)
     pwex = pywren.lambda_executor()
     XXT_sharded = binops.gemm(pwex, X_sharded, X_sharded.T,
                               X_sharded.bucket, 1)
     XXT_sharded_local = XXT_sharded.numpy()
     XXT = X.dot(X.T)
     X_sharded.free()
     XXT_sharded.free()
     assert (np.all(np.isclose(XXT, XXT_sharded_local)))
     os.system("rm -rf /dev/shm/*")
Esempio n. 10
0
 def test_multiple_shard_cholesky(self):
     np.random.seed(1)
     size = 128
     shard_size = 64
     np.random.seed(1)
     print("Generating X")
     executor = fs.ProcessPoolExecutor(cpu_count)
     X = np.random.randn(size, 128)
     print("Generating A")
     A = X.dot(X.T) + np.eye(X.shape[0])
     y = np.random.randn(size)
     pwex = pywren.default_executor()
     print("sharding A")
     shard_sizes = (shard_size, shard_size)
     A_sharded = BigSymmetricMatrix("cholesky_test_A",
                                    shape=A.shape,
                                    shard_sizes=shard_sizes)
     y_sharded = BigMatrix("cholesky_test_y",
                           shape=y.shape,
                           shard_sizes=shard_sizes[:1])
     A_sharded.free()
     y_sharded.free()
     A_sharded = BigSymmetricMatrix("cholesky_test_A",
                                    shape=A.shape,
                                    shard_sizes=shard_sizes)
     y_sharded = BigMatrix("cholesky_test_y",
                           shape=y.shape,
                           shard_sizes=shard_sizes[:1])
     t = time.time()
     shard_matrix(A_sharded, A, executor=executor)
     e = time.time()
     print("A_sharded", e - t)
     t = time.time()
     shard_matrix(y_sharded, y, executor=executor)
     e = time.time()
     print("y_sharded time", e - t)
     print("Computing LL^{T}")
     L = cholesky(A)
     print(L)
     L_sharded = uops.chol(pwex, A_sharded)
     L_sharded_local = L_sharded.numpy()
     print(L_sharded_local)
     print(L)
     print("L_{infty} difference ", np.max(np.abs(L_sharded_local - L)))
     assert (np.allclose(L, L_sharded_local))
     os.system("rm -rf /dev/shm/*")
Esempio n. 11
0
 def test_if_static(self):
     X = np.random.randn(64, 64)
     shard_sizes = (int(X.shape[0]/8), X.shape[1])
     X_sharded = BigMatrix("if_test", shape=X.shape,
                           shard_sizes=shard_sizes, write_header=True)
     O_sharded = BigMatrix("if_test_output", shape=X.shape,
                           shard_sizes=shard_sizes, write_header=True)
     X_sharded.free()
     shard_matrix(X_sharded, X)
     f = frontend.lpcompile(f1_if)
     p = f(X_sharded, O_sharded, X_sharded.num_blocks(0))
     assert(p.starters == p.find_terminators())
     for s, var_values in p.starters:
         if(var_values['i'] % 2 == 0):
             assert s == 0
         else:
             assert s == 1
def test_cholesky_lambda():
    X = np.random.randn(64, 64)
    A = X.dot(X.T) + np.eye(X.shape[0])
    shard_size = 16
    shard_sizes = (shard_size, shard_size)
    A_sharded = BigMatrix("cholesky_test_A", shape=A.shape,
                          shard_sizes=shard_sizes, write_header=True)
    A_sharded.free()
    shard_matrix(A_sharded, A)
    program, meta = cholesky(A_sharded)
    futures = run_program_in_pywren(program)
    program.start()
    program.wait()
    program.free()
    L_sharded = meta["outputs"][0]
    L_npw = L_sharded.numpy()
    L = np.linalg.cholesky(A)
    assert(np.allclose(L_npw, L))
    print("great success!")
Esempio n. 13
0
    def test_sharded_matrix_row_put_big(self):
        s = 2
        X = np.arange(0, 2048 * 2048 * s).reshape(2048, 2048 * s)
        X_sharded = BigMatrix("row_put_test",
                              shape=X.shape,
                              shard_sizes=[2048, 2048])
        t = time.time()
        matrix_utils.put_row(X_sharded, X, 0)
        e = time.time()
        print(X.shape)
        print("Effective GB/s", (2048 * 2048 * s * 8) / (1e9 * (e - t)))
        print("Upload Time", e - t)

        t = time.time()
        row_0 = matrix_utils.get_row(X_sharded, 0)
        e = time.time()
        X_sharded.free()
        os.system("rm -rf /dev/shm/*")
        assert (np.all(X == row_0))
Esempio n. 14
0
 def test_sharded_multiaxis(self):
     X = np.random.randn(8, 8, 8, 8)
     shard_sizes = tuple(map(int, np.array(X.shape)/2))
     X_sharded = BigMatrix("multiaxis_2", shape=X.shape,
                           shard_sizes=shard_sizes)
     shard_matrix(X_sharded, X)
     print("BLOCK_IDXS", X_sharded.block_idxs)
     X_sharded_local = X_sharded.numpy()
     print(X_sharded.free())
     assert(np.all(X_sharded_local == X))
Esempio n. 15
0
 def test_single_shard_gemv(self):
     X = np.random.randn(16, 16)
     Y = np.random.randn(16)
     X_sharded = BigMatrix("gemv_test_0",
                           shape=X.shape,
                           shard_sizes=X.shape)
     Y_sharded = BigMatrix("gemv_test_2",
                           shape=Y.shape,
                           shard_sizes=Y.shape)
     shard_matrix(X_sharded, X)
     pwex = pywren.default_executor()
     XY_sharded = binops.gemv(pwex, X_sharded, Y_sharded, X_sharded.bucket,
                              1)
     XY_sharded_local = XY_sharded.numpy()
     XY = X.dot(Y)
     print(XY)
     print(XY_sharded_local)
     X_sharded.free()
     XY_sharded.free()
     assert (np.all(np.isclose(XY, XY_sharded_local)))
Esempio n. 16
0
 def test_multiple_shard_matrix_multiply_symmetric_2(self):
     X = np.random.randn(16, 16)
     shard_sizes = [8, 16]
     X_sharded = BigMatrix("gemm_test_1",
                           shape=X.shape,
                           shard_sizes=shard_sizes)
     shard_matrix(X_sharded, X)
     pwex = pywren.lambda_executor()
     XTX_sharded = binops.gemm(pwex,
                               X_sharded.T,
                               X_sharded,
                               X_sharded.bucket,
                               1,
                               local=True)
     XTX_sharded_local = XTX_sharded.numpy()
     XTX = X.T.dot(X)
     X_sharded.free()
     XTX_sharded.free()
     assert (np.all(np.isclose(XTX, XTX_sharded_local)))
     os.system("rm -rf /dev/shm/*")
Esempio n. 17
0
    def test_single_shard_matrix_multiply(self):
        fexec = lithops.FunctionExecutor(runtime='jsampe/numpy-lithops:04',
                                         log_level='DEBUG')

        X = np.random.randn(16, 16)
        X_sharded = BigMatrix("gemm_test_0",
                              shape=X.shape,
                              shard_sizes=X.shape,
                              storage=fexec.storage)
        shard_matrix(X_sharded, X)

        XX_sharded = binops.gemm(fexec, X_sharded, X_sharded.T,
                                 X_sharded.bucket, 1)

        XX_sharded_local = XX_sharded.numpy()
        XX = X.dot(X.T)
        X_sharded.free()
        XX_sharded.free()

        assert (np.all(np.isclose(XX, XX_sharded_local)))
        os.system("rm -rf /dev/shm/*")
Esempio n. 18
0
 def test_multiple_shard_matrix_multiply(self):
     X = np.random.randn(16, 16)
     Y = np.random.randn(16, 16)
     shard_sizes = tuple(map(int, np.array(X.shape) / 2))
     X_sharded = BigMatrix("gemm_test_1",
                           shape=X.shape,
                           shard_sizes=shard_sizes)
     Y_sharded = BigMatrix("gemm_test_2",
                           shape=X.shape,
                           shard_sizes=shard_sizes)
     shard_matrix(X_sharded, X)
     shard_matrix(Y_sharded, Y)
     pwex = pywren.lambda_executor()
     XY_sharded = binops.gemm(pwex, X_sharded, Y_sharded, X_sharded.bucket,
                              1)
     XY_sharded_local = XY_sharded.numpy()
     XY = X.dot(Y)
     X_sharded.free()
     Y_sharded.free()
     XY_sharded.free()
     assert (np.all(np.isclose(XY, XY_sharded_local)))
     os.system("rm -rf /dev/shm/*")
Esempio n. 19
0
 def test_multiple_shard_matrix_gemv(self):
     X = np.random.randn(16, 16)
     Y = np.random.randn(16, 1)
     shard_sizes_0 = tuple(map(int, np.array(X.shape) / 2))
     shard_sizes_1 = (Y.shape[0], 1)
     X_sharded = BigMatrix("gemv_test_1",
                           shape=X.shape,
                           shard_sizes=shard_sizes_0)
     Y_sharded = BigMatrix("gemv_test_2",
                           shape=Y.shape,
                           shard_sizes=shard_sizes_1)
     shard_matrix(X_sharded, X)
     shard_matrix(Y_sharded, Y)
     pwex = pywren.default_executor()
     XY_sharded = binops.gemv(pwex, X_sharded, Y_sharded, X_sharded.bucket,
                              1)
     XY_sharded_local = XY_sharded.numpy()
     XY = X.dot(Y)
     X_sharded.free()
     Y_sharded.free()
     XY_sharded.free()
     assert (np.all(np.isclose(XY, XY_sharded_local)))
Esempio n. 20
0
def test_cholesky_timeouts():
    X = np.random.randn(64, 64)
    A = X.dot(X.T) + np.eye(X.shape[0])
    shard_size = 8
    shard_sizes = (shard_size, shard_size)
    A_sharded = BigMatrix("job_runner_test",
                          shape=A.shape,
                          shard_sizes=shard_sizes,
                          write_header=True)
    A_sharded.free()
    shard_matrix(A_sharded, A)
    program, meta = cholesky(A_sharded)
    executor = fs.ProcessPoolExecutor(1)
    print("starting program")
    program.start()
    future = executor.submit(job_runner.lambdapack_run,
                             program,
                             timeout=10,
                             idle_timeout=6)
    time.sleep(15)
    print("poop")
    assert (int(program.get_up()) == 0)
    program.free()
    print("great success!")
Esempio n. 21
0
def test_cholesky_multi_repeats():
    ''' Insert repeated instructions into PC queue avoid double increments '''

    print("RUNNING MULTI")
    np.random.seed(1)
    size = 256
    shard_size = 30
    repeats = 15
    total_repeats = 150
    np.random.seed(2)
    print("Generating X")
    X = np.random.randn(size, 128)
    print("Generating A")
    A = X.dot(X.T) + size * np.eye(X.shape[0])
    shard_sizes = (shard_size, shard_size)
    A_sharded = BigMatrix("cholesky_test_A_{0}".format(int(time.time())),
                          shape=A.shape,
                          shard_sizes=shard_sizes,
                          write_header=True)
    A_sharded.free()
    shard_matrix(A_sharded, A)
    program, meta = cholesky(A_sharded)
    states = compiler.walk_program(program.program.remote_calls)
    L_sharded = meta["outputs"][0]
    L_sharded.free()
    pwex = pywren.default_executor()
    executor = pywren.lambda_executor
    config = npw.config.default()
    print("PROGRAM HASH", program.hash)
    cores = 1
    program.start()
    jobs = []

    for c in range(cores):
        p = mp.Process(target=job_runner.lambdapack_run,
                       args=(program, ),
                       kwargs={
                           'timeout': 3600,
                           'pipeline_width': 3
                       })
        jobs.append(p)
        p.start()

    np.random.seed(0)
    while (program.program_status() == lp.PS.RUNNING):
        sqs = boto3.resource('sqs', region_name=program.control_plane.region)
        time.sleep(0.5)
        waiting = 0
        running = 0
        for i, queue_url in enumerate(program.queue_urls):
            client = boto3.client('sqs')
            print("Priority {0}".format(i))
            attrs = client.get_queue_attributes(
                QueueUrl=queue_url,
                AttributeNames=[
                    'ApproximateNumberOfMessages',
                    'ApproximateNumberOfMessagesNotVisible'
                ])['Attributes']
            print(attrs)
            waiting += int(attrs["ApproximateNumberOfMessages"])
            running += int(attrs["ApproximateNumberOfMessagesNotVisible"])
        print("SQS QUEUE STATUS Waiting {0}, Running {1}".format(
            waiting, running))
        for i in range(repeats):
            p = program.get_progress()
            if (p is None):
                continue
            else:
                p = int(p)
            pc = int(np.random.choice(min(p, len(states)), 1))
            node = states[pc]
            queue = sqs.Queue(program.queue_urls[0])
            total_repeats -= 1
            if (total_repeats > 0):
                print("Malicilously enqueueing node ", pc, node, total_repeats)
                queue.send_message(MessageBody=json.dumps(node))
            time.sleep(1)
    #for p in jobs:
    #    p.join()
    program.wait()
    program.free()
    L_npw = L_sharded.numpy()
    L = np.linalg.cholesky(A)
    z = np.argmax(np.abs(L - L_npw))
    assert (np.allclose(L_npw, L))
Esempio n. 22
0
    def test_cholesky_multi_repeats(self):
        ''' Insert repeated instructions into PC queue avoid double increments '''

        print("RUNNING MULTI")
        np.random.seed(1)
        size = 256
        shard_size = 30
        repeats = 15
        total_repeats = 150
        np.random.seed(2)
        print("Generating X")
        X = np.random.randn(size, 128)
        print("Generating A")
        A = X.dot(X.T) + size*np.eye(X.shape[0])
        shard_sizes = (shard_size, shard_size)
        A_sharded = BigMatrix("cholesky_test_A_{0}".format(
            int(time.time())), shape=A.shape, shard_sizes=shard_sizes, write_header=True)
        A_sharded.free()
        shard_matrix(A_sharded, A)
        instructions, trailing, L_sharded = compiler._chol(A_sharded)
        all_nodes = instructions.unroll_program()
        L_sharded.free()
        pwex = pywren.default_executor()
        executor = pywren.lambda_executor
        config = npw.config.default()
        pywren_config = pwex.config
        program = lp.LambdaPackProgram(
            instructions, executor=executor, pywren_config=pywren_config, config=config, eager=True)
        print("PROGRAM HASH", program.hash)
        cores = 1
        program.start()
        jobs = []

        for c in range(cores):
            p = mp.Process(target=job_runner.lambdapack_run, args=(
                program,), kwargs={'timeout': 3600, 'pipeline_width': 5})
            jobs.append(p)
            p.start()

        np.random.seed(0)
        try:
            while(program.program_status() == lp.PS.RUNNING):
                sqs = boto3.resource(
                    'sqs', region_name=program.control_plane.region)
                time.sleep(0.5)
                waiting = 0
                running = 0
                for i, queue_url in enumerate(program.queue_urls):
                    client = boto3.client('sqs')
                    print("Priority {0}".format(i))
                    attrs = client.get_queue_attributes(QueueUrl=queue_url, AttributeNames=[
                                                        'ApproximateNumberOfMessages', 'ApproximateNumberOfMessagesNotVisible'])['Attributes']
                    print(attrs)
                    waiting += int(attrs["ApproximateNumberOfMessages"])
                    running += int(attrs["ApproximateNumberOfMessagesNotVisible"])
                print("SQS QUEUE STATUS Waiting {0}, Running {1}".format(
                    waiting, running))
                for i in range(repeats):
                    p = program.get_progress()
                    if (p is None):
                        continue
                    else:
                        p = int(p)
                    pc = int(np.random.choice(min(p, len(all_nodes)), 1))
                    node = all_nodes[pc]
                    queue = sqs.Queue(program.queue_urls[0])
                    total_repeats -= 1
                    if (total_repeats > 0):
                        print("Malicilously enqueueing node ",
                              pc, node, total_repeats)
                        queue.send_message(MessageBody=json.dumps(node))
                    time.sleep(1)
        # for p in jobs:
        #    p.join()
        except:
            pass

        print("Program status")
        print(program.program_status())
        for node in all_nodes:
            edge_sum = lp.get(program.control_plane.client,
                              program._node_edge_sum_key(*node))
            if (edge_sum == None):
                edge_sum = 0
            edge_sum = int(edge_sum)
            parents = program.program.get_parents(*node)
            children = program.program.get_children(*node)
            indegree = len(parents)
            node_status = program.get_node_status(*node)
            redis_str = "Node: {0}, Edge Sum: {1}, Indegree: {2}, Node Status {3}".format(
                node, edge_sum, indegree, node_status)
            if (edge_sum != indegree):
                print(redis_str)
                for p in parents:
                    p_status = program.get_node_status(*p)
                    edge_key = program._edge_key(p[0], p[1], node[0], node[1])
                    edge_value = lp.get(program.control_plane.client, edge_key)
                    child_str = "Parent Node: {0}, Parent Status: {1}, Edge Key: {2}".format(
                        p, p_status, edge_value)
                    print(child_str)
            #assert(edge_sum == indegree)
        program.free()
        L_npw = L_sharded.numpy()
        L = np.linalg.cholesky(A)
        z = np.argmax(np.abs(L - L_npw))
        assert(np.allclose(L_npw, L))
Esempio n. 23
0
    def test_cholesky_multi_failures(self):
        ''' Insert repeated instructions into PC queue avoid double increments '''

        print("RUNNING MULTI")
        np.random.seed(1)
        size = 256
        shard_size = 64
        failures = 4
        np.random.seed(1)
        print("Generating X")
        X = np.random.randn(size, 128)
        print("Generating A")
        A = X.dot(X.T) + size*np.eye(X.shape[0])
        shard_sizes = (shard_size, shard_size)
        A_sharded = BigMatrix("cholesky_test_A", shape=A.shape,
                              shard_sizes=shard_sizes, write_header=True)
        A_sharded.free()
        shard_matrix(A_sharded, A)
        instructions, trailing, L_sharded = compiler._chol(A_sharded)
        pwex = pywren.default_executor()
        executor = pywren.lambda_executor
        pywren_config = pwex.config
        config = npw.config.default()
        program = lp.LambdaPackProgram(
            instructions, executor=executor, pywren_config=pywren_config, config=config, eager=False)
        cores = 16
        program.start()
        jobs = []

        for c in range(cores):
            p = mp.Process(target=job_runner.lambdapack_run, args=(
                program,), kwargs={'timeout': 3600, 'pipeline_width': 4})
            jobs.append(p)
            p.start()

        np.random.seed(0)
        while(program.program_status() == lp.PS.RUNNING):
            sqs = boto3.resource(
                'sqs', region_name=program.control_plane.region)
            waiting = 0
            running = 0
            for i, queue_url in enumerate(program.queue_urls):
                client = boto3.client('sqs')
                print("Priority {0}".format(i))
                attrs = client.get_queue_attributes(QueueUrl=queue_url, AttributeNames=[
                                                    'ApproximateNumberOfMessages', 'ApproximateNumberOfMessagesNotVisible'])['Attributes']
                print(attrs)
                waiting += int(attrs["ApproximateNumberOfMessages"])
                running += int(attrs["ApproximateNumberOfMessagesNotVisible"])
            print("SQS QUEUE STATUS Waiting {0}, Running {1}".format(
                waiting, running))
            time.sleep(10)
            if (np.random.random() > 0.65):
                for i in range(failures):
                    core = int(np.random.choice(cores, 1)[0])
                    print("Maliciously Killing a job!")
                    jobs[core].terminate()
                    p = mp.Process(target=job_runner.lambdapack_run, args=(
                        program,), kwargs={'timeout': 3600, 'pipeline_width': 4})
                    p.start()
                    jobs[core] = p

        for p in jobs:
            p.join()

        print("Program status")
        print(program.program_status())
        program.free()
        L_npw = L_sharded.numpy()
        L = np.linalg.cholesky(A)
        print(L_npw)
        print(L)
        print("MAX ", np.max(np.abs(L - L_npw)))
        assert(np.allclose(L_npw, L))