Esempio n. 1
0
  def nextStep(self):
    """
    Perfoms actions related to time step progression.
    """

    Node.nextStep(self)
    for column in self.columns:
      column.nextStep()

    # Get input from sensors or lower regions and put into a single input map.
    input = self.getInput()

    # Send input to Spatial Pooler and get processed output (i.e. the active columns)
    # First initialize the vector for representing the current record
    columnDimensions = (self.width, self.height)
    columnNumber = numpy.array(columnDimensions).prod()
    activeColumns = numpy.zeros(columnNumber)
    self.spatialPooler.compute(input, self.enableSpatialLearning, activeColumns)

    # Send active columns to Temporal Pooler and get processed output (i.e. the predicting cells)
    # First convert active columns from float array to integer set
    activeColumnsSet = set()
    for colIdx in range(len(activeColumns)):
      if activeColumns[colIdx] == 1:
        activeColumnsSet.add(colIdx)
    self.temporalPooler.compute(activeColumnsSet, self.enableTemporalLearning)

    # Update elements regarding spatial pooler
    self.updateSpatialElements(activeColumns)

    # Update elements regarding temporal pooler
    self.updateTemporalElements()

    # Get the predicted values
    self.getPredictions()
Esempio n. 2
0
  def nextStep(self):
    """
    Perfoms actions related to time step progression.
    """

    Node.nextStep(self)
    for column in self.columns:
      column.nextStep()

    # Get input from sensors or lower regions and put into a single input map.
    input = self.getInput()

    # Send input to Spatial Pooler and get processed output (i.e. the active columns)
    # First initialize the vector for representing the current record
    columnDimensions = (self.width, self.height)
    columnNumber = numpy.array(columnDimensions).prod()
    activeColumns = numpy.zeros(columnNumber)
    self.spatialPooler.compute(input, self.enableSpatialLearning, activeColumns)

    # Send active columns to Temporal Pooler and get processed output (i.e. the predicting cells)
    # First convert active columns from float array to integer set
    activeColumnsSet = set()
    for colIdx in range(len(activeColumns)):
      if activeColumns[colIdx] == 1:
        activeColumnsSet.add(colIdx)
    self.temporalPooler.compute(activeColumnsSet, self.enableTemporalLearning)

    # Update elements regarding spatial pooler
    self.updateSpatialElements(activeColumns)

    # Update elements regarding temporal pooler
    self.updateTemporalElements()

    # Get the predicted values
    self.getPredictions()
Esempio n. 3
0
  def nextStep(self):
    """
    Performs actions related to time step progression.
    """

    # Update states machine by remove the first element and add a new element in the end
    for encoding in self.encodings:
      encoding.currentValue.rotate()
      if encoding.enableInference:
        encoding.predictedValues.rotate()
        encoding.bestPredictedValue.rotate()

    Node.nextStep(self)
    for bit in self.bits:
      bit.nextStep()

    # Get record value from data source
    # If the last record was reached just rewind it
    data = self.dataSource.getNextRecordDict()
    if not data:
      self.dataSource.rewind()
      data = self.dataSource.getNextRecordDict()

    # Pass raw values to encoder and get a concatenated array
    outputArray = numpy.zeros(self.encoder.getWidth())
    self.encoder.encodeIntoArray(data, outputArray)

    # Get values obtained from the data source.
    outputValues = self.encoder.getScalars(data)

    # Get raw values and respective encoded bit array for each field
    prevOffset = 0
    for i in range(len(self.encodings)):
      encoding = self.encodings[i]

      # Convert the value to its respective data type
      currValue = outputValues[i]
      if encoding.encoderFieldDataType == FieldDataType.boolean:
        currValue = bool(currValue)
      elif encoding.encoderFieldDataType == FieldDataType.integer:
        currValue = int(currValue)
      elif encoding.encoderFieldDataType == FieldDataType.decimal:
        currValue = float(currValue)
      elif encoding.encoderFieldDataType == FieldDataType.dateTime:
        currValue = dateutil.parser.parse(str(currValue))
      elif encoding.encoderFieldDataType == FieldDataType.string:
        currValue = str(currValue)
      encoding.currentValue.setForCurrStep(currValue)

    # Update sensor bits
    for i in range(len(outputArray)):
      if outputArray[i] > 0.:
        self.bits[i].isActive.setForCurrStep(True)
      else:
        self.bits[i].isActive.setForCurrStep(False)

    # Mark falsely predicted bits
    for bit in self.bits:
      if bit.isPredicted.atPreviousStep() and not bit.isActive.atCurrStep():
        bit.isFalselyPredicted.setForCurrStep(True)

    self._output = outputArray
Esempio n. 4
0
    def nextStep(self):
        """
    Performs actions related to time step progression.
    """

        # Update states machine by remove the first element and add a new element in the end
        for encoding in self.encodings:
            encoding.currentValue.rotate()
            if encoding.enableInference:
                encoding.predictedValues.rotate()
                encoding.bestPredictedValue.rotate()

        Node.nextStep(self)
        for bit in self.bits:
            bit.nextStep()

        # Get record value from data source
        # If the last record was reached just rewind it
        data = self.dataSource.getNextRecordDict()
        if not data:
            self.dataSource.rewind()
            data = self.dataSource.getNextRecordDict()

        # Pass raw values to encoder and get a concatenated array
        outputArray = numpy.zeros(self.encoder.getWidth())
        self.encoder.encodeIntoArray(data, outputArray)

        # Get values obtained from the data source.
        outputValues = self.encoder.getScalars(data)

        # Get raw values and respective encoded bit array for each field
        prevOffset = 0
        for i in range(len(self.encodings)):
            encoding = self.encodings[i]

            # Convert the value to its respective data type
            currValue = outputValues[i]
            if encoding.encoderFieldDataType == FieldDataType.boolean:
                currValue = bool(currValue)
            elif encoding.encoderFieldDataType == FieldDataType.integer:
                currValue = int(currValue)
            elif encoding.encoderFieldDataType == FieldDataType.decimal:
                currValue = float(currValue)
            elif encoding.encoderFieldDataType == FieldDataType.dateTime:
                currValue = dateutil.parser.parse(str(currValue))
            elif encoding.encoderFieldDataType == FieldDataType.string:
                currValue = str(currValue)
            encoding.currentValue.setForCurrStep(currValue)

        # Update sensor bits
        for i in range(len(outputArray)):
            if outputArray[i] > 0.:
                self.bits[i].isActive.setForCurrStep(True)
            else:
                self.bits[i].isActive.setForCurrStep(False)

        # Mark falsely predicted bits
        for bit in self.bits:
            if bit.isPredicted.atPreviousStep(
            ) and not bit.isActive.atCurrStep():
                bit.isFalselyPredicted.setForCurrStep(True)

        self._output = outputArray
Esempio n. 5
0
    def nextStep(self):
        """
        Performs actions related to time step progression.
        """

        # Update states machine by remove the first element and add a new element in the end
        for encoding in self.encodings:
            encoding.current_value.rotate()
            if encoding.enable_inference:
                encoding.predicted_values.rotate()
                encoding.best_predicted_value.rotate()

        Node.nextStep(self)
        for bit in self.bits:
            bit.nextStep()

        # Get record value from data source
        # If the last record was reached just rewind it
        data = self.data_source.getNextRecordDict()
        if not data:
            self.data_source.rewind()
            data = self.data_source.getNextRecordDict()

        # Pass raw values to encoder and get a concatenated array
        output_array = numpy.zeros(self.encoder.getWidth())
        self.encoder.encodeIntoArray(data, output_array)

        # Get values obtained from the data source.
        output_values = self.encoder.getScalars(data)

        # Get raw values and respective encoded bit array for each field
        for i in range(len(self.encodings)):
            encoding = self.encodings[i]

            # Convert the value to its respective data type
            curr_value = output_values[i]
            if encoding.encoder_field_data_type == FieldDataType.BOOLEAN:
                curr_value = bool(curr_value)
            elif encoding.encoder_field_data_type == FieldDataType.INTEGER:
                curr_value = int(curr_value)
            elif encoding.encoder_field_data_type == FieldDataType.DECIMAL:
                curr_value = float(curr_value)
            elif encoding.encoder_field_data_type == FieldDataType.DATE_TIME:
                curr_value = dateutil.parser.parse(str(curr_value))
            elif encoding.encoder_field_data_type == FieldDataType.STRING:
                curr_value = str(curr_value)
            encoding.current_value.setForCurrStep(curr_value)

        # Update sensor bits
        for i in range(len(output_array)):
            if output_array[i] > 0.0:
                self.bits[i].is_active.setForCurrStep(True)
            else:
                self.bits[i].is_active.setForCurrStep(False)

        # Mark falsely predicted bits
        for bit in self.bits:
            if bit.is_predicted.atPreviousStep() and not bit.is_active.atCurrStep():
                bit.is_falsely_predicted.setForCurrStep(True)

        self.output = output_array