Esempio n. 1
0
def test_tl_from_list_of_tensors_different_dtypes():
    np_types = [np.float32, np.float16, np.int16, np.int8, np.uint16, np.uint8]
    for dtypes in np.random.choice(np_types, size=(3, 2), replace=False):
        t1 = TensorCPU(np.zeros((1), dtype=dtypes[0]))
        t2 = TensorCPU(np.zeros((1), dtype=dtypes[1]))
        with assert_raises(
                TypeError,
                glob=
                f"Tensors cannot have different data types. Tensor at position "
                "1 has type '*' expected to have type '*'."):
            TensorListCPU([t1, t2])
Esempio n. 2
0
def test_tl_from_list_of_tensors_different_backends():
    t1 = TensorCPU(np.zeros((1)))
    t2 = TensorCPU(np.zeros((1)))._as_gpu()
    with assert_raises(
            TypeError,
            glob='Object at position 1 cannot be converted to TensorCPU'):
        TensorListCPU([t1, t2])
    with assert_raises(
            TypeError,
            glob='Object at position 1 cannot be converted to TensorGPU'):
        TensorListGPU([t2, t1])
Esempio n. 3
0
 def check_squeeze(shape, dim, in_layout, expected_out_layout):
     arr = np.random.rand(*shape)
     t = TensorCPU(arr, in_layout)
     is_squeezed = t.squeeze(dim)
     should_squeeze = (len(expected_out_layout) < len(in_layout))
     arr_squeeze = arr.squeeze(dim)
     t_shape = tuple(t.shape())
     assert t_shape == arr_squeeze.shape, f"{t_shape} != {arr_squeeze.shape}"
     assert t.layout(
     ) == expected_out_layout, f"{t.layout()} != {expected_out_layout}"
     assert np.allclose(arr_squeeze, np.array(t))
     assert is_squeezed == should_squeeze, f"{is_squeezed} != {should_squeeze}"
Esempio n. 4
0
def test_tl_from_list_of_tensors_different_shapes():
    shapes = [(1, 2, 3), (4, 5, 6), (128, 128, 128), (8, 8, 8), (13, 47, 131)]
    for size in [10, 5, 36, 1]:
        np_arrays = [
            np.random.rand(*shapes[i])
            for i in np.random.choice(range(len(shapes)), size=size)
        ]

        tl_cpu = TensorListCPU([TensorCPU(a) for a in np_arrays])
        tl_gpu = TensorListGPU([TensorCPU(a)._as_gpu() for a in np_arrays])

        for arr, tensor_cpu, tensor_gpu in zip(np_arrays, tl_cpu, tl_gpu):
            np.testing.assert_array_equal(arr, tensor_cpu)
            np.testing.assert_array_equal(arr, tensor_gpu.as_cpu())
Esempio n. 5
0
def test_tl_from_list_of_tensors_same_shape():
    for shape in [(10, 1), (4, 5, 6), (13, 1), (1, 1)]:
        arr = np.random.rand(*shape)

        tl_cpu_from_np = TensorListCPU(arr)
        tl_cpu_from_tensors = TensorListCPU([TensorCPU(a) for a in arr])
        np.testing.assert_array_equal(tl_cpu_from_np.as_array(),
                                      tl_cpu_from_tensors.as_array())

        tl_gpu_from_np = tl_cpu_from_np._as_gpu()
        tl_gpu_from_tensors = TensorListGPU(
            [TensorCPU(a)._as_gpu() for a in arr])
        np.testing.assert_array_equal(tl_gpu_from_np.as_cpu().as_array(),
                                      tl_gpu_from_tensors.as_cpu().as_array())
Esempio n. 6
0
def test_empty_tensor_tensorlist():
    arr = np.array([], dtype=np.float32)
    tensor = TensorCPU(arr, "NHWC")
    tensorlist = TensorListCPU(arr, "NHWC")
    assert_array_equal(np.array(tensor), tensorlist.as_array())
    assert (np.array(tensor).shape == (0, ))
    assert (tensorlist.as_array().shape == (0, ))
Esempio n. 7
0
def test_dtype_deprecation_warning():
    with warnings.catch_warnings(record=True) as w:
        warnings.simplefilter("always")

        TensorCPU(np.empty((0))).dtype()

        assert "Calling '.dtype()' is deprecated, please use '.dtype' instead" == str(
            w[-1].message)
Esempio n. 8
0
def test_tensorlist_dtype():
    dali_types = types._all_types
    np_types = list(map(dali_type_to_np, dali_types))

    for dali_type, np_type in zip(dali_types, np_types):
        tl = TensorListCPU([TensorCPU(np.zeros((1), dtype=np_type))])

        assert tl.dtype == dali_type
        assert tl._as_gpu().dtype == dali_type
Esempio n. 9
0
def test_data_ptr_tensor_cpu():
    arr = np.random.rand(3, 5, 6)
    tensor = TensorCPU(arr, "NHWC")
    from_tensor = py_buffer_from_address(tensor.data_ptr(), tensor.shape(),
                                         types.to_numpy_type(tensor.dtype))
    assert (np.array_equal(arr, from_tensor))
Esempio n. 10
0
def test_tensor_str_sample():
    arr = np.arange(16)
    t = TensorCPU(arr)
    params = [arr, 'DALIDataType.INT64', [16]]
    _test_str(t, params, _expected_tensor_str)
Esempio n. 11
0
def test_tensor_str_empty():
    t = TensorCPU(np.empty(0))
    params = [[], 'DALIDataType.FLOAT64', [0]]
    _test_str(t, params, _expected_tensor_str)
Esempio n. 12
0
def test_create_tensor():
    arr = np.random.rand(3, 5, 6)
    tensor = TensorCPU(arr, "NHWC")
    assert_array_equal(arr, np.array(tensor))
Esempio n. 13
0
def test_dtype_placeholder_equivalence():
    dali_types = types._all_types
    np_types = list(map(dali_type_to_np, dali_types))

    for dali_type, np_type in zip(dali_types, np_types):
        assert TensorCPU(np.zeros((1), dtype=np_type)).dtype == dali_type
Esempio n. 14
0
def check_array_types(t):
    arr = np.array([[-0.39, 1.5], [-1.5, 0.33]], dtype=t)
    tensor = TensorCPU(arr, "NHWC")
    assert (np.allclose(np.array(arr), np.asanyarray(tensor)))