Esempio n. 1
0
def test_mxnet_iterator_model_fit():
    from nvidia.dali.plugin.mxnet import DALIGenericIterator as MXNetIterator
    import mxnet as mx
    num_gpus = 1
    batch_size = 1
    class RN50Pipeline(Pipeline):
        def __init__(self, batch_size, num_threads, device_id, num_gpus, data_paths):
            super(RN50Pipeline, self).__init__(batch_size, num_threads, device_id,)
            self.input = ops.FileReader(file_root = data_paths, shard_id = device_id, num_shards = num_gpus)
            self.decode_gpu = ops.ImageDecoder(device = "cpu", output_type = types.RGB)
            self.res = ops.RandomResizedCrop(device="cpu", size =(224,224))

            self.cmnp = ops.CropMirrorNormalize(device="cpu",
                                                output_dtype=types.FLOAT,
                                                output_layout=types.NCHW,
                                                crop=(224, 224),
                                                image_type=types.RGB,
                                                mean=[0.485 * 255,0.456 * 255,0.406 * 255],
                                                std=[0.229 * 255,0.224 * 255,0.225 * 255])
            self.coin = ops.CoinFlip(probability=0.5)

        def define_graph(self):
            rng = self.coin()
            jpegs, labels = self.input(name="Reader")
            images = self.decode_gpu(jpegs)
            images = self.res(images)
            output = self.cmnp(images, mirror=rng)
            return labels

    pipes, _ = create_pipeline(lambda gpu: RN50Pipeline(batch_size=batch_size, num_threads=4, device_id=gpu, num_gpus=num_gpus,
                                                                  data_paths=image_data_set), batch_size, num_gpus)
    pipe = pipes[0]

    class MXNetIteratorWrapper(MXNetIterator):
        def __init__(self, iter):
            self.iter = iter

        def __getattr__(self, attr):
            return getattr(self.iter, attr)

        def __next__(self):
            ret = self.iter.__next__()[0]
            return ret

    dali_train_iter = MXNetIterator(pipe, [("labels", MXNetIterator.LABEL_TAG)],
                                    size=pipe.epoch_size("Reader"))
    data = mx.symbol.Variable('labels')

    # create a dummy model
    _ = mx.model.FeedForward.create(data,
                                    X=MXNetIteratorWrapper(dali_train_iter),
                                    num_epoch=1,
                                    learning_rate=0.01)
Esempio n. 2
0
def test_mxnet_pipeline_dynamic_shape():
    from nvidia.dali.plugin.mxnet import DALIGenericIterator as MXNetIterator
    root, annotations = data_paths()
    pipeline = DetectionPipeline(BATCH_SIZE, 0, root, annotations)
    train_loader = MXNetIterator([pipeline],
                                 [('data', MXNetIterator.DATA_TAG),
                                  ('bboxes', MXNetIterator.LABEL_TAG),
                                  ('label', MXNetIterator.LABEL_TAG)],
                                 EPOCH_SIZE,
                                 auto_reset=False,
                                 dynamic_shape=True)
    for data in train_loader:
        assert data is not None
Esempio n. 3
0
def test_stop_iteration():
    for fw_iter, iter_name in [(lambda pipe, size, auto_reset: PyTorchIterator(
            pipe, output_map=["data"], size=size, auto_reset=auto_reset),
                                "PyTorchIterator"),
                               (lambda pipe, size, auto_reset: MXNetIterator(
                                   pipe, [("data", MXNetIterator.DATA_TAG)],
                                   size=size,
                                   auto_reset=auto_reset), "MXNetIterator")]:
        for epochs in [1, 3, 6]:
            for iter_num in [2, 5, 9]:
                for batch_size in [1, 10, 100]:
                    for auto_reset in [True, False]:
                        yield check_stop_iter, fw_iter, iter_name, batch_size, epochs, iter_num, auto_reset
Esempio n. 4
0
def test_mxnet_iterator_empty_array():
    from nvidia.dali.plugin.mxnet import DALIGenericIterator as MXNetIterator
    import mxnet as mx

    batch_size = 4
    size = 5

    all_np_types = [np.bool_, np.int_, np.intc, np.intp, np.int8, np.int16, np.int32, np.int64,
                    np.uint8, np.uint16, np.uint32, np.uint64, np.float_, np.float32, np.float16,
                    np.short, np.long, np.longlong, np.ushort, np.ulonglong]
    np_types = []
    # store in np_types only types supported by MXNet
    for t in all_np_types:
        try:
            mx.nd.zeros([2, 2, 2], ctx=None, dtype=t)
            np_types.append(t)
        except mx.base.MXNetError:
            pass

    test_data_shape = [1, 3, 0, 4]
    def get_data():
        # create batch of [type_a, type_a, type_b, type_b, ...]
        out = [[np.empty(test_data_shape, dtype = t)] * batch_size for t in np_types]
        out = [val for pair in zip(out, out) for val in pair]
        return out

    pipe = Pipeline(batch_size=batch_size, num_threads=3, device_id=0)
    outs = fn.external_source(source = get_data, num_outputs = len(np_types) * 2)
    pipe.set_outputs(*outs)
    pipe.build()
    
    # create map of [(data, type_a), (label, type_a), ...]
    data_map = [('data_{}'.format(i), MXNetIterator.DATA_TAG) for i, t in enumerate(np_types)]
    label_map = [('label_{}'.format(i), MXNetIterator.LABEL_TAG) for i, t in enumerate(np_types)]
    out_map = [val for pair in zip(data_map, label_map) for val in pair]

    iterator = MXNetIterator(
    pipe,
    output_map=out_map,
    size=size,
    dynamic_shape=True)

    for batch in iterator:
        for d, t in zip(batch[0].data, np_types):
            shape = d.asnumpy().shape
            assert shape[0] == batch_size
            print(shape)
            assert np.array_equal(shape[1:], test_data_shape)
            assert d.asnumpy().dtype == t
def test_mxnet_iterator_last_batch_no_pad_last_batch():
    num_gpus = 1
    batch_size = 100

    pipes, data_size = create_pipeline(lambda gpu: COCOReaderPipeline(batch_size=batch_size, num_threads=4, shard_id=gpu, num_gpus=num_gpus,
                                                                  data_paths=data_sets[0], random_shuffle=True, stick_to_shard=False,
                                                                  shuffle_after_epoch=False, pad_last_batch=False), batch_size, num_gpus)

    dali_train_iter = MXNetIterator(pipes, [("ids", MXNetIterator.DATA_TAG)],
                                    size=pipes[0].epoch_size("Reader"), fill_last_batch=True)

    img_ids_list, img_ids_list_set, mirrored_data, _, _ = \
        gather_ids(dali_train_iter, lambda x: x.data[0].squeeze().asnumpy(), lambda x: x.pad, data_size)

    assert len(img_ids_list) > data_size
    assert len(img_ids_list_set) == data_size
    assert len(set(mirrored_data)) != 1
Esempio n. 6
0
def test_mxnet_iterator_not_fill_last_batch_pad_last_batch():
    from nvidia.dali.plugin.mxnet import DALIGenericIterator as MXNetIterator
    num_gpus = 1
    batch_size = 100

    pipes, data_size = create_pipeline(
        lambda gpu: COCOReaderPipeline(batch_size=batch_size,
                                       num_threads=4,
                                       shard_id=gpu,
                                       num_gpus=num_gpus,
                                       data_paths=data_sets[0],
                                       random_shuffle=True,
                                       stick_to_shard=False,
                                       shuffle_after_epoch=False,
                                       pad_last_batch=True), batch_size,
        num_gpus)

    dali_train_iter = MXNetIterator(pipes, [("ids", MXNetIterator.DATA_TAG)],
                                    size=pipes[0].epoch_size("Reader"),
                                    fill_last_batch=False)

    img_ids_list, img_ids_list_set, mirrored_data, pad, remainder = \
        gather_ids(dali_train_iter, lambda x: x.data[0].squeeze().asnumpy(), lambda x: x.pad, data_size)

    assert pad == remainder
    assert len(img_ids_list) - pad == data_size
    assert len(img_ids_list_set) == data_size
    assert len(set(mirrored_data)) == 1

    dali_train_iter.reset()
    next_img_ids_list, next_img_ids_list_set, next_mirrored_data, pad, remainder = \
        gather_ids(dali_train_iter, lambda x: x.data[0].squeeze().asnumpy(), lambda x: x.pad, data_size)

    assert pad == remainder
    assert len(next_img_ids_list) - pad == data_size
    assert len(next_img_ids_list_set) == data_size
    assert len(set(next_mirrored_data)) == 1
Esempio n. 7
0
def test_stop_iteration_mxnet():
    from nvidia.dali.plugin.mxnet import DALIGenericIterator as MXNetIterator
    test_stop_iteration(lambda pipe, size, auto_reset : MXNetIterator(pipe, [("data", MXNetIterator.DATA_TAG)], size=size, auto_reset=auto_reset), "MXNetIterator")
Esempio n. 8
0
def test_stop_iteration_mxnet_fail_single():
    from nvidia.dali.plugin.mxnet import DALIGenericIterator as MXNetIterator
    fw_iter = lambda pipe, size, auto_reset : MXNetIterator(pipe, [("data", MXNetIterator.DATA_TAG)], size=size, auto_reset=auto_reset)
    check_stop_iter_fail_single(fw_iter)
Esempio n. 9
0
def test_stop_iteration_mxnet():
    from nvidia.dali.plugin.mxnet import DALIGenericIterator as MXNetIterator
    fw_iter = lambda pipe, size, auto_reset : MXNetIterator(pipe, [("data", MXNetIterator.DATA_TAG)], size=size, auto_reset=auto_reset)
    iter_name = "MXNetIterator"
    for batch_size, epochs, iter_num, auto_reset, infinite in stop_teration_case_generator():
        yield check_stop_iter, fw_iter, iter_name, batch_size, epochs, iter_num, auto_reset, infinite