Esempio n. 1
0
def cb(y, active_set, counter, current):
    solution = np.empty(len(y))
    for v, w, f, l in active_set:
        solution[f:f + l] = max(v, 0) / w * g**np.arange(l)
    plt.figure(figsize=(3, 3))
    color = y.copy()
    plt.plot(solution, c='k', zorder=-11, lw=1.2)
    plt.scatter(np.arange(len(y)),
                solution,
                s=60,
                cmap=plt.cm.Spectral,
                c=color,
                clip_on=False,
                zorder=11)
    plt.scatter([np.arange(len(y))[current]], [solution[current]],
                s=200,
                lw=2.5,
                marker='+',
                color='b',
                clip_on=False,
                zorder=11)
    for a in active_set[::2]:
        plt.axvspan(a[2], a[2] + a[3], alpha=0.1, color='k', zorder=-11)
    for x in np.where(trueSpikes)[0]:
        plt.plot([x, x], [0, 1.65], lw=1.5, c='r', zorder=-12)
    plt.xlim((0, len(y) - .5))
    plt.ylim((0, 1.65))
    simpleaxis(plt.gca())
    plt.xticks([])
    plt.yticks([])
    # plt.tight_layout()
    if save_figs:
        plt.savefig('fig/%d.pdf' % counter)
    plt.show()
Esempio n. 2
0
def plot_trace(n=0, lg=False):
    plt.plot(trueC[n], c=col[2], clip_on=False, zorder=5, label='Truth')
    plt.plot(solution, c=col[0], clip_on=False, zorder=7, label='Estimate')
    plt.plot(y,
             c=col[7],
             alpha=.7,
             lw=1,
             clip_on=False,
             zorder=-10,
             label='Data')
    if lg:
        plt.legend(frameon=False, ncol=3, loc=(.1, .62), columnspacing=.8)
    spks = np.append(0, solution[1:] - g * solution[:-1])
    plt.text(800,
             2.2,
             'Correlation: %.3f' % (np.corrcoef(trueSpikes[n], spks)[0, 1]),
             size=24)
    plt.gca().set_xticklabels([])
    simpleaxis(plt.gca())
    plt.ylim(0, 2.85)
    plt.xlim(0, 1500)
    plt.yticks([0, 2], [0, 2])
    plt.xticks([300, 600, 900, 1200], ['', ''])
Esempio n. 3
0
def plotTrace(lg=False):
    fig = plt.figure(figsize=(10, 9))
    fig.add_axes([.13, .7, .86, .29])
    plt.plot(c, c=col[0], label='L1')
    plt.plot(c_t, c=col[1], label='Thresh.')
    plt.plot(trueC[0], c=col[2], lw=3, label='Truth', zorder=-5)
    plt.plot(y, c=col[7], lw=1.5, alpha=.7, zorder=-10, label='Data')
    if lg:
        plt.legend(frameon=False, ncol=4, loc=(.05, .82))
    plt.gca().set_xticklabels([])
    simpleaxis(plt.gca())
    plt.yticks([0, int(y.max())], [0, int(y.max())])
    plt.xticks(range(150, 500, 150), [''] * 3)
    plt.ylabel('Fluor.')
    plt.xlim(0, 452)

    fig.add_axes([.13, .39, .86, .29])
    for i, ss in enumerate(s[:500]):
        if ss > 1e-2:
            plt.plot([i, i], [2.5, 2.5 + ss], c=col[0], zorder=10)
        plt.plot([0, 450], [2.5, 2.5], c=col[0], zorder=10)
    for i, ss in enumerate(s_t[:500]):
        if ss > 1e-2:
            plt.plot([i, i], [1.25, 1.25 + ss], c=col[1], zorder=10)
        plt.plot([0, 450], [1.25, 1.25], c=col[1], zorder=10)
    for i, ss in enumerate(trueSpikes[0, :500]):
        if ss > 1e-2:
            plt.plot([i, i], [0, ss], c=col[2], clip_on=False, zorder=10)
        plt.plot([0, 450], [0, 0], c=col[2], clip_on=False, zorder=10)
    plt.gca().set_xticklabels([])
    simpleaxis(plt.gca())
    plt.yticks([0, 1.25, 2.5], ['Truth', 'Thresh.', 'L1'])
    for tick in plt.gca().yaxis.get_major_ticks():
        tick.label1.set_verticalalignment('bottom')
    plt.xticks(range(150, 500, 150), [''] * 3)
    plt.ylim(0, 3.5)
    plt.xlim(0, 452)

    fig.add_axes([.13, .08, .86, .29])
    for i, r in enumerate(res):
        for rr in r:
            plt.plot([rr, rr], [.1 * i - .04, .1 * i + .04], c='k')
    for rr in np.where(trueSpikes[0])[0]:
        plt.plot([rr, rr], [-.08, -.16], c='r')
    plt.gca().set_xticklabels([])
    simpleaxis(plt.gca())
    plt.yticks([0, .5, 1], [0, 0.5, 1.0])
    plt.xticks(range(0, 500, 150), [0, 5, 10, ''])
    plt.ylim(-.2, 1.1)
    plt.xlim(0, 452)
    plt.ylabel(r'$s_{\min}$')
    plt.xlabel('Time [s]', labelpad=-10)
    plt.show()
Esempio n. 4
0
    a[0] -= lam * (1 - g**len(a[2]))
a_s_tmp[-1][0] -= lam
for v, w, idx in a_s_tmp:
    solution[idx] = v / w * g**np.arange(len(idx))
# plot to illustrate updating lambda
ax = fig.add_axes([ax0, .73, .08, .12])
plt.plot(np.linspace(0, 1.7),
         [(res - x * tmp).dot(res - x * tmp) for x in np.linspace(0, 1.7)],
         c=col[1])
plt.plot([-.1, ll], [sn**2 * T, sn**2 * T], c='k')
plt.plot([ll, ll], [100, sn**2 * T], c='k')
plt.scatter([0], [RSS], s=50, c=col[0], zorder=11, clip_on=False)
plt.text(.007, 3 + RSS, '$\lambda^-$', color=col[0])
plt.xticks([0, ll], [0, '$\lambda^*$'])
plt.yticks([sn**2 * T], ['$\sigma^2 T$'])
simpleaxis(plt.gca())
plt.xlim(0, 1.6)
plt.ylim(114, 138)
plt.xlabel('$\lambda$', labelpad=-40, x=1.1)
plt.ylabel('RSS', labelpad=-30, y=.42)
# plot result after updating lambda, but before rerunning oasis to fix violations
ax = fig.add_axes([ax1, .73, 1 - ax1, .12])
plot_trace(n)

# plot result after rerunning oasis to fix violations
solution, active_set = foo(active_set, g, ll)
ax = fig.add_axes([ax1, .59, 1 - ax1, .12])
plot_trace(n)
plt.ylabel('Fluorescence', y=0)

# solve for gamma
Esempio n. 5
0
def cb(y, active_set, counter, current):
    solution = np.empty(len(y))
    for i, (v, w, f, l) in enumerate(active_set):
        solution[f:f + l] = (v if i else max(v, 0)) / w * g**np.arange(l)
    color = y.copy()
    ax1.plot(solution, c='k', zorder=-11, lw=1.3, clip_on=False)
    ax1.scatter(np.arange(len(y)),
                solution,
                s=40,
                cmap=plt.cm.Spectral,
                c=color,
                clip_on=False,
                zorder=11)
    ax1.scatter([np.arange(len(y))[current]], [solution[current]],
                s=120,
                lw=2.5,
                marker='+',
                color='b',
                clip_on=False,
                zorder=11)
    for a in active_set[::2]:
        ax1.axvspan(a[2], a[2] + a[3], alpha=0.1, color='k', zorder=-11)
    for x in np.where(trueSpikes)[0]:
        ax1.plot([x, x], [0, 2.3], lw=1.5, c='r', zorder=-12)
    ax1.set_xlim((0, len(y) - .5))
    ax1.set_ylim((0, 2.3))
    simpleaxis(ax1)
    ax1.set_xticks([])
    ax1.set_yticks([])
    ax1.set_ylabel('Fluorescence')
    for i, s in enumerate(np.r_[[0], solution[1:] - g * solution[:-1]]):
        ax2.plot([i, i], [0, s], c='k', zorder=-11, lw=1.4, clip_on=False)
    ax2.scatter(np.arange(len(y)),
                np.r_[[0], solution[1:] - g * solution[:-1]],
                s=40,
                cmap=plt.cm.Spectral,
                c=color,
                clip_on=False,
                zorder=11)
    ax2.scatter([np.arange(len(y))[current]],
                [np.r_[[0], solution[1:] - g * solution[:-1]][current]],
                s=120,
                lw=2.5,
                marker='+',
                color='b',
                clip_on=False,
                zorder=11)
    for a in active_set[::2]:
        ax2.axvspan(a[2], a[2] + a[3], alpha=0.1, color='k', zorder=-11)
    for x in np.where(trueSpikes)[0]:
        ax2.plot([x, x], [0, 1.55], lw=1.5, c='r', zorder=-12)
    ax2.set_xlim((0, len(y) - .5))
    ax2.set_ylim((0, 1.55))
    simpleaxis(ax2)
    ax2.set_xticks([])
    ax2.set_yticks([])
    ax2.set_xlabel('Time', labelpad=35, x=.5)
    ax2.set_ylabel('Spikes')
    plt.subplots_adjust(left=0.032,
                        right=.995,
                        top=.995,
                        bottom=0.19,
                        hspace=0.22)
    # fig.canvas.draw()
    if save_figs:
        plt.savefig('video/%03d.pdf' % counter)
    plt.pause(1e-9)
    ax1.clear()
    ax2.clear()