Esempio n. 1
0
            random.seed(r*10)
           
            items = list(df)
            items.remove('grid')
            items.remove('grid_group')
            items.remove('uid')
            random.shuffle(items)
            items_train = items[:int(len(items) * 0.8)]
            items_test = list(set(items) - set(items_train))

            df_train = df_cluster.drop(items_test, axis=1)
            df_test = df_cluster.drop(items_train, axis=1)
            
            if method == 'HyObscure':
                X_obf_dict, X_ori, model_rf, model_xgb = obfuscations.HyObscure(df_train, grid_area_dict, area_grid_dict, cluster_num, grid_area_number, grid_list,
                    area_reducibility, area_grid_rowcol_dict, area_grid_colrow_dict, method,
                    grid_rowcol, grid_colrow, l_threshold, k_threshold, deltaX, pp)
            elif method == 'YGen':
                X_obf_dict, X_ori, model_rf, model_xgb = obfuscations.YGen(df_train, grid_area_dict, grid_area_number, cluster_num, grid_list, area_grid_dict, deltaX,
                    area_reducibility, area_grid_rowcol_dict, area_grid_colrow_dict, method,
                    grid_rowcol, grid_colrow, l_threshold, k_threshold, pp)
            elif method == 'XObf':
                X_obf_dict, X_ori, model_rf, model_xgb = obfuscations.XObf(df_train, cluster_num, grid_area_number, grid_list, grid_area_dict, area_grid_dict, deltaX, pp, method)
            elif method == 'PrivCheck':
                X_obf_dict, X_ori, model_rf, model_xgb = obfuscations.PrivCheck(df_train, cluster_num, grid_list, grid_area_dict, grid_area_number, area_grid_dict, deltaX, pp)
            elif method == 'DP':
                X_obf_dict, X_ori, model_rf, model_xgb = obfuscations.differential_privacy(df_train, grid_area_dict, grid_area_number, beta)
            elif method == 'Frapp':
                X_obf_dict, X_ori, model_rf, model_xgb = obfuscations.Frapp(df_train, grid_area_dict, gamma)
            elif method == 'Random':
                X_obf_dict, X_ori, model_rf, model_xgb = obfuscations.Random(df_train, grid_area_dict, p_rand)
Esempio n. 2
0
                funcs.update_age_group(df_cluster, age_group_dict)

            random.seed(r * 10)
            items = list(df_item_age_uid)
            items.remove('age')
            items.remove('age_group')
            items.remove('uid')
            random.shuffle(items)
            items_train = items[:int(len(items) * 0.8)]
            items_test = list(set(items) - set(items_train))
            df_train = df_cluster.drop(items_test, axis=1)
            df_test = df_cluster.drop(items_train, axis=1)

            if method == 'HyObscure':
                X_obf_dict, X_ori = obfuscations.HyObscure(
                    cluster_num, age_group_number, age_group_dict,
                    group_age_dict, age_list, deltaX, k_threshold, l_threshold,
                    df_train, df_item_age_uid, pp)
            elif method == 'YGen':
                X_obf_dict, X_ori = obfuscations.YGen(
                    df_train, age_group_number, cluster_num, age_list,
                    age_group_dict, group_age_dict, df_item_age_uid, deltaX,
                    k_threshold, l_threshold, pp)
            elif method == 'XObf':
                X_obf_dict, X_ori = obfuscations.XObf(deltaX, cluster_num,
                                                      age_group_number,
                                                      age_list, group_age_dict,
                                                      df_train, pp)
            elif method == 'PrivCheck':
                X_obf_dict, X_ori = obfuscations.PrivCheck(
                    deltaX, cluster_num, age_group_number, df_cluster,
                    df_train, age_list, age_group_dict, group_age_dict, pp)
Esempio n. 3
0
            if cluster_flag == 1:
                continue
            df_test_rec_items = df_test_items.loc[test_idx_list]
            df_test_rec_items = df_test_rec_items.reset_index(drop=True)

            print("all users num: {}".format(len(df_cluster)))
            print("split train and test over")
            print("train num {}".format(len(df_train)))
            print("test num {}".format(len(df_test)))
            print("train items {}".format(df_train_items.shape[1]))
            print("test items {}".format(df_test_items.shape[1]))

            if method == 'HyObscure':
                X_obf_dict, X_ori, model_rf, model_xgb = obfuscations.HyObscure(
                    deltaX, grid_area_number, cluster_num, k_threshold,
                    l_threshold, df_test, grid_list, area_reducibility,
                    grid_area_dict, area_grid_dict, area_grid_colrow_dict,
                    area_grid_rowcol_dict, grid_colrow, grid_rowcol, df_train,
                    df_test_rec_items, pp, method)
            elif method == 'PrivCheck':
                X_obf_dict, X_ori, model_rf, model_xgb = obfuscations.PrivCheck(
                    df_train, df_test, df_test_rec_items, grid_area_dict,
                    area_grid_dict, grid_list, cluster_num, grid_area_number,
                    deltaX, pp)
            else:
                print('Method error. Check method setting.')
                break

            acc_oris_rf = []
            acc_obfs_rf = []
            acc_oris_xgb = []
            acc_obfs_xgb = []
Esempio n. 4
0
            df_test = df_test.reset_index(drop=True)

            df_test_rec_items = df_test_items.loc[test_idx_list]
            df_test_rec_items = df_test_rec_items.reset_index(drop=True)

            print("all users num: {}".format(len(df_item_ageGroup_uid)))
            print("split train and test over")
            print("train num {}".format(len(df_train)))
            print("test num {}".format(len(df_test)))
            print("train items {}".format(df_train_items.shape[1]))
            print("test items {}".format(df_test_items.shape[1]))

            if method == 'HyObscure':
                X_obf_dict, X_ori, model_rf, model_xgb = obfuscations.HyObscure(
                    df_train, df_test, df_test_rec_items, df_item_age_uid,
                    age_group_dict, group_age_dict, cluster_num,
                    age_group_number, age_list, deltaX, k_threshold,
                    l_threshold, pp)
            elif method == 'PrivCheck':
                X_obf_dict, X_ori, model_rf, model_xgb = obfuscations.PrivCheck(
                    df_train, df_test, df_test_rec_items, age_group_number,
                    cluster_num, deltaX, age_list, age_group_dict,
                    group_age_dict, pp)
            else:
                print('Method error. Check method setting.')
                break

            mae_oris_rf = []
            mae_obfs_rf = []
            mae_oris_xgb = []
            mae_obfs_xgb = []