def visualize_detection(path_to_image: str):
    """
    Visualizes object-detections and corresponding acceptance probability predictions for an image.
    Args:
        path_to_image: Image on which detections and predictions will be visualized.
    """
    det = send_od_request(path_to_image)
    pred = accept_prob_predictor.main('predict', detections=det)
    image_id = os.path.splitext(os.path.basename(path_to_image))[0]
    img = Image.open(path_to_image)
    colors = ['blue', 'green', 'red', 'orange', 'brown', 'black', 'turquoise']
    width, height = img.size
    draw = ImageDraw.Draw(img)
    for i, det in enumerate(det[image_id]):
        color = colors[i % len(colors)]
        x_min = det['XMin'] * width
        y_min = det['YMin'] * height
        x_max = det['XMax'] * width
        y_max = det['YMax'] * height
        draw.text(xy=(x_min, y_min), text=det['LabelName'], fill=color)
        draw.text(xy=((x_min + x_max) / 2, (y_min + y_max) / 2), text=str(int(pred[i])), fill=color)
        for offset in [-1, 0, 1]:
            draw.rectangle(xy=[x_min + offset, y_min + offset, x_max + offset, y_max + offset],
                           outline=color)
    img.show()
Esempio n. 2
0
def update_predictions(batch_id):
    """
    Creates and returns predictions for all images contained in a batch whether predictions already
    exist in the instance directory or not.

    Args:
        batch_id: id of the batch for which the predictions will be generated
    """
    predictions = []
    batch = ImageBatch.query.filter_by(id=batch_id).all()
    batch_data = image_batch_schema.dump(batch, many=True)

    for task in batch_data[0]['tasks']:
        img_path = get_path_to_image(task['id'])
        pred_path = get_path_to_prediction(task['id'])

        prediction = send_od_request(img_path)
        prediction = list(prediction.values())[0]
        if len(prediction) > 0:
            feature_vectors = []
            for i, _ in enumerate(prediction):
                feature_vectors.append(compute_feature_vector(prediction[i]))
            acceptance_prediction = send_accept_prob_request(feature_vectors)
            for i, p in enumerate(acceptance_prediction):
                prediction[i]['acceptance_prediction'] = p
            prediction.sort(key=lambda p: p['acceptance_prediction'], reverse=True)
        predictions.append({'id': str(task['id']), 'predictions': prediction})

        if not os.path.exists(os.path.dirname(pred_path)):
            os.mkdir(os.path.dirname(pred_path))
        with open(pred_path, 'w') as f:
            json.dump(prediction, f)
    return jsonify(predictions)
Esempio n. 3
0
def serve_predictions():
    """Serves predictions for all images from the instance folder"""
    predictions = []
    img_batches = ImageBatch.query.options(db.joinedload('tasks')).all()
    image_batch_data = image_batch_schema.dump(img_batches, many=True)
    for batch in image_batch_data:
        for task in batch['tasks']:
            img_path = get_path_to_image(task['id'])
            pred_path = get_path_to_prediction(task['id'])

            if os.path.exists(pred_path):
                with open(pred_path, 'r') as f:
                    predictions.append({'id': str(task['id']), 'predictions': json.load(f)})
            else:
                prediction = send_od_request(img_path)
                prediction = list(prediction.values())[0]
                if len(prediction) > 0:
                    feature_vectors = []
                    for i, _ in enumerate(prediction):
                        feature_vectors.append(compute_feature_vector(prediction[i]))
                    acceptance_prediction = send_accept_prob_request(feature_vectors)

                    for i, p in enumerate(acceptance_prediction):
                        prediction[i]['acceptance_prediction'] = p
                    prediction.sort(key=lambda p: p['acceptance_prediction'], reverse=True)

                predictions.append({'id': str(task['id']), 'predictions': prediction})

                if not os.path.exists(os.path.dirname(pred_path)):
                    os.mkdir(os.path.dirname(pred_path))
                with open(pred_path, 'w') as f:
                    json.dump(prediction, f)

    return jsonify(predictions)
Esempio n. 4
0
def compute_map(path_to_test_images: str, path_to_gt: str, map_at: int):
    """
    Computes the mAP at a given valuefor a given test set and and the current state of the object
    detector. (modify alpha in settings if necessary)

    Args:
        path_to_test_images: test images
        path_to_gt: Ground-Truth-Data for the test images
        map_at: decides at which value the mAP is computed
    """

    gt_reader = GroundTruthReader(path_to_gt)
    oid_classcode_reader = OIDClassCodeReader()
    mAP = 0
    nr_examples = 0

    for image in os.listdir(path_to_test_images):
        image_id = os.path.splitext(image)[0]
        ground_truth = gt_reader.get_ground_truth_annotation(image_id)
        detections = send_od_request(os.path.join(path_to_test_images, image))
        for d in detections:
            nr_examples += 1
            correct = 0
            for single_det in detections[d][:map_at]:
                oid_class_code = oid_classcode_reader.get_code_for_human_readable_class(
                    single_det['LabelName'])
                for g in [
                        gt for gt in ground_truth
                        if gt['LabelName'] == oid_class_code
                ]:
                    gt_bb = {
                        'XMin': g['XMin'],
                        'YMin': g['YMin'],
                        'XMax': g['XMax'],
                        'YMax': g['YMax']
                    }
                    det_bb = {
                        'XMin': single_det['XMin'],
                        'YMin': single_det['YMin'],
                        'XMax': single_det['XMax'],
                        'YMax': single_det['YMax']
                    }
                    iou = compute_iou(gt_bb, det_bb)
                    if iou > alpha:
                        correct += 1
                        break

            mAP += correct / map_at

    return mAP / nr_examples
def create_detection_record(path_to_images: str, path_to_json=None):
    """
    Create and save detections from an object-detection model for a set of images.

    Args:
        path_to_images: Path to a directory which contains the images to be analysed.
        path_to_json: Path for the new file or to an existent json to which the detections will be
        appended.
    """
    if path_to_json is None:
        images = os.listdir(path_to_images)
        result = {}
        timestamp = datetime.now().strftime('%Y_%m_%d_%H%M%S')
        path_to_json = os.path.join(
            annotation_predictor_metadata_dir,
            'detection_record_{}.json'.format(timestamp))
        with open(path_to_json, 'w') as f:
            json.dump(result, f)

    else:
        with open(path_to_json, 'r') as f:
            result = json.load(f)
            images = []
        for image in os.listdir(path_to_images):
            image_id = os.path.splitext(image)[0]
            if image_id not in result.keys():
                images.append(image)

    total_images = len(images)

    for i, image in enumerate(images):
        if (i % 100) == 0:
            with open(path_to_json, 'w') as f:
                json.dump(result, f)
            print('Evaluated {} of {} images'.format(i, total_images))

        path_to_image = os.path.join(path_to_images, image)
        try:
            Image.open(path_to_image).convert('RGB')
        except (IOError, OSError):
            continue
        result.update(send_od_request(path_to_image))