def main():
    opt.manualSeed = random.randint(1, 10000)
    random.seed(opt.manualSeed)
    torch.manual_seed(opt.manualSeed)
    if not os.path.exists(opt.output_folder):
        os.makedirs(opt.output_folder)
    num_points = 1000  #number of points on the input pointcloud
    num_objects = 21
    estimator = PoseNetGlobal(num_points=num_points, num_obj=num_objects)
    estimator.cuda()
    estimator.load_state_dict(torch.load(opt.weights))
    output_format = [
        otypes.OBJECT_LABEL, otypes.QUATERNION, otypes.IMAGE_CROPPED,
        otypes.DEPTH_POINTS_MASKED_AND_INDEXES
    ]
    estimator.eval()
    pbar = trange(2, num_objects + 1)
    for cls in pbar:
        dataset = YCBDataset(
            opt.dataset_root,
            mode='grid',
            object_list=[cls],
            output_data=output_format,
            resample_on_error=True,
            preprocessors=[
                YCBOcclusionAugmentor(opt.dataset_root),
                ColorJitter(),
            ],
            postprocessors=[ImageNormalizer(),
                            PointShifter()],
            image_size=[640, 480],
            num_points=1000)

        classes = dataset.classes
        dataloader = torch.utils.data.DataLoader(dataset,
                                                 batch_size=1,
                                                 shuffle=False,
                                                 num_workers=opt.workers)
        pbar.set_description('Featurizing {}'.format(classes[cls]))

        for aug_idx in trange(opt.num_augmentations):
            for i, data in tqdm(enumerate(dataloader), total=len(dataloader)):
                if (len(data) == 0 or len(data[0]) == 0):
                    continue
                idx, quat, img, points, choose = data
                data_path = dataset.image_list[i]
                idx = idx - 1
                img = Variable(img).cuda()
                points = Variable(points).cuda()
                choose = Variable(choose).cuda()
                idx = Variable(idx).cuda()
                assert cls == data_path[1]
                assert cls - 1 == int(idx[0])
                feat, _ = estimator.globalFeature(img, points, choose, idx)
                output_filename = '{0}/{1}_{2}_{3}_feat.npz'.format(
                    opt.output_folder, data_path[0], classes[cls], aug_idx)
                os.makedirs(os.path.dirname(output_filename), exist_ok=True)
                np.savez(output_filename,
                         quat=to_np(quat)[0],
                         feat=to_np(feat)[0])
Esempio n. 2
0
def main():
    opt.manualSeed = random.randint(1, 10000)
    random.seed(opt.manualSeed)
    torch.manual_seed(opt.manualSeed)
    if not os.path.exists(opt.output_folder):
        os.makedirs(opt.output_folder)
    num_points = 1000  #number of points on the input pointcloud
    num_objects = 21
    estimator = PoseNetGlobal(num_points=num_points, num_obj=num_objects)
    estimator.cuda()
    estimator.load_state_dict(torch.load(opt.weights))
    output_format = [
        otypes.QUATERNION, otypes.IMAGE_CROPPED,
        otypes.DEPTH_POINTS_MASKED_AND_INDEXES
    ]
    estimator.eval()
    for cls in trange(1, num_objects + 1):
        dataset = YCBDataset(opt.dataset_root,
                             mode=opt.mode,
                             object_list=[cls],
                             output_data=output_format,
                             postprocessor=ImageNormalizer,
                             image_size=[640, 480],
                             num_points=1000)
        classes = dataset.classes
        dataloader = torch.utils.data.DataLoader(dataset,
                                                 batch_size=1,
                                                 shuffle=False,
                                                 num_workers=opt.workers)

        for i, data in tqdm(enumerate(dataloader), total=len(dataloader)):
            if (len(data) == 0 or len(data[0]) == 0):
                continue
            quat, img, points, choose = data
            data_path = dataset.image_list[i]
            img = Variable(img).cuda()
            points = Variable(points).cuda()
            choose = Variable(choose).cuda()
            idx = Variable(torch.LongTensor(cls - 1)).cuda()
            assert cls == data_path[1]
            feat, _ = estimator.globalFeature(img, points, choose, idx)
            output_filename = '{0}/{1}_{2}_feat.npz'.format(
                opt.output_folder, data_path[0], classes[cls])
            os.makedirs(os.path.dirname(output_filename), exist_ok=True)
            np.savez(output_filename, quat=to_np(quat)[0], feat=to_np(feat)[0])
def main():
    opt.manualSeed = random.randint(1, 10000)
    random.seed(opt.manualSeed)
    torch.manual_seed(opt.manualSeed)

    opt.num_objects = 21 #number of object classes in the dataset
    opt.num_points = 1000 #number of points on the input pointcloud
    opt.outf = 'trained_models/ycb_global_mnorm' #folder to save trained models
    opt.log_dir = 'experiments/logs/ycb_global_mnorm' #folder to save logs
    opt.repeat_epoch = 1 #number of repeat times for one epoch training


    if not os.path.exists(opt.outf):
        os.makedirs(opt.outf)
 
    if not os.path.exists(opt.log_dir):
        os.makedirs(opt.log_dir)


    estimator = PoseNetGlobal(num_points = opt.num_points, num_obj = opt.num_objects)
    estimator.cuda()
    refiner = PoseRefineNet(num_points = opt.num_points, num_obj = opt.num_objects)
    refiner.cuda()

    if opt.resume_posenet != '':
        estimator.load_state_dict(torch.load('{0}/{1}'.format(opt.outf, opt.resume_posenet)))

    if opt.resume_refinenet != '':
        refiner.load_state_dict(torch.load('{0}/{1}'.format(opt.outf, opt.resume_refinenet)))
        opt.refine_start = True
        opt.decay_start = True
        opt.lr *= opt.lr_rate
        opt.w *= opt.w_rate
        opt.batch_size = int(opt.batch_size / opt.iteration)
        optimizer = optim.Adam(refiner.parameters(), lr=opt.lr)
    else:
        opt.refine_start = False
        opt.decay_start = False
        optimizer = optim.Adam(estimator.parameters(), lr=opt.lr)

    object_list = list(range(1,22))
    output_format = [otypes.DEPTH_POINTS_MASKED_AND_INDEXES,
                     otypes.IMAGE_CROPPED,
                     otypes.MODEL_POINTS_TRANSFORMED,
                     otypes.MODEL_POINTS,
                     otypes.OBJECT_LABEL,
                     ]
        
    dataset = YCBDataset(opt.dataset_root, mode='train_syn_grid', 
                         object_list = object_list, 
                         output_data = output_format,
                         resample_on_error = True,
                         preprocessors = [YCBOcclusionAugmentor(opt.dataset_root), 
                                          ColorJitter(), 
                                          InplaneRotator()],
                         postprocessors = [ImageNormalizer(), PointMeanNormalizer(0)], #PointShifter()],
                         refine = opt.refine_start,
                         image_size = [640, 480], num_points=1000)
    dataloader = torch.utils.data.DataLoader(dataset, batch_size=1, shuffle=True, num_workers=opt.workers-1)
    
    test_dataset = YCBDataset(opt.dataset_root, mode='valid', 
                         object_list = object_list, 
                         output_data = output_format,
                         resample_on_error = True,
                         preprocessors = [],
                         postprocessors = [ImageNormalizer(), PointMeanNormalizer(0)],
                         refine = opt.refine_start,
                         image_size = [640, 480], num_points=1000)
    testdataloader = torch.utils.data.DataLoader(test_dataset, batch_size=1, shuffle=False, num_workers=1)
    
    opt.sym_list = [12, 15, 18, 19, 20]
    opt.num_points_mesh = dataset.num_pt_mesh_small

    print('>>>>>>>>----------Dataset loaded!---------<<<<<<<<\nlength of the training set: {0}\nlength of the testing set: {1}\nnumber of sample points on mesh: {2}\nsymmetry object list: {3}'.format(len(dataset), len(test_dataset), opt.num_points_mesh, opt.sym_list))

    criterion = Loss(opt.num_points_mesh, opt.sym_list)
    criterion_refine = Loss_refine(opt.num_points_mesh, opt.sym_list)

    best_test = np.Inf

    if opt.start_epoch == 1:
        for log in os.listdir(opt.log_dir):
            os.remove(os.path.join(opt.log_dir, log))
    st_time = time.time()

    for epoch in range(opt.start_epoch, opt.nepoch):
        logger = setup_logger('epoch%d' % epoch, os.path.join(opt.log_dir, 'epoch_%d_log.txt' % epoch))
        logger.info('Train time {0}'.format(time.strftime("%Hh %Mm %Ss", time.gmtime(time.time() - st_time)) + ', ' + 'Training started'))
        train_count = 0
        train_dis_avg = 0.0
        if opt.refine_start:
            estimator.eval()
            refiner.train()
        else:
            estimator.train()
        optimizer.zero_grad()

        for rep in range(opt.repeat_epoch):
            for i, data in enumerate(dataloader, 0):
                points, choose, img, target, model_points, idx = data
                idx = idx - 1
                points, choose, img, target, model_points, idx = Variable(points).cuda(), \
                                                                 Variable(choose).cuda(), \
                                                                 Variable(img).cuda(), \
                                                                 Variable(target).cuda(), \
                                                                 Variable(model_points).cuda(), \
                                                                 Variable(idx).cuda()
                pred_r, pred_t, pred_c, emb = estimator(img, points, choose, idx)
                loss, dis, new_points, new_target = criterion(pred_r, pred_t, pred_c, target, model_points, idx, points, opt.w, opt.refine_start)
                
                if opt.refine_start:
                    for ite in range(0, opt.iteration):
                        pred_r, pred_t = refiner(new_points, emb, idx)
                        dis, new_points, new_target = criterion_refine(pred_r, pred_t, new_target, model_points, idx, new_points)
                        dis.backward()
                else:
                    loss.backward()

                train_dis_avg += dis.item()
                train_count += 1

                if train_count % opt.batch_size == 0:
                    logger.info('Train time {0} Epoch {1} Batch {2} Frame {3} Avg_dis:{4}'.format(time.strftime("%Hh %Mm %Ss", time.gmtime(time.time() - st_time)), epoch, int(train_count / opt.batch_size), train_count, train_dis_avg / opt.batch_size))
                    optimizer.step()
                    optimizer.zero_grad()
                    train_dis_avg = 0

                if train_count != 0 and train_count % 1000 == 0:
                    if opt.refine_start:
                        torch.save(refiner.state_dict(), '{0}/pose_refine_model_current.pth'.format(opt.outf))
                    else:
                        torch.save(estimator.state_dict(), '{0}/pose_model_current.pth'.format(opt.outf))

        print('>>>>>>>>----------epoch {0} train finish---------<<<<<<<<'.format(epoch))


        logger = setup_logger('epoch%d_test' % epoch, os.path.join(opt.log_dir, 'epoch_%d_test_log.txt' % epoch))
        logger.info('Test time {0}'.format(time.strftime("%Hh %Mm %Ss", time.gmtime(time.time() - st_time)) + ', ' + 'Testing started'))
        test_dis = 0.0
        test_count = 0
        estimator.eval()
        refiner.eval()

        for j, data in enumerate(testdataloader, 0):
            points, choose, img, target, model_points, idx = data
            idx = idx - 1
            points, choose, img, target, model_points, idx = Variable(points).cuda(), \
                                                             Variable(choose).cuda(), \
                                                             Variable(img).cuda(), \
                                                             Variable(target).cuda(), \
                                                             Variable(model_points).cuda(), \
                                                             Variable(idx).cuda()
            pred_r, pred_t, pred_c, emb = estimator(img, points, choose, idx)
            _, dis, new_points, new_target = criterion(pred_r, pred_t, pred_c, target, model_points, idx, points, opt.w, opt.refine_start)

            if opt.refine_start:
                for ite in range(0, opt.iteration):
                    pred_r, pred_t = refiner(new_points, emb, idx)
                    dis, new_points, new_target = criterion_refine(pred_r, pred_t, new_target, model_points, idx, new_points)

            test_dis += dis.item()
            logger.info('Test time {0} Test Frame No.{1} dis:{2}'.format(time.strftime("%Hh %Mm %Ss", time.gmtime(time.time() - st_time)), test_count, dis))

            test_count += 1

        test_dis = test_dis / test_count
        logger.info('Test time {0} Epoch {1} TEST FINISH Avg dis: {2}'.format(time.strftime("%Hh %Mm %Ss", time.gmtime(time.time() - st_time)), epoch, test_dis))
        if test_dis <= best_test:
            best_test = test_dis
            if opt.refine_start:
                torch.save(refiner.state_dict(), '{0}/pose_refine_model_{1}_{2}.pth'.format(opt.outf, epoch, test_dis))
            else:
                torch.save(estimator.state_dict(), '{0}/pose_model_{1}_{2}.pth'.format(opt.outf, epoch, test_dis))
            print(epoch, '>>>>>>>>----------BEST TEST MODEL SAVED---------<<<<<<<<')

        if best_test < opt.decay_margin and not opt.decay_start:
            opt.decay_start = True
            opt.lr *= opt.lr_rate
            opt.w *= opt.w_rate
            optimizer = optim.Adam(estimator.parameters(), lr=opt.lr)

        if best_test < opt.refine_margin and not opt.refine_start:
            opt.refine_start = True
            opt.batch_size = int(opt.batch_size / opt.iteration)
            optimizer = optim.Adam(refiner.parameters(), lr=opt.lr)

            dataset = YCBDataset(opt.dataset_root, mode='train_syn_grid', 
                                 object_list = object_list, 
                                 output_data = output_format,
                                 resample_on_error = True,
                                 preprocessors = [YCBOcclusionAugmentor(opt.dataset_root), 
                                                  ColorJitter(), 
                                                  InplaneRotator()],
                                 postprocessors = [ImageNormalizer(), PointShifter()],
                                 refine = opt.refine_start,
                                 image_size = [640, 480], num_points=1000)
            dataloader = torch.utils.data.DataLoader(dataset, batch_size=1, shuffle=True, num_workers=opt.workers)
            
            test_dataset = YCBDataset(opt.dataset_root, mode='valid', 
                                 object_list = object_list, 
                                 output_data = output_format,
                                 resample_on_error = True,
                                 preprocessors = [],
                                 postprocessors = [ImageNormalizer()],
                                 refine = opt.refine_start,
                                 image_size = [640, 480], num_points=1000)
            testdataloader = torch.utils.data.DataLoader(test_dataset, batch_size=1, shuffle=False, num_workers=opt.workers)
            opt.num_points_mesh = dataset.num_pt_mesh_large

            print('>>>>>>>>----------Dataset loaded!---------<<<<<<<<\nlength of the training set: {0}\nlength of the testing set: {1}\nnumber of sample points on mesh: {2}\nsymmetry object list: {3}'.format(len(dataset), len(test_dataset), opt.num_points_mesh, opt.sym_list))

            criterion = Loss(opt.num_points_mesh, opt.sym_list)
            criterion_refine = Loss_refine(opt.num_points_mesh, opt.sym_list)
Esempio n. 4
0
def main():
    opt.manualSeed = random.randint(1, 10000)
    random.seed(opt.manualSeed)
    torch.manual_seed(opt.manualSeed)

    opt.num_objects = 21  #number of object classes in the dataset
    opt.num_points = 1000  #number of points on the input pointcloud
    opt.outf = 'trained_models/ycb_plus_bing'  #folder to save trained models
    opt.log_dir = 'experiments/logs/ycb_plus_bing'  #folder to save logs
    opt.repeat_epoch = 1  #number of repeat times for one epoch training
    estimator = PoseNetPlusDuelBing(num_points=opt.num_points,
                                    num_obj=opt.num_objects)
    estimator.cuda()

    train_writer = SummaryWriter(comment='duel_binham_train')
    valid_writer = SummaryWriter(comment='duel_binham_valid')

    if opt.resume_posenet != '':
        estimator.load_state_dict(
            torch.load('{0}/{1}'.format(opt.outf, opt.resume_posenet)))
    elif opt.finetune_posenet != '':
        pretrained_dict = torch.load(opt.finetune_posenet)
        model_dict = estimator.state_dict()
        pretrained_dict = {
            k: v
            for k, v in pretrained_dict.items() if k in model_dict
        }
        model_dict.update(pretrained_dict)
        estimator.load_state_dict(model_dict)
        for k, v in estimator.named_parameters():
            if (k in pretrained_dict):
                v.requires_grad = False
        opt.log_dir += '_cont'
        opt.outf += '_cont'

    opt.refine_start = False
    opt.decay_start = False
    optimizer = optim.Adam(estimator.parameters(), lr=opt.lr)

    object_list = list(range(1, 22))
    output_format = [
        otypes.DEPTH_POINTS_MASKED_AND_INDEXES,
        otypes.IMAGE_CROPPED,
        otypes.QUATERNION,
        otypes.MODEL_POINTS_TRANSFORMED,
        otypes.MODEL_POINTS,
        otypes.OBJECT_LABEL,
    ]

    dataset = YCBDataset(
        opt.dataset_root,
        mode='train_syn_grid_valid',
        object_list=object_list,
        output_data=output_format,
        resample_on_error=True,
        preprocessors=[
            YCBOcclusionAugmentor(opt.dataset_root),
            ColorJitter(),
            #InplaneRotator(),
        ],
        postprocessors=[ImageNormalizer(), PointShifter()],
        image_size=[640, 480],
        num_points=1000)
    dataloader = torch.utils.data.DataLoader(dataset,
                                             batch_size=1,
                                             shuffle=True,
                                             num_workers=opt.workers - 1)

    test_dataset = YCBDataset(opt.dataset_root,
                              mode='valid',
                              object_list=object_list,
                              output_data=output_format,
                              resample_on_error=True,
                              preprocessors=[],
                              postprocessors=[ImageNormalizer()],
                              image_size=[640, 480],
                              num_points=1000)
    testdataloader = torch.utils.data.DataLoader(test_dataset,
                                                 batch_size=1,
                                                 shuffle=False,
                                                 num_workers=1)

    opt.sym_list = [12, 15, 18, 19, 20]
    opt.num_points_mesh = dataset.num_pt_mesh_small

    print(
        '>>>>>>>>----------Dataset loaded!---------<<<<<<<<\nlength of the training set: {0}\nlength of the testing set: {1}\nnumber of sample points on mesh: {2}\nsymmetry object list: {3}'
        .format(len(dataset), len(test_dataset), opt.num_points_mesh,
                opt.sym_list))

    criterion_dist = Loss(opt.num_points_mesh, opt.sym_list)
    criterion_lik = DuelLoss(opt.num_points_mesh, opt.sym_list)

    best_dis = np.Inf
    best_lik = -np.Inf

    if opt.start_epoch == 1:
        for log in os.listdir(opt.log_dir):
            os.remove(os.path.join(opt.log_dir, log))
    st_time = time.time()
    cum_batch_count = 0
    mean_err = 0
    for epoch in range(opt.start_epoch, opt.nepoch):
        logger = setup_logger(
            'epoch%d' % epoch,
            os.path.join(opt.log_dir, 'epoch_%d_log.txt' % epoch))
        logger.info('Train time {0}'.format(
            time.strftime("%Hh %Mm %Ss", time.gmtime(time.time() - st_time)) +
            ', ' + 'Training started'))
        train_count = 0
        train_dis_avg = 0.0
        train_lik_avg = 0.0
        estimator.train()
        optimizer.zero_grad()

        for rep in range(opt.repeat_epoch):
            for i, data in enumerate(dataloader, 0):
                points, choose, img, quat, target, model_points, idx = data
                idx = idx - 1
                points, choose, img, quat, target, model_points, idx = Variable(points).cuda(), \
                                                                 Variable(choose).cuda(), \
                                                                 Variable(img).cuda(), \
                                                                 Variable(quat).cuda(), \
                                                                 Variable(target).cuda(), \
                                                                 Variable(model_points).cuda(), \
                                                                 Variable(idx).cuda()
                pred_r, pred_t, pred_c, pred_bq, pred_bz, emb = estimator(
                    img, points, choose, idx)
                loss_dist, dis, new_points, new_target = criterion_dist(
                    pred_r, pred_t, pred_c, target, model_points, idx, points,
                    opt.w, opt.refine_start)

                how_max, which_max = torch.max(pred_c.detach(), 1)
                pred_q = pred_r[0, :, [1, 2, 3, 0]].detach()
                pred_q /= torch.norm(pred_q, dim=1).view(-1, 1)

                max_q = pred_q[which_max.item()]
                max_bq = pred_bq[0, which_max.item()] / torch.norm(
                    pred_bq[0, which_max.item()])
                max_bz = pred_bz[0, which_max.item()]

                loss_lik, lik = criterion_lik(max_q.view(-1), max_bq.view(-1),
                                              -torch.abs(max_bz.view(-1)),
                                              quat)
                loss = loss_dist + loss_lik
                loss.backward()

                train_dis_avg += dis.item()
                train_lik_avg += np.log(lik.item())
                train_count += 1

                if train_count % opt.batch_size == 0:
                    logger.info(
                        'Train time {0} Epoch {1} Batch {2} Frame {3} Avg_dis:{4} Avg_lik:{5}'
                        .format(
                            time.strftime("%Hh %Mm %Ss",
                                          time.gmtime(time.time() - st_time)),
                            epoch, int(train_count / opt.batch_size),
                            train_count, train_dis_avg / opt.batch_size,
                            train_lik_avg / opt.batch_size))
                    optimizer.step()
                    optimizer.zero_grad()
                    train_dis_avg = 0
                    train_lik_avg = 0

                if train_count != 0 and train_count % 1000 == 0:
                    torch.save(estimator.state_dict(),
                               '{0}/pose_model_current.pth'.format(opt.outf))

        print(
            '>>>>>>>>----------epoch {0} train finish---------<<<<<<<<'.format(
                epoch))

        logger = setup_logger(
            'epoch%d_test' % epoch,
            os.path.join(opt.log_dir, 'epoch_%d_test_log.txt' % epoch))
        logger.info('Test time {0}'.format(
            time.strftime("%Hh %Mm %Ss", time.gmtime(time.time() - st_time)) +
            ', ' + 'Testing started'))
        test_dis = 0.0
        test_lik = 0.0
        test_count = 0
        estimator.eval()

        for j, data in enumerate(testdataloader, 0):
            points, choose, img, quat, target, model_points, idx = data
            idx = idx - 1
            points, choose, img, quat, target, model_points, idx = Variable(points).cuda(), \
                                                             Variable(choose).cuda(), \
                                                             Variable(img).cuda(), \
                                                             Variable(quat).cuda(), \
                                                             Variable(target).cuda(), \
                                                             Variable(model_points).cuda(), \
                                                             Variable(idx).cuda()
            pred_r, pred_t, pred_c, pred_bq, pred_bz, emb = estimator(
                img, points, choose, idx)
            _, dis, new_points, new_target = criterion_dist(
                pred_r, pred_t, pred_c, target, model_points, idx, points,
                opt.w, opt.refine_start)
            how_max, which_max = torch.max(pred_c.detach(), 1)
            pred_q = pred_r[0, :, [1, 2, 3, 0]].detach()
            pred_q /= torch.norm(pred_q, dim=1).view(-1, 1)

            max_q = pred_q[which_max.item()]
            max_bq = pred_bq[0, which_max.item()] / torch.norm(
                pred_bq[0, which_max.item()])
            max_bz = pred_bz[0, which_max.item()]

            _, lik = criterion_lik(max_q.view(-1), max_bq.view(-1),
                                   -torch.abs(max_bz.view(-1)), quat)

            test_dis += dis.item()
            test_lik += np.log(lik.item())
            logger.info(
                'Test time {0} Test Frame No.{1} dis:{2} lik:{3}'.format(
                    time.strftime("%Hh %Mm %Ss",
                                  time.gmtime(time.time() - st_time)),
                    test_count, dis, lik))

            test_count += 1

        test_dis = test_dis / test_count
        test_lik = test_lik / test_count
        logger.info(
            'Test time {0} Epoch {1} TEST FINISH Avg dis: {2} Avg lik: {3}'.
            format(
                time.strftime("%Hh %Mm %Ss",
                              time.gmtime(time.time() - st_time)), epoch,
                test_dis, test_lik))
        if test_dis <= best_dis or test_lik >= best_lik:
            best_dis = min(test_dis, best_dis)
            best_lik = max(test_lik, best_lik)

            torch.save(
                estimator.state_dict(),
                '{0}/pose_model_{1}_{2}_{3}.pth'.format(
                    opt.outf, epoch, test_dis, test_lik))
            print(epoch,
                  '>>>>>>>>----------BEST TEST MODEL SAVED---------<<<<<<<<')

        if best_dis < opt.decay_margin and not opt.decay_start:
            opt.decay_start = True
            opt.lr *= opt.lr_rate
            opt.w *= opt.w_rate
            optimizer = optim.Adam(estimator.parameters(), lr=opt.lr)
Esempio n. 5
0
def main():
    opt.manualSeed = random.randint(1, 10000)
    random.seed(opt.manualSeed)
    torch.manual_seed(opt.manualSeed)
    if not os.path.exists(opt.output_folder):
        os.makedirs(opt.output_folder)
    num_points = 1000  #number of points on the input pointcloud
    num_objects = 21
    if (opt.object_indices is None):
        opt.object_indices = list(range(1, num_objects + 1))
    estimator = PoseNet(num_points=num_points, num_obj=num_objects)
    estimator.cuda()
    estimator.load_state_dict(torch.load(opt.weights))
    output_format = [
        otypes.OBJECT_LABEL, otypes.QUATERNION, otypes.IMAGE_CROPPED,
        otypes.DEPTH_POINTS_MASKED_AND_INDEXES
    ]
    estimator.eval()
    with torch.no_grad():
        with std_out_err_redirect_tqdm() as orig_stdout:
            pbar = tqdm(opt.object_indices,
                        file=orig_stdout,
                        dynamic_ncols=True)
            for cls in pbar:
                preprocessors = [InplaneRotator(theta=np.pi / 2)]
                postprocessors = [ImageNormalizer()]
                if (opt.num_augmentations > 0):
                    preprocessors.extend([
                        YCBOcclusionAugmentor(opt.dataset_root),
                        ColorJitter(),
                    ])
                    postprocessors.append(PointShifter())

                dataset = YCBDataset(opt.dataset_root,
                                     mode=opt.dataset_mode,
                                     object_list=[cls],
                                     output_data=output_format,
                                     resample_on_error=False,
                                     add_syn_background=opt.add_syn_background,
                                     add_syn_noise=opt.add_syn_background,
                                     preprocessors=preprocessors,
                                     postprocessors=postprocessors,
                                     image_size=[640, 480],
                                     num_points=1000)

                classes = dataset.classes
                dataloader = torch.utils.data.DataLoader(
                    dataset,
                    batch_size=1,
                    shuffle=False,
                    num_workers=opt.workers)
                pbar.set_description('Featurizing {}'.format(classes[cls]))
                if (opt.num_augmentations > 0):
                    pbar_aug = trange(opt.start_index,
                                      opt.num_augmentations,
                                      file=orig_stdout,
                                      dynamic_ncols=True)
                else:
                    pbar_aug = [None]
                for aug_idx in pbar_aug:
                    pbar_save = tqdm(enumerate(dataloader),
                                     total=len(dataloader),
                                     file=orig_stdout,
                                     dynamic_ncols=True)
                    for i, data in pbar_save:
                        if (len(data) == 0 or len(data[0]) == 0):
                            continue
                        idx, quat, img, points, choose = data
                        data_path = dataset.image_list[i]
                        idx = idx - 1
                        img = Variable(img).cuda()
                        points = Variable(points).cuda()
                        choose = Variable(choose).cuda()
                        idx = Variable(idx).cuda()
                        assert cls == data_path[1]
                        assert cls - 1 == int(idx[0])
                        pred_r, pred_t, pred_c, emb, feat, feat_global = estimator.allFeatures(
                            img, points, choose, idx)
                        if (opt.num_augmentations > 0):
                            output_filename = '{0}/data/{1}_{2}_{3}_feat.npz'.format(
                                opt.output_folder, data_path[0], classes[cls],
                                aug_idx)
                        else:
                            output_filename = '{0}/data/{1}_{2}_feat.npz'.format(
                                opt.output_folder, data_path[0], classes[cls])
                        #pbar_save.set_description(output_filename)
                        os.makedirs(os.path.dirname(output_filename),
                                    exist_ok=True)
                        how_max, which_max = torch.max(pred_c, 1)
                        max_feat = feat[0, :, which_max[0]].view(-1)
                        pred_t = pred_t[0, :]
                        pred_q = pred_r[0, :, [1, 2, 3, 0]]
                        pred_q /= torch.norm(pred_q, dim=1).view(-1, 1)
                        np.savez(
                            output_filename,
                            max_c=to_np(how_max),
                            max_q=to_np(pred_q[which_max.item()]),
                            max_t=to_np(pred_t[which_max.item()]),
                            pred_c=to_np(pred_c),
                            pred_q=to_np(pred_q),
                            pred_t=to_np(pred_t),
                            quat=to_np(quat)[0],
                            feat=to_np(max_feat),
                            #feat_all = to_np(feat)[0].T, i
                            feat_global=to_np(feat_global)[0],
                            #max_confidence = to_np(how_max),
                            #confidence = to_np(pred_c)[0],
                        )
Esempio n. 6
0
def main():
    opt.manualSeed = random.randint(1, 10000)
    random.seed(opt.manualSeed)
    torch.manual_seed(opt.manualSeed)

    opt.num_objects = 21  #number of object classes in the dataset
    opt.num_points = 1000  #number of points on the input pointcloud
    opt.outf = 'trained_models/ycb_global_duel_bing'  #folder to save trained models
    opt.log_dir = 'experiments/logs/ycb_global_duel_bing'  #folder to save logs
    opt.repeat_epoch = 1  #number of repeat times for one epoch training
    estimator = PoseNetBinghamDuel(num_points=opt.num_points,
                                   num_obj=opt.num_objects)
    estimator.cuda()

    train_writer = SummaryWriter(comment='duel_binham_train')
    valid_writer = SummaryWriter(comment='duel_binham_valid')

    if opt.resume_posenet != '':
        estimator.load_state_dict(
            torch.load('{0}/{1}'.format(opt.outf, opt.resume_posenet)))

    optimizer = optim.Adam(estimator.parameters(), lr=opt.lr)

    object_list = list(range(1, 22))
    output_format = [
        otypes.DEPTH_POINTS_MASKED_AND_INDEXES,
        otypes.IMAGE_CROPPED,
        otypes.QUATERNION,
        otypes.OBJECT_LABEL,
    ]

    dataset = YCBDataset(opt.dataset_root,
                         mode='train_syn_grid_valid',
                         object_list=object_list,
                         output_data=output_format,
                         resample_on_error=True,
                         preprocessors=[
                             YCBOcclusionAugmentor(opt.dataset_root),
                             ColorJitter(),
                             InplaneRotator()
                         ],
                         postprocessors=[ImageNormalizer(),
                                         PointShifter()],
                         image_size=[640, 480],
                         num_points=1000)
    dataloader = torch.utils.data.DataLoader(dataset,
                                             batch_size=1,
                                             shuffle=True,
                                             num_workers=opt.workers - 1)

    test_dataset = YCBDataset(opt.dataset_root,
                              mode='valid',
                              object_list=object_list,
                              output_data=output_format,
                              resample_on_error=True,
                              preprocessors=[],
                              postprocessors=[ImageNormalizer()],
                              image_size=[640, 480],
                              num_points=1000)
    testdataloader = torch.utils.data.DataLoader(test_dataset,
                                                 batch_size=1,
                                                 shuffle=False,
                                                 num_workers=1)

    opt.sym_list = [12, 15, 18, 19, 20]
    opt.num_points_mesh = dataset.num_pt_mesh_small

    print(
        '>>>>>>>>----------Dataset loaded!---------<<<<<<<<\nlength of the training set: {0}\nlength of the testing set: {1}\nnumber of sample points on mesh: {2}\nsymmetry object list: {3}'
        .format(len(dataset), len(test_dataset), opt.num_points_mesh,
                opt.sym_list))

    criterion = DuelLoss(opt.num_points_mesh, opt.sym_list)

    best_test = np.Inf

    if opt.start_epoch == 1:
        for log in os.listdir(opt.log_dir):
            os.remove(os.path.join(opt.log_dir, log))
    st_time = time.time()
    cum_batch_count = 0
    mean_z = 0
    mean_err = 0
    for epoch in range(opt.start_epoch, opt.nepoch):
        logger = setup_logger(
            'epoch%d' % epoch,
            os.path.join(opt.log_dir, 'epoch_%d_log.txt' % epoch))
        logger.info('Train time {0}'.format(
            time.strftime("%Hh %Mm %Ss", time.gmtime(time.time() - st_time)) +
            ', ' + 'Training started'))
        train_count = 0
        train_dis_avg = 0.0
        estimator.train()
        optimizer.zero_grad()

        for rep in range(opt.repeat_epoch):
            for i, data in enumerate(dataloader, 0):
                points, choose, img, target, idx = data
                idx = idx - 1
                points, choose, img, target, idx = Variable(points).cuda(), \
                                                                 Variable(choose).cuda(), \
                                                                 Variable(img).cuda(), \
                                                                 Variable(target).cuda(), \
                                                                 Variable(idx).cuda()
                pred_q1, pred_q2, pred_z, _ = estimator(
                    img, points, choose, idx)
                loss, dis = criterion(pred_q1.view(-1), pred_q2.view(-1),
                                      torch.abs(pred_z.view(-1)), target)
                loss.backward()
                mean_z += torch.sum(torch.abs(pred_z.view(-1).detach()))
                pred_q = makeBinghamM(
                    pred_q1.view(-1).detach(),
                    pred_q2.view(-1).detach())[:, 0]
                pred_q = pred_q / pred_q.norm()
                mean_err += tensorAngularDiff(pred_q, target) * 180 / np.pi

                train_dis_avg += dis.item()
                train_count += 1

                if train_count % opt.batch_size == 0:
                    cum_batch_count += 1
                    logger.info(
                        'Train time {0} Epoch {1} Batch {2} Frame {3} Avg_dis:{4}'
                        .format(
                            time.strftime("%Hh %Mm %Ss",
                                          time.gmtime(time.time() - st_time)),
                            epoch, int(train_count / opt.batch_size),
                            train_count / len(dataset),
                            train_dis_avg / opt.batch_size))
                    optimizer.step()
                    optimizer.zero_grad()
                    if (cum_batch_count % 100 == 0):
                        train_writer.add_scalar('loss', loss, cum_batch_count)
                        train_writer.add_scalar('lik', dis, cum_batch_count)
                        train_writer.add_scalar('mean_lik',
                                                train_dis_avg / opt.batch_size,
                                                cum_batch_count)
                        train_writer.add_scalar(
                            'mean_z', mean_z / (100 * opt.batch_size),
                            cum_batch_count)
                        train_writer.add_scalar(
                            'mean_err', mean_err / (100 * opt.batch_size),
                            cum_batch_count)
                        mean_sig = 0
                        mean_err = 0
                    train_dis_avg = 0
                if train_count != 0 and train_count % 1000 == 0:
                    torch.save(estimator.state_dict(),
                               '{0}/pose_model_current.pth'.format(opt.outf))

        print(
            '>>>>>>>>----------epoch {0} train finish---------<<<<<<<<'.format(
                epoch))

        logger = setup_logger(
            'epoch%d_test' % epoch,
            os.path.join(opt.log_dir, 'epoch_%d_test_log.txt' % epoch))
        logger.info('Test time {0}'.format(
            time.strftime("%Hh %Mm %Ss", time.gmtime(time.time() - st_time)) +
            ', ' + 'Testing started'))
        test_dis = 0.0
        test_count = 0
        estimator.eval()
        mean_z = 0
        mean_err = 0
        for j, data in enumerate(testdataloader, 0):
            points, choose, img, target, idx = data
            idx = idx - 1
            points, choose, img, target, idx = Variable(points).cuda(), \
                                                             Variable(choose).cuda(), \
                                                             Variable(img).cuda(), \
                                                             Variable(target).cuda(), \
                                                             Variable(idx).cuda()
            pred_q1, pred_q2, pred_z, _ = estimator(img, points, choose, idx)
            loss, dis = criterion(pred_q1.view(-1), pred_q2.view(-1),
                                  torch.abs(pred_z.view(-1)), target)
            mean_z += torch.sum(torch.abs(pred_z.view(-1).detach()))
            pred_q = makeBinghamM(
                pred_q1.view(-1).detach(),
                pred_q2.view(-1).detach())[:, 0]
            pred_q = pred_q / pred_q.norm()
            mean_err += tensorAngularDiff(pred_q, target) * 180 / np.pi

            test_dis += dis.item()
            logger.info('Test time {0} Test Frame No.{1} dis:{2}'.format(
                time.strftime("%Hh %Mm %Ss",
                              time.gmtime(time.time() - st_time)), test_count,
                dis))
            test_count += 1

        test_dis = test_dis / test_count
        logger.info('Test time {0} Epoch {1} TEST FINISH Avg dis: {2}'.format(
            time.strftime("%Hh %Mm %Ss", time.gmtime(time.time() - st_time)),
            epoch, test_dis))
        valid_writer.add_scalar('loss', loss, cum_batch_count)
        valid_writer.add_scalar('lik', dis, cum_batch_count)
        valid_writer.add_scalar('mean_lik', test_dis, cum_batch_count)
        valid_writer.add_scalar('mean_z', mean_z / test_count, cum_batch_count)
        valid_writer.add_scalar('mean_err', mean_err / test_count,
                                cum_batch_count)
        mean_sig = 0
        mean_err = 0
        if test_dis <= best_test:
            best_test = test_dis
            torch.save(
                estimator.state_dict(),
                '{0}/pose_model_{1}_{2}.pth'.format(opt.outf, epoch, test_dis))
            print(epoch,
                  '>>>>>>>>----------BEST TEST MODEL SAVED---------<<<<<<<<')

        if best_test < opt.decay_margin and not opt.decay_start:
            opt.decay_start = True
            opt.lr *= opt.lr_rate
            opt.w *= opt.w_rate
            optimizer = optim.Adam(estimator.parameters(), lr=opt.lr)
Esempio n. 7
0
def main():
    opt.manualSeed = random.randint(1, 10000)
    random.seed(opt.manualSeed)
    torch.manual_seed(opt.manualSeed)
    if not os.path.exists(opt.output_folder):
        os.makedirs(opt.output_folder)
    num_points = 1000  #number of points on the input pointcloud
    num_objects = 21
    if (opt.object_indices is None):
        opt.object_indices = list(range(1, num_objects + 1))
    estimator = PoseCNNFeaturizer()

    output_format = [otypes.IMAGE, otypes.DEPTH_IMAGE]

    with std_out_err_redirect_tqdm() as orig_stdout:
        preprocessors = []
        postprocessors = []
        if (opt.num_augmentations > 0):
            preprocessors.extend([
                YCBOcclusionAugmentor(opt.dataset_root),
                ColorJitter(),
            ])
            postprocessors.append(PointShifter())

        dataset = YCBDataset(opt.dataset_root,
                             mode=opt.dataset_mode,
                             object_list=opt.object_indices,
                             output_data=output_format,
                             resample_on_error=False,
                             preprocessors=preprocessors,
                             postprocessors=postprocessors,
                             image_size=[640, 480],
                             num_points=1000)
        _, u_idxs = np.unique(zip(*dataset.image_list)[0], return_index=True)
        dataset.image_list = np.array(dataset.image_list)[u_idxs].tolist()
        dataset.list_obj = np.array(dataset.list_obj)[u_idxs].tolist()

        classes = dataset.classes
        dataloader = torch.utils.data.DataLoader(dataset,
                                                 batch_size=1,
                                                 shuffle=False,
                                                 num_workers=opt.workers)
        #pbar.set_description('Featurizing {}'.format(classes[cls]))

        if (opt.num_augmentations > 0):
            pbar_aug = trange(opt.start_index,
                              opt.num_augmentations,
                              file=orig_stdout,
                              dynamic_ncols=True)
        else:
            pbar_aug = [None]
        for aug_idx in pbar_aug:

            pbar_save = tqdm(enumerate(dataloader),
                             total=len(dataloader),
                             file=orig_stdout,
                             dynamic_ncols=True)
            for i, data in pbar_save:
                if (len(data) == 0 or len(data[0]) == 0):
                    continue
                img, depth = data
                img = toPoseCNNImage(img[0])
                depth = to_np(depth[0])
                data_path = dataset.image_list[i]

                path = '{}/data/{}-meta.mat'.format(dataset.dataset_root,
                                                    dataset.getPath(i))
                meta_data = scio.loadmat(path)
                try:
                    seg = estimator(img, depth, meta_data)
                except Exception as e:
                    print(e)
                    continue
                for pose_idx, cls in enumerate(seg['rois'][:, 1]):
                    cls = int(cls)
                    quat = getObjectGTQuaternion(meta_data, cls)
                    feat = seg['feats'][pose_idx]
                    fc6 = seg['fc6'][pose_idx]
                    if (opt.num_augmentations > 0):
                        output_filename = '{0}/data/{1}_{2}_{3}_feat.npz'.format(
                            opt.output_folder, data_path[0], classes[cls],
                            aug_idx)
                    else:
                        output_filename = '{0}/data/{1}_{2}_feat.npz'.format(
                            opt.output_folder, data_path[0], classes[cls])

                    #pbar_save.set_description(output_filename)
                    if not os.path.exists(os.path.dirname(output_filename)):
                        os.makedirs(os.path.dirname(output_filename))
                    np.savez(output_filename, quat=quat, feat=feat, fc6=fc6)