Esempio n. 1
0
def chunked_smm(wd, index_path, insert_weighted, destination, data_variables):
    if wd is None:
        wd = os.getcwd()

    if data_variables != 'auto':
        data_variables = data_variables.split(',')

    if index_path is None:
        index_path = os.path.join(
            wd, constants.GridChunkerConstants.DEFAULT_PATHS['index_file'])
        ocgis.vm.barrier()
        assert os.path.exists(index_path)

    if insert_weighted:
        if destination is None:
            raise ValueError(
                'If --insert_weighted, then "destination" must be provided.')

    # ------------------------------------------------------------------------------------------------------------------

    GridChunker.smm(index_path, wd, data_variables=data_variables)
    if insert_weighted:
        with ocgis.vm.scoped_barrier(first=True, last=True):
            with ocgis.vm.scoped('insert weighted', [0]):
                if not ocgis.vm.is_null:
                    GridChunker.insert_weighted(index_path,
                                                wd,
                                                destination,
                                                data_variables=data_variables)
Esempio n. 2
0
File: ocli.py Progetto: NCPP/ocgis
def chunked_smm(wd, index_path, insert_weighted, destination, data_variables):
    if wd is None:
        wd = os.getcwd()

    if data_variables != 'auto':
        data_variables = data_variables.split(',')

    if index_path is None:
        index_path = os.path.join(wd, constants.GridChunkerConstants.DEFAULT_PATHS['index_file'])
        ocgis.vm.barrier()
        assert os.path.exists(index_path)

    if insert_weighted:
        if destination is None:
            raise ValueError('If --insert_weighted, then "destination" must be provided.')

    # ------------------------------------------------------------------------------------------------------------------

    GridChunker.smm(index_path, wd, data_variables=data_variables)
    if insert_weighted:
        with ocgis.vm.scoped_barrier(first=True, last=True):
            with ocgis.vm.scoped('insert weighted', [0]):
                if not ocgis.vm.is_null:
                    GridChunker.insert_weighted(index_path, wd, destination, data_variables=data_variables)
Esempio n. 3
0
    def test_write_esmf_weights(self):
        # Create source and destination fields. This is the identity test, so the source and destination fields are
        # equivalent.
        src_grid = create_gridxy_global(resolution=3.0, crs=Spherical())

        # Only test masking in serial to make indexing easier...just being lazy
        if vm.size == 1:
            mask = src_grid.get_mask(create=True)
            mask[4, 5] = True
            mask[25, 27] = True
            src_grid.set_mask(mask)
            self.assertEqual(src_grid.get_mask().sum(), 2)

        src_field = create_exact_field(src_grid, 'foo', ntime=3)
        dst_field = deepcopy(src_field)

        # Write the fields to disk for use in global file reconstruction and testing.
        if vm.rank == 0:
            master_path = self.get_temporary_file_path('foo.nc')
            src_field_path = self.get_temporary_file_path('src_field.nc')
        else:
            master_path = None
            src_field_path = None
        master_path = vm.bcast(master_path)
        src_field_path = vm.bcast(src_field_path)
        assert not os.path.exists(master_path)
        dst_field.write(master_path)
        src_field.write(src_field_path)

        # Remove the destination data variable to test its creation and filling
        dst_field.remove_variable('foo')

        # Chunk the fields and generate weights
        paths = {'wd': self.current_dir_output}
        gc = GridChunker(src_field, dst_field, nchunks_dst=(2, 2), genweights=True, paths=paths,
                         esmf_kwargs={'regrid_method': 'BILINEAR'})
        gc.write_chunks()

        # This is the path to the index file describing how to reconstruct the grid file
        index_path = os.path.join(self.current_dir_output, gc.paths['index_file'])

        # Execute the sparse matrix multiplication using weights read from file
        gc.smm(index_path, paths['wd'])

        with vm.scoped('index and reconstruct', [0]):
            if not vm.is_null:
                # Reconstruct the global destination file
                gc.insert_weighted(index_path, self.current_dir_output, master_path)

                # Load the actual values from file (destination)
                actual_field = RequestDataset(master_path).create_field()
                actual = actual_field.data_variables[0].mv()

                # Load the desired data from file (original values in the source field)
                desired = RequestDataset(src_field_path).create_field().data_variables[0].mv()

                if vm.size_global == 1:  # Masking is only tested in serial
                    self.assertEqual(actual_field.grid.get_mask().sum(), 2)
                else:
                    self.assertIsNone(actual_field.grid.get_mask())

                self.assertNumpyAll(actual, desired)
Esempio n. 4
0
    def test_write_esmf_weights(self):
        # Create source and destination fields. This is the identity test, so the source and destination fields are
        # equivalent.
        src_grid = create_gridxy_global(resolution=3.0, crs=Spherical())

        # Only test masking in serial to make indexing easier...just being lazy
        if vm.size == 1:
            mask = src_grid.get_mask(create=True)
            mask[4, 5] = True
            mask[25, 27] = True
            src_grid.set_mask(mask)
            self.assertEqual(src_grid.get_mask().sum(), 2)

        src_field = create_exact_field(src_grid, 'foo', ntime=3)
        dst_field = deepcopy(src_field)

        # Write the fields to disk for use in global file reconstruction and testing.
        if vm.rank == 0:
            master_path = self.get_temporary_file_path('foo.nc')
            src_field_path = self.get_temporary_file_path('src_field.nc')
        else:
            master_path = None
            src_field_path = None
        master_path = vm.bcast(master_path)
        src_field_path = vm.bcast(src_field_path)
        assert not os.path.exists(master_path)
        dst_field.write(master_path)
        src_field.write(src_field_path)

        # Remove the destination data variable to test its creation and filling
        dst_field.remove_variable('foo')

        # Chunk the fields and generate weights
        paths = {'wd': self.current_dir_output}
        gc = GridChunker(src_field,
                         dst_field,
                         nchunks_dst=(2, 2),
                         genweights=True,
                         paths=paths,
                         esmf_kwargs={'regrid_method': 'BILINEAR'})
        gc.write_chunks()

        # This is the path to the index file describing how to reconstruct the grid file
        index_path = os.path.join(self.current_dir_output,
                                  gc.paths['index_file'])

        # Execute the sparse matrix multiplication using weights read from file
        gc.smm(index_path, paths['wd'])

        with vm.scoped('index and reconstruct', [0]):
            if not vm.is_null:
                # Reconstruct the global destination file
                gc.insert_weighted(index_path, self.current_dir_output,
                                   master_path)

                # Load the actual values from file (destination)
                actual_field = RequestDataset(master_path).create_field()
                actual = actual_field.data_variables[0].mv()

                # Load the desired data from file (original values in the source field)
                desired = RequestDataset(
                    src_field_path).create_field().data_variables[0].mv()

                if vm.size_global == 1:  # Masking is only tested in serial
                    self.assertEqual(actual_field.grid.get_mask().sum(), 2)
                else:
                    self.assertIsNone(actual_field.grid.get_mask())

                self.assertNumpyAll(actual, desired)