def downScale(self, factor): """ Cube data zoomed out """ newdata = np.zeros([ self.data.shape[0], self.data.shape[1] / (2**factor), self.data.shape[2] / (2**factor) ], dtype=np.uint32) ocplib.zoomOutData_ctype(self.data, newdata, int(factor)) self.data = newdata
def downScale ( self, factor ): """ Cube data zoomed out """ #KLTODO write an optimize version in cython newdata = np.zeros ( [self.data.shape[0], self.data.shape[1]/(2**factor), self.data.shape[2]/(2**factor)], dtype=np.uint32) #test = np.zeros ( [self.data.shape[0], self.data.shape[1]/(2**factor), self.data.shape[2]/(2**factor)], dtype=np.uint32) import time start = time.time() ocplib.zoomOutData_ctype ( self.data, newdata, int(factor) ) print "Ctype", time.time()-start #start = time.time() #ocplib.zoomOutData_ctype_OMP ( self.data, test, int(factor) ) #print "OMP", time.time()-start self.data = newdata
def downScale ( self, factor ): """ Cube data zoomed out """ newdata = np.zeros ( [self.data.shape[0], self.data.shape[1]/(2**factor), self.data.shape[2]/(2**factor)], dtype=np.uint32) ocplib.zoomOutData_ctype ( self.data, newdata, int(factor) ) self.data = newdata