Esempio n. 1
0
class TestDatasetFunctions(unittest.TestCase):
    def setUp(self):
        self.lat = np.array([10, 12, 14, 16, 18])
        self.lon = np.array([100, 102, 104, 106, 108])
        self.time = np.array([dt.datetime(2000, x, 1) for x in range(1, 13)])
        flat_array = np.array(range(300))
        self.value = flat_array.reshape(12, 5, 5)
        self.variable = 'prec'
        self.test_dataset = Dataset(self.lat, self.lon, self.time, 
                                     self.value, self.variable)

    def test_spatial_boundaries(self):
        self.assertEqual(
            self.test_dataset.spatial_boundaries(), 
            (min(self.lat), max(self.lat), min(self.lon), max(self.lon)))

    def test_time_range(self):
        self.assertEqual(
            self.test_dataset.time_range(), 
            (dt.datetime(2000, 1, 1), dt.datetime(2000, 12, 1)))

    def test_spatial_resolution(self):
        self.assertEqual(self.test_dataset.spatial_resolution(), (2, 2))

    def test_temporal_resolution(self):
        self.assertEqual(self.test_dataset.temporal_resolution(), 'monthly')
Esempio n. 2
0
 def test_temporal_resolution_daily(self):
     self.time = np.array([dt.datetime(2000, 3, x) for x in range(1, 31)])
     flat_array = np.array(range(750))
     self.value = flat_array.reshape(30, 5, 5)
     self.test_dataset = Dataset(self.lat, self.lon, self.time, self.value,
                                 self.variable)
     self.assertEqual(self.test_dataset.temporal_resolution(), 'daily')
Esempio n. 3
0
 def test_bad_values_shape(self):
     self.value = np.array([1, 2, 3, 4, 5])
     with self.assertRaises(ValueError):
         Dataset(self.lat, self.lon, self.time, self.value, 'prec')
     self.value = self.value.reshape(1, 5)
     with self.assertRaises(ValueError):
         Dataset(self.lat, self.lon, self.time, self.value, 'prec')
Esempio n. 4
0
 def setUp(self):
     self.bias = Bias()
     # Initialize reference dataset
     self.reference_lat = np.array([10, 12, 14, 16, 18])
     self.reference_lon = np.array([100, 102, 104, 106, 108])
     self.reference_time = np.array(
         [dt.datetime(2000, x, 1) for x in range(1, 13)])
     flat_array = np.array(range(300))
     self.reference_value = flat_array.reshape(12, 5, 5)
     self.reference_variable = 'prec'
     self.reference_dataset = Dataset(self.reference_lat,
                                      self.reference_lon,
                                      self.reference_time,
                                      self.reference_value,
                                      self.reference_variable)
     # Initialize target dataset
     self.target_lat = np.array([1, 2, 4, 6, 8])
     self.target_lon = np.array([10, 12, 14, 16, 18])
     self.target_time = np.array(
         [dt.datetime(2001, x, 1) for x in range(1, 13)])
     flat_array = np.array(range(300, 600))
     self.target_value = flat_array.reshape(12, 5, 5)
     self.target_variable = 'tasmax'
     self.target_dataset = Dataset(self.target_lat, self.target_lon,
                                   self.target_time, self.target_value,
                                   self.target_variable)
Esempio n. 5
0
 def setUp(self):
     # Set metric.
     self.metric = metrics.TemporalCorrelation()
     # Initialize reference dataset.
     self.ref_lats = np.array([10, 20, 30, 40, 50])
     self.ref_lons = np.array([5, 15, 25, 35, 45])
     self.ref_times = np.array([dt.datetime(2000, x, 1)
                                for x in range(1, 13)])
     self.ref_values = np.array(range(300)).reshape(12, 5, 5)
     self.ref_variable = "ref"
     self.ref_dataset = Dataset(self.ref_lats,
                                self.ref_lons,
                                self.ref_times,
                                self.ref_values,
                                self.ref_variable)
     # Initialize target datasets.
     self.tgt_lats = np.array([10, 20, 30, 40, 50])
     self.tgt_lons = np.array([5, 15, 25, 35, 45])
     self.tgt_times = np.array([dt.datetime(2000, x, 1)
                                for x in range(1, 13)])
     self.tgt_variable = "tgt"
     self.tgt_values_inc = np.array(range(300, 600)).reshape(12, 5, 5)
     self.tgt_values_dec = np.array(range(299, -1, -1)).reshape(12, 5, 5)
     self.tgt_dataset_inc = Dataset(self.tgt_lats,
                                    self.tgt_lons,
                                    self.tgt_times,
                                    self.tgt_values_inc,
                                    self.tgt_variable)
     self.tgt_dataset_dec = Dataset(self.tgt_lats,
                                    self.tgt_lons,
                                    self.tgt_times,
                                    self.tgt_values_dec,
                                    self.tgt_variable)
Esempio n. 6
0
 def setUp(self):
     # Set metric.
     self.metric = metrics.RMSError()
     # Initialize reference dataset.
     self.ref_lats = np.array([10, 20, 30, 40, 50])
     self.ref_lons = np.array([5, 15, 25, 35, 45])
     self.ref_times = np.array([dt.datetime(2000, x, 1)
                                for x in range(1, 13)])
     self.ref_values = np.array([4] * 300).reshape(12, 5, 5)
     self.ref_variable = "ref"
     self.ref_dataset = Dataset(self.ref_lats,
                                self.ref_lons,
                                self.ref_times,
                                self.ref_values,
                                self.ref_variable)
     # Initialize target dataset.
     self.tgt_lats = np.array([10, 20, 30, 40, 50])
     self.tgt_lons = np.array([5, 15, 25, 35, 45])
     self.tgt_times = np.array([dt.datetime(2000, x, 1)
                                for x in range(1, 13)])
     self.tgt_values = np.array([2] * 300).reshape(12, 5, 5)
     self.tgt_variable = "tgt"
     self.tgt_dataset = Dataset(self.tgt_lats,
                                self.tgt_lons,
                                self.tgt_times,
                                self.tgt_values,
                                self.tgt_variable)
Esempio n. 7
0
 def test_temporal_resolution_yearly(self):
     self.time = np.array([dt.datetime(x, 6, 1) for x in range(2000, 2015)])
     flat_array = np.array(range(375))
     self.value = flat_array.reshape(15, 5, 5)
     self.test_dataset = Dataset(self.lat, self.lon, self.time, self.value,
                                 self.variable)
     self.assertEqual(self.test_dataset.temporal_resolution(), 'yearly')
Esempio n. 8
0
 def setUp(self):
     self.lat = np.array([10, 12, 14, 16, 18])
     self.lon = np.array([100, 102, 104, 106, 108])
     self.time = np.array([dt.datetime(2000, x, 1) for x in range(1, 13)])
     flat_array = np.array(range(300))
     self.value = flat_array.reshape(12, 5, 5)
     self.variable = 'prec'
     self.test_dataset = Dataset(self.lat, self.lon, self.time, self.value,
                                 self.variable)
Esempio n. 9
0
 def test_temporal_resolution_hourly(self):
     self.time = np.array(
         [dt.datetime(2000, 1, 1),
          dt.datetime(2000, 1, 1)])
     flat_array = np.array(range(50))
     self.value = flat_array.reshape(2, 5, 5)
     self.test_dataset = Dataset(self.lat, self.lon, self.time, self.value,
                                 self.variable)
     self.assertEqual(self.test_dataset.temporal_resolution(), 'minutely')
Esempio n. 10
0
 def test_spatial_resolution_2_dim_lat_lon(self):
     self.lat = np.array([10, 12, 14, 16, 18, 20])
     self.lon = np.array([100, 102, 104, 106, 108, 110])
     self.lat = self.lat.reshape(3, 2)
     self.lon = self.lon.reshape(3, 2)
     flat_array = np.array(range(72))
     self.value = flat_array.reshape(12, 3, 2)
     self.test_dataset = Dataset(self.lat, self.lon, self.time, self.value,
                                 self.variable)
     self.assertEqual(self.test_dataset.spatial_resolution(), (6, 6))
Esempio n. 11
0
    def setUp(self):
        self.eval = Evaluation(None, [], [])

        lat = np.array([10, 12, 14, 16, 18])
        lon = np.array([100, 102, 104, 106, 108])
        time = np.array([dt.datetime(2000, x, 1) for x in range(1, 13)])
        flat_array = np.array(range(300))
        value = flat_array.reshape(12, 5, 5)
        self.variable = 'prec'
        self.other_var = 'temp'
        self.test_dataset = Dataset(lat, lon, time, value, self.variable)
        self.another_test_dataset = Dataset(lat, lon, time, value,
                                            self.other_var)
    def setUpClass(self):
        self.lats = np.array(range(-10, 10, 1))
        self.lons = np.array(range(-20, 20, 1))
        self.times = np.array([dt.datetime(2000, x, 1) for x in range(1, 13)])
        flat_array = np.array(range(9600))
        self.values = flat_array.reshape(12, 20, 40)

        self.dataset = Dataset(
            self.lats,
            self.lons,
            self.times,
            self.values,
        )

        self.evaluation = Evaluation(self.dataset, [], [])
Esempio n. 13
0
def parameter_dataset(dataset_id, parameter_id, min_lat, max_lat, min_lon, max_lon, start_time, end_time):
    '''Get data from one database(parameter).

    :param dataset_id: Dataset id.
    :type dataset_id: Integer
    :param parameter_id: Parameter id
    :type parameter_id: Integer
    :param min_lat: Minimum latitude
    :type min_lat: Float
    :param max_lat: Maximum latitude
    :type max_lat: Float
    :param min_lon: Minimum longitude
    :type min_lon: Float
    :param max_lon: Maximum longitude
    :type max_lon: Float
    :param start_time: Start time
    :type start_time: Datetime
    :param end_time: End time 
    :type end_time: Datetime

    :returns: Dataset object
    :rtype: Object
    '''
    
    parameters_metadata = get_parameters_metadata()
    parameter_name, time_step, _, _, _, _, _= _get_parameter_info(parameters_metadata, parameter_id)
    url = _generate_query_url(dataset_id, parameter_id, min_lat, max_lat, min_lon, max_lon, start_time, end_time, time_step)
    lats, lons, times, values = _get_data(url)

    unique_lats_lons_times = _make_unique(lats, lons, times)
    unique_times = _calculate_time(unique_lats_lons_times[2], time_step)
    values = _reshape_values(values, unique_lats_lons_times)
    values = _make_mask_array(values, parameter_id, parameters_metadata)
    
    return Dataset(unique_lats_lons_times[0], unique_lats_lons_times[1], unique_times, values, parameter_name)
Esempio n. 14
0
def _create_fake_dataset(name):
    lats = numpy.array(range(-10, 25, 1))
    lons = numpy.array(range(-30, 40, 1))
    times = numpy.array(range(8))
    values = numpy.zeros((len(times), len(lats), len(lons)))

    return Dataset(lats, lons, times, values, name=name)
    def setUpClass(self):
        self.lats = np.array([10, 12, 14, 16, 18])
        self.lons = np.array([100, 102, 104, 106, 108])
        self.times = np.array([dt.datetime(2000, x, 1) for x in range(1, 13)])
        flat_array = np.array(range(300))
        self.values = flat_array.reshape(12, 5, 5)
        self.variable = 'var'
        self.units = 'units'
        self.origin = {
            'source': 'local',
            'path': '/a/fake/path.nc',
            'lat_name': 'a lat name',
            'lon_name': 'a lon name',
            'time_name': 'a time name',
            'elevation_index': 2
        }
        self.name = 'name'

        self.dataset = Dataset(self.lats,
                               self.lons,
                               self.times,
                               self.values,
                               variable=self.variable,
                               units=self.units,
                               origin=self.origin,
                               name=self.name)

        self.exported_info = writer.generate_dataset_config(self.dataset)
    def setUpClass(self):
        self.lats = np.array([10, 12, 14, 16, 18])
        self.lons = np.array([100, 102, 104, 106, 108])
        self.times = np.array([dt.datetime(2000, x, 1) for x in range(1, 13)])
        flat_array = np.array(range(300))
        self.values = flat_array.reshape(12, 5, 5)
        self.variable = 'var'
        self.units = 'units'
        self.origin = {
            'source': 'esgf',
            'dataset_id': 'esgf dataset id',
            'variable': 'var'
        }
        self.name = 'name'

        self.dataset = Dataset(self.lats,
                               self.lons,
                               self.times,
                               self.values,
                               variable=self.variable,
                               units=self.units,
                               origin=self.origin,
                               name=self.name)

        self.exported_info = writer.generate_dataset_config(self.dataset)
Esempio n. 17
0
def load_WRF_2d_files(file_path=None,
                      filename_pattern=None,
                      filelist=None,
                      variable_name='T2',
                      name=''):
    ''' Load multiple WRF (or nuWRF) original output files containing 2D fields such as precipitation and surface variables into a Dataset.
    The dataset can be spatially subset.
    :param file_path: Directory to the NetCDF file to load.
    :type file_path: :mod:`string`
    :param filename_pattern: Path to the NetCDF file to load.
    :type filename_pattern: :list:`string`
    :param filelist: A list of filenames
    :type filelist: :list:`string`
    :param variable_name: The variable name to load from the NetCDF file.
    :type variable_name: :mod:`string`
    :param name: (Optional) A name for the loaded dataset.
    :type name: :mod:`string`
    :returns: An OCW Dataset object with the requested variable's data from
        the NetCDF file.
    :rtype: :class:`dataset.Dataset`
    :raises ValueError:
    '''

    if not filelist:
        WRF_files = []
        for pattern in filename_pattern:
            WRF_files.extend(glob(file_path + pattern))
    else:
        WRF_files = [line.rstrip('\n') for line in open(filelist)]

    WRF_files.sort()

    file_object_first = netCDF4.Dataset(WRF_files[0])
    lats = file_object_first.variables['XLAT'][0, :]
    lons = file_object_first.variables['XLONG'][0, :]

    times = []
    nfile = len(WRF_files)
    for ifile, file in enumerate(WRF_files):
        print 'Reading file ' + str(ifile + 1) + '/' + str(nfile), file
        file_object = netCDF4.Dataset(file)
        time_struct_parsed = strptime(file[-19:], "%Y-%m-%d_%H:%M:%S")
        for ihour in numpy.arange(24):
            times.append(
                datetime(*time_struct_parsed[:6]) + timedelta(hours=ihour))
        values0 = file_object.variables[variable_name][:]
        if ifile == 0:
            values = values0
            variable_unit = file_object.variables[variable_name].units
        else:
            values = numpy.concatenate((values, values0))
        file_object.close()
    times = numpy.array(times)
    return Dataset(lats,
                   lons,
                   times,
                   values,
                   variable_name,
                   units=variable_unit,
                   name=name)
Esempio n. 18
0
 def test_temporal_resolution_daily(self):
     self.time = np.array([dt.datetime(2000, 3, x) for x in range(1, 31)])
     flat_array = np.array(range(750))
     self.value = flat_array.reshape(30, 5, 5)
     self.test_dataset = Dataset(self.lat, self.lon, self.time,
                                 self.value, self.variable)
     self.assertEqual(self.test_dataset.temporal_resolution(), 'daily')
Esempio n. 19
0
def load(url, variable):
    '''Load a Dataset from an OpenDAP URL

    :param url: The OpenDAP URL for the dataset of interest.
    :type url: String
    :param variable: The name of the variable to read from the dataset.
    :type variable: String

    :returns: A Dataset object containing the dataset pointed to by the 
        OpenDAP URL.

    :raises: ServerError
    '''
    # Grab the dataset information and pull the appropriate variable
    d = open_url(url)
    dataset = d[variable]

    # Grab the lat, lon, and time variable names.
    # We assume the variable order is (time, lat, lon)
    dataset_dimensions = dataset.dimensions
    time = dataset_dimensions[0]
    lat = dataset_dimensions[1]
    lon = dataset_dimensions[2]

    # Time is given to us in some units since an epoch. We need to convert
    # these values to datetime objects. Note that we use the main object's
    # time object and not the dataset specific reference to it. We need to
    # grab the 'units' from it and it fails on the dataset specific object.
    times = np.array(_convert_times_to_datetime(d[time]))

    lats = np.array(dataset[lat][:])
    lons = np.array(dataset[lon][:])
    values = np.array(dataset[:])

    return Dataset(lats, lons, times, values, variable)
Esempio n. 20
0
    def test_reshape_not_full_year(self):
        new_time = np.array([datetime.datetime(2000, 1, 1) + relativedelta(months = x) for x in range(26)])
        flat_array = np.array(range(650))
        value = flat_array.reshape(26, 5, 5)
        bad_dataset = Dataset(self.lat, self.lon, new_time, value, self.variable)

        self.assertRaises(ValueError, utils.reshape_monthly_to_annually, bad_dataset)
Esempio n. 21
0
 def test_temporal_resolution_yearly(self):
     self.time = np.array([dt.datetime(x, 6, 1) for x in range(2000, 2015)])
     flat_array = np.array(range(375))
     self.value = flat_array.reshape(15, 5, 5)
     self.test_dataset = Dataset(self.lat, self.lon, self.time,
                                 self.value, self.variable)
     self.assertEqual(self.test_dataset.temporal_resolution(), 'yearly')
Esempio n. 22
0
    def setUp(self):
        self.spatial_std_dev_ratio = SpatialStdDevRatio()
        self.ref_dataset = Dataset(
            np.array([1., 1., 1., 1., 1.]),
            np.array([1., 1., 1., 1., 1.]),
            np.array([dt.datetime(2000, x, 1) for x in range(1, 13)]),
            # Reshapped array with 300 values incremented by 5
            np.arange(0, 1500, 5).reshape(12, 5, 5),
            'ds1')

        self.tar_dataset = Dataset(
            np.array([1., 1., 1., 1., 1.]),
            np.array([1., 1., 1., 1., 1.]),
            np.array([dt.datetime(2000, x, 1) for x in range(1, 13)]),
            # Reshapped array with 300 values incremented by 2
            np.arange(0, 600, 2).reshape(12, 5, 5),
            'ds2')
Esempio n. 23
0
    def setUp(self):
        self.taylor_diagram = metrics.SpatialPatternTaylorDiagram()
        self.ref_dataset = Dataset(
            np.array([1., 1., 1., 1., 1.]),
            np.array([1., 1., 1., 1., 1.]),
            np.array([dt.datetime(2000, x, 1) for x in range(1, 13)]),
            # Reshapped array with 300 values incremented by 5
            np.arange(0, 1500, 5).reshape(12, 5, 5),
            'ds1')

        self.tar_dataset = Dataset(
            np.array([1., 1., 1., 1., 1.]),
            np.array([1., 1., 1., 1., 1.]),
            np.array([dt.datetime(2000, x, 1) for x in range(1, 13)]),
            # Reshapped array with 300 values incremented by 2
            np.arange(0, 600, 2).reshape(12, 5, 5),
            'ds2')
Esempio n. 24
0
    def setUp(self):
        self.pattern_correlation = PatternCorrelation()
        self.ref_dataset = Dataset(
            np.array([1., 1., 1., 1., 1.]),
            np.array([1., 1., 1., 1., 1.]),
            np.array([dt.datetime(2000, x, 1) for x in range(1, 13)]),
            # Reshapped array with 300 values incremented by 5
            np.arange(0, 1500, 5).reshape(12, 5, 5),
            'ds1')

        self.tar_dataset = Dataset(
            np.array([1., 1., 1., 1., 1.]),
            np.array([1., 1., 1., 1., 1.]),
            np.array([dt.datetime(2000, x, 1) for x in range(1, 13)]),
            # Reshapped array with 300 values incremented by 2
            np.arange(0, 600, 2).reshape(12, 5, 5),
            'ds2')
Esempio n. 25
0
 def test_temporal_resolution_hourly(self):
     self.time = np.array([dt.datetime(2000, 1, 1),
                           dt.datetime(2000, 1, 1)])
     flat_array = np.array(range(50))
     self.value = flat_array.reshape(2, 5, 5)
     self.test_dataset = Dataset(self.lat, self.lon, self.time,
                                 self.value, self.variable)
     self.assertEqual(self.test_dataset.temporal_resolution(), 'minutely')
Esempio n. 26
0
def parameter_dataset(dataset_id, parameter_id, min_lat, max_lat, min_lon, max_lon, start_time, end_time, name=''):
    '''Get data from one database(parameter).

    :param dataset_id: Dataset id.
    :type dataset_id: :class:`int`

    :param parameter_id: Parameter id
    :type parameter_id: :class:`int`

    :param min_lat: Minimum latitude
    :type min_lat: :class:`float`

    :param max_lat: Maximum latitude
    :type max_lat: :class:`float`

    :param min_lon: Minimum longitude
    :type min_lon: :class:`float`
    
    :param max_lon: Maximum longitude
    :type max_lon: :class:`float`

    :param start_time: Start time
    :type start_time: :class:`datetime.datetime`

    :param end_time: End time 
    :type end_time: :class:`datetime.datetime`

    :param name: (Optional) A name for the loaded dataset.
    :type name: :mod:`string`

    :returns: An OCW Dataset object contained the requested data from RCMED.
    :rtype: :class:`dataset.Dataset`
    '''
    
    parameters_metadata = get_parameters_metadata()
    parameter_name, time_step, _, _, _, _, parameter_units = _get_parameter_info(parameters_metadata, parameter_id)
    url = _generate_query_url(dataset_id, parameter_id, min_lat, max_lat, min_lon, max_lon, start_time, end_time, time_step)
    lats, lons, times, values = _get_data(url)

    unique_lats_lons_times = _make_unique(lats, lons, times)
    unique_times = _calculate_time(unique_lats_lons_times[2], time_step)
    values = _reshape_values(values, unique_lats_lons_times)
    values = _make_mask_array(values, parameter_id, parameters_metadata)

    origin = {
        'source': 'rcmed',
        'dataset_id': dataset_id,
        'parameter_id': parameter_id
    }
    
    return Dataset(unique_lats_lons_times[0],
                   unique_lats_lons_times[1],
                   unique_times,
                   values,
                   variable=parameter_name,
                   units=parameter_units,
                   name=name,
                   origin=origin)
Esempio n. 27
0
    def test_lons_values_incorrectly_gridded(self):
        times = np.array([dt.datetime(2000, x, 1) for x in range(1, 13)])
        lats = np.arange(-30, 30)
        bad_lons = np.arange(360)
        flat_array = np.arange(len(times) * len(lats) * len(bad_lons))
        values = flat_array.reshape(len(times), len(lats), len(bad_lons))

        ds = Dataset(lats, bad_lons, times, values)
        np.testing.assert_array_equal(ds.lons, np.arange(-180, 180))
Esempio n. 28
0
 def setUp(self):
     self.lat = np.array([10, 12, 14, 16, 18])
     self.lon = np.array([100, 102, 104, 106, 108])
     self.time = np.array([datetime.datetime(2000, 1, 1) + relativedelta(months = x) for x in range(24)])
     flat_array = np.array(range(600))
     self.value = flat_array.reshape(24, 5, 5)
     self.variable = 'prec'
     self.test_dataset = Dataset(self.lat, self.lon, self.time,
                                 self.value, self.variable)
Esempio n. 29
0
 def test_different_dataset_temporal_overlap(self):
     new_times = np.array(
         [datetime.datetime(2002, x, 1) for x in range(1, 13)])
     another_dataset = Dataset(self.lat, self.lon, new_times,
                               self.value, self.variable)
     self.dataset_array = [self.test_dataset, another_dataset]
     maximum, minimum = utils.get_temporal_overlap(self.dataset_array)
     self.assertEqual(maximum, datetime.datetime(2002, 1, 1))
     self.assertEqual(minimum, datetime.datetime(2000, 12, 1))
Esempio n. 30
0
 def setUp(self):
     self.lat = np.array([10, 12, 14, 16, 18])
     self.lon = np.array([100, 102, 104, 106, 108])
     self.time = np.array([dt.datetime(2000, x, 1) for x in range(1, 13)])
     flat_array = np.array(range(300))
     self.value = flat_array.reshape(12, 5, 5)
     self.variable = 'prec'
     self.test_dataset = Dataset(self.lat, self.lon, self.time,
                                 self.value, self.variable)
Esempio n. 31
0
 def setUp(self):
     self.lats = np.array([10, 20, 30, 40, 50])
     self.lons = np.array([20, 30, 40, 50, 60])
     start_date = datetime.datetime(2000, 1, 1)
     self.times = np.array([start_date + relativedelta(months=x)
                            for x in range(12)])
     self.values = np.ones(300).reshape(12, 5, 5)
     self.variable = 'testdata'
     self.dataset = Dataset(self.lats, self.lons, self.times,
                            self.values, self.variable)
Esempio n. 32
0
    def setUpClass(self):
        self.lats = np.array(range(-10, 10, 1))
        self.lons = np.array(range(-20, 20, 1))
        self.times = np.array([dt.datetime(2000, x, 1) for x in range(1, 13)])
        flat_array = np.array(range(9600))
        self.values = flat_array.reshape(12, 20, 40)

        self.dataset = Dataset(self.lats, self.lons, self.times, self.values)

        self.evaluation = Evaluation(self.dataset, [], [])
Esempio n. 33
0
 def test_2_dim_lats_lons(self):
     self.lat = np.array([10, 12, 14]).reshape(3, 1)
     self.lon = np.array([100, 102, 104]).reshape(3, 1)
     flat_array = np.array(range(18))
     self.value = flat_array.reshape(6, 3, 1)
     self.test_dataset = Dataset(self.lat, self.lon, self.time,
                                 self.value, self.variable)
     avg = np.ma.array([1., 4., 7., 10., 13., 16.])
     result = utils.calc_area_weighted_spatial_average(self.test_dataset)
     np.testing.assert_array_equal(avg, result)
Esempio n. 34
0
 def setUp(self):
     self.lat = np.array([10, 12, 14])
     self.lon = np.array([100, 102, 104])
     self.time = np.array(
         [datetime.datetime(2000, x, 1) for x in range(1, 7)])
     flat_array = np.array(range(54))
     self.value = flat_array.reshape(6, 3, 3)
     self.variable = 'prec'
     self.test_dataset = Dataset(self.lat, self.lon, self.time,
                                 self.value, self.variable)
Esempio n. 35
0
 def test_spatial_resolution_2_dim_lat_lon(self):
     self.lat = np.array([10, 12, 14, 16, 18, 20])
     self.lon = np.array([100, 102, 104, 106, 108, 110])
     self.lat = self.lat.reshape(3, 2)
     self.lon = self.lon.reshape(3, 2)
     flat_array = np.array(range(72))
     self.value = flat_array.reshape(12, 3, 2)
     self.test_dataset = Dataset(self.lat, self.lon, self.time,
                                 self.value, self.variable)
     self.assertEqual(self.test_dataset.spatial_resolution(), (6, 6))
Esempio n. 36
0
def load(url, variable, name=''):
    '''Load a Dataset from an OpenDAP URL

    :param url: The OpenDAP URL for the dataset of interest.
    :type url: :mod:`string`

    :param variable: The name of the variable to read from the dataset.
    :type variable: :mod:`string`

    :param name: (Optional) A name for the loaded dataset.
    :type name: :mod:`string`

    :returns: A :class:`dataset.Dataset` containing the dataset pointed to by
        the OpenDAP URL.

    :raises: ServerError
    '''
    # Grab the dataset information and pull the appropriate variable
    d = open_url(url)
    dataset = d[variable]

    # By convention, but not by standard, if the dimensions exist, they will be in the order:
    # time (t), altitude (z), latitude (y), longitude (x)
    # but conventions aren't always followed and all dimensions aren't always present so
    # see if we can make some educated deductions before defaulting to just pulling the first three
    # columns.
    temp_dimensions = map(lambda x: x.lower(), dataset.dimensions)

    dataset_dimensions = dataset.dimensions
    time = dataset_dimensions[temp_dimensions.index('time') if 'time' in
                              temp_dimensions else 0]
    lat = dataset_dimensions[temp_dimensions.index('lat') if 'lat' in
                             temp_dimensions else 1]
    lon = dataset_dimensions[temp_dimensions.index('lon') if 'lon' in
                             temp_dimensions else 2]

    # Time is given to us in some units since an epoch. We need to convert
    # these values to datetime objects. Note that we use the main object's
    # time object and not the dataset specific reference to it. We need to
    # grab the 'units' from it and it fails on the dataset specific object.
    times = np.array(convert_times_to_datetime(d[time]))

    lats = np.array(dataset[lat][:])
    lons = np.array(dataset[lon][:])
    values = np.array(dataset[:])

    origin = {'source': 'dap', 'url': url}

    return Dataset(lats,
                   lons,
                   times,
                   values,
                   variable,
                   name=name,
                   origin=origin)
Esempio n. 37
0
class TestEvaluationSettingsGeneration(unittest.TestCase):
    @classmethod
    def setUpClass(self):
        self.lats = np.array(range(-10, 10, 1))
        self.lons = np.array(range(-20, 20, 1))
        self.times = np.array([dt.datetime(2000, x, 1) for x in range(1, 13)])
        flat_array = np.array(range(9600))
        self.values = flat_array.reshape(12, 20, 40)

        self.dataset = Dataset(
            self.lats,
            self.lons,
            self.times,
            self.values,
        )

        self.evaluation = Evaluation(self.dataset, [], [])

    def test_default_data_return(self):
        new_eval = Evaluation(None, [], [])
        default_output = {
            'temporal_time_delta': 999,
            'spatial_regrid_lats': (-90, 90, 1),
            'spatial_regrid_lons': (-180, 180, 1),
            'subset': [-90, 90, -180, 180, "1500-01-01", "2500-01-01"],
        }

        out = writer.generate_evaluation_information(new_eval)

        self.assertEquals(default_output, out)

    def test_handles_only_reference_dataset(self):
        new_eval = Evaluation(self.dataset, [], [])

        default_output = {
            'temporal_time_delta': 999,
            'spatial_regrid_lats': (-90, 90, 1),
            'spatial_regrid_lons': (-180, 180, 1),
            'subset': [-90, 90, -180, 180, "1500-01-01", "2500-01-01"],
        }

        out = writer.generate_evaluation_information(new_eval)

        self.assertNotEquals(default_output, out)

    def test_handles_only_target_dataset(self):
        new_eval = Evaluation(None, [self.dataset], [])

        default_output = {
            'temporal_time_delta': 999,
            'spatial_regrid_lats': (-90, 90, 1),
            'spatial_regrid_lons': (-180, 180, 1),
            'subset': [-90, 90, -180, 180, "1500-01-01", "2500-01-01"],
        }

        out = writer.generate_evaluation_information(new_eval)

        self.assertNotEquals(default_output, out)

    def test_daily_temporal_bin(self):
        new_times = np.array([dt.datetime(2000, 1, 1, x) for x in range(1, 13)])

        dataset = Dataset(
            self.lats,
            self.lons,
            new_times,
            self.values,
        )
        new_eval = Evaluation(dataset, [], [])

        out = writer.generate_evaluation_information(new_eval)

        self.assertEquals(out['temporal_time_delta'], 1)

    def test_monthly_temporal_bin(self):
        out = writer.generate_evaluation_information(self.evaluation)

        self.assertEquals(out['temporal_time_delta'], 31)

    def test_yearly_temporal_bin(self):
        new_times = np.array([dt.datetime(2000 + x, 1, 1) for x in range(1, 13)])

        dataset = Dataset(
            self.lats,
            self.lons,
            new_times,
            self.values,
        )
        new_eval = Evaluation(dataset, [], [])

        out = writer.generate_evaluation_information(new_eval)

        self.assertEquals(out['temporal_time_delta'], 366)

    def test_spatial_regrid_lats(self):
        out = writer.generate_evaluation_information(self.evaluation)

        lats = out['spatial_regrid_lats']
        lat_range = np.arange(lats[0], lats[1], lats[2])

        self.assertTrue(np.array_equal(lat_range, self.lats))

    def test_spatial_regrid_lons(self):
        out = writer.generate_evaluation_information(self.evaluation)

        lons = out['spatial_regrid_lons']
        lat_range = np.arange(lons[0], lons[1], lons[2])

        self.assertTrue(np.array_equal(lat_range, self.lons))

    def test_subset_with_single_dataset(self):
        out = writer.generate_evaluation_information(self.evaluation)
        subset = out['subset']

        ds_lat_min, ds_lat_max, ds_lon_min, ds_lon_max = self.dataset.spatial_boundaries()
        start, end = self.dataset.time_range()

        self.assertEqual(ds_lat_min, subset[0])
        self.assertEqual(ds_lat_max, subset[1])
        self.assertEqual(ds_lon_min, subset[2])
        self.assertEqual(ds_lon_max, subset[3])
        self.assertEquals(str(start), subset[4])
        self.assertEquals(str(end), subset[5])

    def test_subset_with_multiple_datasets(self):
        new_ds = Dataset(
            np.arange(0, 20, 1),
            self.lons,
            self.times,
            self.values
        )
        new_eval = Evaluation(self.dataset, [new_ds], [])

        out = writer.generate_evaluation_information(new_eval)
        subset = out['subset']

        ds_lat_min, ds_lat_max, ds_lon_min, ds_lon_max = self.dataset.spatial_boundaries()
        start, end = self.dataset.time_range()

        self.assertEqual(ds_lat_min, subset[0])
        # Check that we actually used the different max lat value that we
        # created by adding 'new_ds'.
        self.assertEqual(max(new_ds.lats), subset[1])
        self.assertEqual(ds_lon_min, subset[2])
        self.assertEqual(ds_lon_max, subset[3])
        self.assertEquals(str(start), subset[4])
        self.assertEquals(str(end), subset[5])
Esempio n. 38
0
class TestDatasetFunctions(unittest.TestCase):
    def setUp(self):
        self.lat = np.array([10, 12, 14, 16, 18])
        self.lon = np.array([100, 102, 104, 106, 108])
        self.time = np.array([dt.datetime(2000, x, 1) for x in range(1, 13)])
        flat_array = np.array(range(300))
        self.value = flat_array.reshape(12, 5, 5)
        self.variable = 'prec'
        self.test_dataset = Dataset(self.lat, self.lon, self.time,
                                    self.value, self.variable)

    def test_spatial_boundaries(self):
        self.assertEqual(
            self.test_dataset.spatial_boundaries(),
            (min(self.lat), max(self.lat), min(self.lon), max(self.lon)))

    def test_time_range(self):
        self.assertEqual(
            self.test_dataset.time_range(),
            (dt.datetime(2000, 1, 1), dt.datetime(2000, 12, 1)))

    def test_spatial_resolution(self):
        self.assertEqual(self.test_dataset.spatial_resolution(), (2, 2))

    def test_spatial_resolution_2_dim_lat_lon(self):
        self.lat = np.array([10, 12, 14, 16, 18, 20])
        self.lon = np.array([100, 102, 104, 106, 108, 110])
        self.lat = self.lat.reshape(3, 2)
        self.lon = self.lon.reshape(3, 2)
        flat_array = np.array(range(72))
        self.value = flat_array.reshape(12, 3, 2)
        self.test_dataset = Dataset(self.lat, self.lon, self.time,
                                    self.value, self.variable)
        self.assertEqual(self.test_dataset.spatial_resolution(), (6, 6))

    def test_temporal_resolution_hourly(self):
        self.time = np.array([dt.datetime(2000, 1, 1),
                              dt.datetime(2000, 1, 1)])
        flat_array = np.array(range(50))
        self.value = flat_array.reshape(2, 5, 5)
        self.test_dataset = Dataset(self.lat, self.lon, self.time,
                                    self.value, self.variable)
        self.assertEqual(self.test_dataset.temporal_resolution(), 'minutely')

    def test_temporal_resolution_monthly(self):
        self.assertEqual(self.test_dataset.temporal_resolution(), 'monthly')

    def test_temporal_resolution_daily(self):
        self.time = np.array([dt.datetime(2000, 3, x) for x in range(1, 31)])
        flat_array = np.array(range(750))
        self.value = flat_array.reshape(30, 5, 5)
        self.test_dataset = Dataset(self.lat, self.lon, self.time,
                                    self.value, self.variable)
        self.assertEqual(self.test_dataset.temporal_resolution(), 'daily')

    def test_temporal_resolution_yearly(self):
        self.time = np.array([dt.datetime(x, 6, 1) for x in range(2000, 2015)])
        flat_array = np.array(range(375))
        self.value = flat_array.reshape(15, 5, 5)
        self.test_dataset = Dataset(self.lat, self.lon, self.time,
                                    self.value, self.variable)
        self.assertEqual(self.test_dataset.temporal_resolution(), 'yearly')

    def test_str_(self):
        dataset = self.test_dataset
        lat_min, lat_max, lon_min, lon_max = dataset.spatial_boundaries()
        start, end = dataset.time_range()
        lat_range = "({}, {})".format(lat_min, lon_min)
        lon_range = "({}, {})".format(lon_min, lon_min)
        time_range = "({}, {})".format(start, end)

        formatted_repr = (
            "<Dataset - name: {}, "
            "lat-range: {}, "
            "lon-range: {}, "
            "time_range: {}, "
            "var: {}, "
            "units: {}>"
        )

        output = formatted_repr.format(
            dataset.name if dataset.name != "" else None,
            lat_range,
            lon_range,
            time_range,
            dataset.variable,
            dataset.units
        )
        self.assertEqual(str(self.test_dataset), output)