Esempio n. 1
0
    def __init__(self, lats, lons, times, values, variable=None, name=""):
        '''Default Dataset constructor

        :param lats: One dimensional numpy array of unique latitude values.
        :type lats: numpy array
        :param lons: One dimensional numpy array of unique longitude values.
        :type lons: numpy array
        :param times: One dimensional numpy array of unique python datetime 
            objects.
        :type times: numpy array
        :param values: Three dimensional numpy array of parameter values with 
            shape [timesLength, latsLength, lonsLength]. 
        :type values: numpy array
        :param variable: Name of the value variable.
        :type variable: string
        :param name: An optional string name for the Dataset.
        :type variable: string

        :raises: ValueError
        '''
        self._validate_inputs(lats, lons, times, values)
        lats, lons, values = utils.normalize_lat_lon_values(lats, lons, values)

        self.lats = lats
        self.lons = lons
        self.times = times
        self.values = values
        self.variable = variable
        self.name = name
Esempio n. 2
0
 def test_lats_reversed(self):
     lons2 = np.arange(-180, 180)
     lats, lons, values = utils.normalize_lat_lon_values(self.lats[::-1],
                                                         lons2,
                                                         self.values[:, ::-1, :])
     np.testing.assert_array_equal(lats, self.lats)
     np.testing.assert_array_equal(values, self.values)
Esempio n. 3
0
    def __init__(self, lats, lons, times, values, variable=None, name=""):
        '''Default Dataset constructor

        :param lats: One dimensional numpy array of unique latitude values.
        :type lats: numpy array
        :param lons: One dimensional numpy array of unique longitude values.
        :type lons: numpy array
        :param times: One dimensional numpy array of unique python datetime 
            objects.
        :type times: numpy array
        :param values: Three dimensional numpy array of parameter values with 
            shape [timesLength, latsLength, lonsLength]. 
        :type values: numpy array
        :param variable: Name of the value variable.
        :type variable: string
        :param name: An optional string name for the Dataset.
        :type variable: string

        :raises: ValueError
        '''
        self._validate_inputs(lats, lons, times, values)
        lats, lons, values = utils.normalize_lat_lon_values(lats, lons, values)

        self.lats = lats
        self.lons = lons
        self.times = times
        self.values = values
        self.variable = variable
        self.name = name
Esempio n. 4
0
 def test_lats_reversed(self):
     lons2 = np.arange(-180, 180)
     lats, lons, values = utils.normalize_lat_lon_values(self.lats[::-1],
                                                         lons2,
                                                         self.values[:, ::-1, :])
     np.testing.assert_array_equal(lats, self.lats)
     np.testing.assert_array_equal(values, self.values)
Esempio n. 5
0
 def test_shift_and_reversed(self):
     expected_vals = np.array([[10, 11, 8, 9],
                               [6, 7, 4, 5],
                               [2, 3, 0, 1]])
     lats, lons, values = utils.normalize_lat_lon_values(self.lats2[::-1],
                                                         self.lons2,
                                                         self.values2)
     np.testing.assert_array_equal(values, expected_vals)
Esempio n. 6
0
 def test_shift_and_reversed(self):
     expected_vals = np.array([[10, 11, 8, 9],
                               [6, 7, 4, 5],
                               [2, 3, 0, 1]])
     lats, lons, values = utils.normalize_lat_lon_values(self.lats2[::-1],
                                                         self.lons2,
                                                         self.values2)
     np.testing.assert_array_equal(values, expected_vals)
Esempio n. 7
0
 def test_lons_greater_than_180(self):
     self.lons = np.array([190, 210, 230, 250])
     self.lats = np.array([-30, 0, 30])
     self.values = np.arange(12).reshape(3, 4)
     expected_lons = np.array([-170, -150, -130, -110])
     expected_values = np.array([[0, 1, 2, 3],
                                 [4, 5, 6, 7],
                                 [8, 9, 10, 11]])
     lats, lons, values = utils.normalize_lat_lon_values(self.lats,
                                                         self.lons,
                                                         self.values)
     np.testing.assert_array_equal(lons, expected_lons)
     np.testing.assert_array_equal(expected_values, values)
Esempio n. 8
0
    def __init__(self,
                 lats,
                 lons,
                 times,
                 values,
                 variable=None,
                 units=None,
                 origin=None,
                 name=""):
        '''Default Dataset constructor

        :param lats: One dimensional numpy array of unique latitude values.
        :type lats: :class:`numpy.ndarray`

        :param lons: One dimensional numpy array of unique longitude values.
        :type lons: :class:`numpy.ndarray`

        :param times: One dimensional numpy array of unique python datetime
            objects.
        :type times: :class:`numpy.ndarray`

        :param values: Three dimensional numpy array of parameter values with
            shape [timesLength, latsLength, lonsLength].
        :type values: :class:`numpy.ndarray`

        :param variable: Name of the value variable.
        :type variable: :mod:`string`

        :param units: Name of the value units
        :type units: :mod:`string`

        :param name: An optional string name for the Dataset.
        :type name: :mod:`string`

        :param origin: An optional object used to specify information on where
            this dataset was loaded from.
        :type origin: :class:`dict`

        :raises: ValueError
        '''
        self._validate_inputs(lats, lons, times, values)
        lats, lons, values = utils.normalize_lat_lon_values(lats, lons, values)

        self.lats = lats
        self.lons = lons
        self.times = times
        self.values = values
        self.variable = variable
        self.units = units
        self.name = name
        self.origin = origin
Esempio n. 9
0
 def test_lons_reversed(self):
     self.lats = np.arange(-10, 10)
     self.lons = np.arange(40)
     times = np.array([datetime.datetime(2000, x, 1) for x in range(1, 7)])
     flat_array = np.arange(len(times) * len(self.lats) * len(self.lons))
     self.variable = flat_array.reshape(len(times),
                                        len(self.lats),
                                        len(self.lons))
     lats, lons, values = utils.normalize_lat_lon_values(self.lats,
                                                         self.lons[::-1],
                                                         self.values[:,
                                                                     ::,
                                                                     ::-1])
     np.testing.assert_array_equal(lats, self.lats)
     np.testing.assert_array_equal(values, self.values)
     np.testing.assert_array_equal(lons, self.lons)
Esempio n. 10
0
    def __init__(self, lats, lons, times, values, variable=None, units=None,
                 origin=None, name=""):
        '''Default Dataset constructor

        :param lats: One dimensional numpy array of unique latitude values.
        :type lats: :class:`numpy.ndarray`

        :param lons: One dimensional numpy array of unique longitude values.
        :type lons: :class:`numpy.ndarray`

        :param times: One dimensional numpy array of unique python datetime
            objects.
        :type times: :class:`numpy.ndarray`

        :param values: Three dimensional numpy array of parameter values with
            shape [timesLength, latsLength, lonsLength].
        :type values: :class:`numpy.ndarray`

        :param variable: Name of the value variable.
        :type variable: :mod:`string`

        :param units: Name of the value units
        :type units: :mod:`string`

        :param name: An optional string name for the Dataset.
        :type name: :mod:`string`

        :param origin: An optional object used to specify information on where
            this dataset was loaded from.
        :type origin: :class:`dict`

        :raises: ValueError
        '''
        self._validate_inputs(lats, lons, times, values)
        lats, lons, values = utils.normalize_lat_lon_values(lats, lons, values)

        self.lats = lats
        self.lons = lons
        self.times = times
        self.values = values
        self.variable = variable
        self.units = units
        self.name = name
        self.origin = origin
Esempio n. 11
0
 def test_full_lons_shift(self):
     lats, lons, values = utils.normalize_lat_lon_values(self.lats,
                                                         self.lons,
                                                         self.values)
     np.testing.assert_array_equal(lons, np.arange(-180, 180))
Esempio n. 12
0
 def test_full_lons_shift(self):
     lats, lons, values = utils.normalize_lat_lon_values(self.lats,
                                                         self.lons,
                                                         self.values)
     np.testing.assert_array_equal(lons, np.arange(-180, 180))