Esempio n. 1
0
    def run(self, ref_dataset, target_dataset):
        '''Calculate the spatial correlation between a reference and target dataset.
            Using: scipy.stats.pearsonr

        .. note::
           Overrides BinaryMetric.run()

        :param ref_dataset: The reference dataset to use in this metric run.
        :type ref_dataset: Dataset.
        :param target_dataset: The target dataset to evaluate against the
            reference dataset in this metric run.
        :type target_dataset: Dataset.

        :returns: The spatial correlation between a reference and target dataset.
        '''
        # This is calcClimYear function for ref_dataset
        reshaped_ref_data = utils.reshape_monthly_to_annually(ref_dataset)
        ref_t_series = reshaped_ref_data.mean(axis=1)
        ref_means = ref_t_series.mean(axis=0)

        # This is calcClimYear function for target_dataset
        reshaped_target_data = utils.reshape_monthly_to_annually(
            target_dataset)
        target_t_series = reshaped_target_data.mean(axis=1)
        target_means = target_t_series.mean(axis=0)

        pattern_correlation, p_value = stats.pearsonr(target_means.flatten(),
                                                      ref_means.flatten())
        return pattern_correlation, p_value
Esempio n. 2
0
    def run(self, ref_dataset, target_dataset):
        '''Calculate the ratio of spatial std. dev. between a reference and
            target dataset.

        .. note::
           Overrides BinaryMetric.run()

        :param ref_dataset: The reference dataset to use in this metric run.
        :type ref_dataset: Dataset.
        :param target_dataset: The target dataset to evaluate against the
            reference dataset in this metric run.
        :type target_dataset: Dataset.

        :returns: The ratio of standard deviation of the reference and target
            dataset.
        '''

        # This is calcClimYear function for ref_dataset
        reshaped_ref_data = utils.reshape_monthly_to_annually(ref_dataset)
        ref_t_series = reshaped_ref_data.mean(axis=1)
        ref_means = ref_t_series.mean(axis=0)

        # This is calcClimYear function for target_dataset
        reshaped_target_data = utils.reshape_monthly_to_annually(
            target_dataset)
        target_t_series = reshaped_target_data.mean(axis=1)
        target_means = target_t_series.mean(axis=0)

        return numpy.std(ref_means) / numpy.std(target_means)
Esempio n. 3
0
    def run(self, ref_dataset, target_dataset):
        '''Calculate the spatial correlation between a reference and target dataset.
            Using: scipy.stats.pearsonr

        .. note::
           Overrides BinaryMetric.run()

        :param ref_dataset: The reference dataset to use in this metric run.
        :type ref_dataset: Dataset.
        :param target_dataset: The target dataset to evaluate against the
            reference dataset in this metric run.
        :type target_dataset: Dataset.

        :returns: The spatial correlation between a reference and target dataset.
        '''
        # This is calcClimYear function for ref_dataset
        reshaped_ref_data = utils.reshape_monthly_to_annually(ref_dataset)
        ref_t_series = reshaped_ref_data.mean(axis=1)
        ref_means = ref_t_series.mean(axis=0)

        # This is calcClimYear function for target_dataset
        reshaped_target_data = utils.reshape_monthly_to_annually(target_dataset)
        target_t_series = reshaped_target_data.mean(axis=1)
        target_means = target_t_series.mean(axis=0)

        pattern_correlation, p_value = stats.pearsonr(target_means.flatten(),ref_means.flatten())
        return pattern_correlation, p_value
Esempio n. 4
0
    def run(self, ref_dataset, target_dataset):
        '''Calculate the ratio of spatial std. dev. between a reference and
            target dataset.

        .. note::
           Overrides BinaryMetric.run()

        :param ref_dataset: The reference dataset to use in this metric run.
        :type ref_dataset: Dataset.
        :param target_dataset: The target dataset to evaluate against the
            reference dataset in this metric run.
        :type target_dataset: Dataset.

        :returns: The ratio of standard deviation of the reference and target
            dataset.
        '''

        # This is calcClimYear function for ref_dataset
        reshaped_ref_data = utils.reshape_monthly_to_annually(ref_dataset)
        ref_t_series = reshaped_ref_data.mean(axis=1)
        ref_means = ref_t_series.mean(axis=0)

        # This is calcClimYear function for target_dataset
        reshaped_target_data = utils.reshape_monthly_to_annually(target_dataset)
        target_t_series = reshaped_target_data.mean(axis=1)
        target_means = target_t_series.mean(axis=0)

        return numpy.std(ref_means) / numpy.std(target_means)
Esempio n. 5
0
 def test_reshape_full_year(self):
     new_values = self.value.reshape(2, 12, 5, 5)
     np.testing.assert_array_equal(
         utils.reshape_monthly_to_annually(self.test_dataset), new_values)
Esempio n. 6
0
 def test_reshape_full_year(self):
     new_values = self.value.reshape(2, 12, 5, 5)
     np.testing.assert_array_equal(
         utils.reshape_monthly_to_annually(self.test_dataset), new_values)