Esempio n. 1
0
def closest_point_to_a_ray(point, ray):
    """
    Definition to calculate the point on a ray that is closest to given point.

    Parameters
    ----------
    point         : list
                    Given point in X,Y,Z.
    ray           : ndarray
                    Given ray.

    Returns
    ---------
    closest_point : ndarray
                    Calculated closest point.
    """
    from odak.raytracing import propagate_a_ray
    if len(ray.shape) == 2:
        ray = ray.reshape((1, 2, 3))
    p0 = ray[:, 0]
    p1 = propagate_a_ray(ray, 1.)
    if len(p1.shape) == 2:
        p1 = p1.reshape((1, 2, 3))
    p1 = p1[:, 0]
    p1 = p1.reshape(3)
    p0 = p0.reshape(3)
    point = point.reshape(3)
    closest_distance = -np.dot((p0 - point), (p1 - p0)) / np.sum((p1 - p0)**2)
    closest_point = propagate_a_ray(ray, closest_distance)[0]
    return closest_point
Esempio n. 2
0
def get_triangle_normal(triangle, triangle_center=None):
    """
    Definition to calculate surface normal of a triangle.

    Parameters
    ----------
    triangle        : ndarray
                      Set of points in X,Y and Z to define a planar surface (3,3). It can also be list of triangles (mx3x3).
    triangle_center : ndarray
                      Center point of the given triangle. See odak.raytracing.center_of_triangle for more. In many scenarios you can accelerate things by precomputing triangle centers.

    Returns
    ----------
    normal          : ndarray
                      Surface normal at the point of intersection.
    """
    triangle = np.asarray(triangle)
    if len(triangle.shape) == 2:
        triangle = triangle.reshape((1, 3, 3))
    normal = np.zeros((triangle.shape[0], 2, 3))
    direction = np.cross(triangle[:, 0] - triangle[:, 1],
                         triangle[:, 2] - triangle[:, 1])
    if type(triangle_center) == type(None):
        normal[:, 0] = center_of_triangle(triangle)
    else:
        normal[:, 0] = triangle_center
    normal[:, 1] = direction / np.sum(direction, axis=1)[0]
    if normal.shape[0] == 1:
        normal = normal.reshape((2, 3))
    return normal
Esempio n. 3
0
def point_to_ray_distance(point, ray_point_0, ray_point_1):
    """
    Definition to find point's closest distance to a line represented with two points.

    Parameters
    ----------
    point       : ndarray
                  Point to be tested.
    ray_point_0 : ndarray
                  First point to represent a line.
    ray_point_1 : ndarray
                  Second point to represent a line.

    Returns
    ----------
    distance    : float
                  Calculated distance.
    """
    distance = np.sum(
        np.cross((point - ray_point_0), (point - ray_point_1))**2) / np.sum(
            (ray_point_1 - ray_point_0)**2)
    return distance
Esempio n. 4
0
def distance_between_two_points(point1, point2):
    """
    Definition to calculate distance between two given points.

    Parameters
    ----------
    point1      : list
                  First point in X,Y,Z.
    point2      : list
                  Second point in X,Y,Z.

    Returns
    ----------
    distance    : float
                  Distance in between given two points.
    """
    point1 = np.asarray(point1)
    point2 = np.asarray(point2)
    if len(point1.shape) == 1 and len(point2.shape) == 1:
        distance = np.sqrt(np.sum((point1 - point2)**2))
    elif len(point1.shape) == 2 or len(point2.shape) == 2:
        distance = np.sqrt(np.sum((point1 - point2)**2, axis=1))
    return distance
Esempio n. 5
0
def intersect_parametric(ray,
                         parametric_surface,
                         surface_function,
                         surface_normal_function,
                         target_error=0.00000001,
                         iter_no_limit=100000):
    """
    Definition to intersect a ray with a parametric surface.

    Parameters
    ----------
    ray                     : ndarray
                              Ray.
    parametric_surface      : ndarray
                              Parameters of the surfaces.
    surface_function        : function
                              Function to evaluate a point against a surface.
    surface_normal_function : function
                              Function to calculate surface normal for a given point on a surface.
    target_error            : float
                              Target error that defines the precision.  
    iter_no_limit           : int
                              Maximum number of iterations.

    Returns
    ----------
    distance                : float
                              Propagation distance.
    normal                  : ndarray
                              Ray that defines a surface normal for the intersection.
    """
    if len(ray.shape) == 2:
        ray = ray.reshape((1, 2, 3))
    error = [150, 100]
    distance = [0, 0.1]
    iter_no = 0
    while np.abs(np.max(np.asarray(error[1]))) > target_error:
        error[1], point = intersection_kernel_for_parametric_surfaces(
            distance[1], ray, parametric_surface, surface_function)
        distance, error = propagate_parametric_intersection_error(
            distance, error)
        iter_no += 1
        if iter_no > iter_no_limit:
            return False, False
        if np.isnan(np.sum(point)):
            return False, False
    normal = surface_normal_function(point, parametric_surface)
    return distance[1], normal
Esempio n. 6
0
def distance_between_point_clouds(points0, points1):
    """
    A definition to find distance between every point in one cloud to other points in the other point cloud.
    Parameters
    ----------
    points0     : ndarray
                  Mx3 points.
    points1     : ndarray
                  Nx3 points.

    Returns
    ----------
    distances   : ndarray
                  MxN distances.
    """
    c = points1.reshape((1, points1.shape[0], points1.shape[1]))
    a = np.repeat(c, points0.shape[0], axis=0)
    b = points0.reshape((points0.shape[0], 1, points0.shape[1]))
    b = np.repeat(b, a.shape[1], axis=1)
    distances = np.sqrt(np.sum((a - b)**2, axis=2))
    return distances
Esempio n. 7
0
def roi(image, location=[0, 100, 0, 100], threshold=[0, 1, 0, 1]):
    """
    Definition to get the lines from a target ROI.

    Parameters
    ----------
    image      : ndarray
                 a 2D image to be sliced (nxm).
    location   : ndarray
                 Locations for taking the ROI.
    threshold  : list
                 Threshold below and above these numbers.

    Returns
    -------
    line_x     : ndarray
                 Line slice.
    line_y     : ndarray
                 Line slice.
    """
    img = image[location[0]:location[1], location[2]:location[3]]
    if len(img.shape) == 3:
        img = np.sum(img, axis=2)
    line_x = img[:, int(img.shape[1] / 2)]
    line_y = img[int(img.shape[0] / 2), :]
    line_x = np.asarray(line_x)
    line_y = np.asarray(line_y)
    line_x = line_x - np.amin(line_x)
    line_x = line_x / np.amax(line_x)
    line_y = line_y - np.amin(line_y)
    line_y = line_y / np.amax(line_y)
    line_x[line_x < threshold[0]] = 0
    line_x[line_x > threshold[1]] = 1
    line_y[line_y < threshold[2]] = 0
    line_y[line_y > threshold[3]] = 1
    return line_x, line_y, img