Esempio n. 1
0
    def testRename(self):
        """
        Check it's at least possible to open one DataArray, when the files are
        renamed
        """
        # create a simple greyscale image
        size = (512, 256)
        white = (12, 52)  # non symmetric position
        dtype = numpy.uint16
        ldata = []
        self.no_of_images = 2
        metadata = [{
                     model.MD_IN_WL: (500e-9, 520e-9),  # m
                     model.MD_EXP_TIME: 0.2, # s
                    },
                    {
                     model.MD_EXP_TIME: 1.2, # s
                    },
                   ]

        # Add metadata
        for i in range(self.no_of_images):
            a = model.DataArray(numpy.zeros(size[::-1], dtype), metadata[i])
            a[white[::-1]] = 124 + i
            ldata.append(a)

        # export
        orig_name = "boo.0.tiff"
        stiff.export(orig_name, ldata)

        tokens = orig_name.split(".0.", 1)
        ntokens = FILENAME.split(".0.", 1)
        # Renaming the file
        for i in range(self.no_of_images):
            fname = tokens[0] + "." + str(i) + "." + tokens[1]
            new_fname = ntokens[0] + "." + str(i) + "." + ntokens[1]
            os.rename(fname, new_fname)

        # Iterate through the new files
        for i in range(self.no_of_images):
            fname = ntokens[0] + "." + str(i) + "." + ntokens[1]

            fmt_mng = dataio.find_fittest_converter(fname, mode=os.O_RDONLY)
            self.assertEqual(fmt_mng.FORMAT, "TIFF",
                   "For '%s', expected format TIFF but got %s" % (fname, fmt_mng.FORMAT))
            rdata = fmt_mng.read_data(fname)
            # Assert that at least one DA is there
            # In practice, currently, we expected precisely 1
            self.assertGreaterEqual(len(rdata), 1)

            # Check the correct metadata is present
            for j in range(self.no_of_images):
                self.assertAlmostEqual(rdata[j].metadata[model.MD_EXP_TIME],
                                       ldata[j].metadata[model.MD_EXP_TIME])

            rthumbnail = fmt_mng.read_thumbnail(fname)
            # No thumbnail handling for now, so assert that is empty
            self.assertEqual(rthumbnail, [])
Esempio n. 2
0
    def testMissing(self):
        """
        Check it's at least possible to open one DataArray, when the other parts
        are missing.
        """
        # create a simple greyscale image
        size = (512, 256)
        white = (12, 52)  # non symmetric position
        dtype = numpy.uint16
        ldata = []
        self.no_of_images = 2
        metadata = [
            {
                model.MD_IN_WL: (500e-9, 520e-9),  # m
                model.MD_EXP_TIME: 0.2,  # s
            },
            {
                model.MD_EXP_TIME: 1.2,  # s
            },
        ]

        # Add metadata
        for i in range(self.no_of_images):
            a = model.DataArray(numpy.zeros(size[::-1], dtype), metadata[i])
            a[white[::-1]] = 124 + i
            ldata.append(a)

        # export
        stiff.export(FILENAME, ldata)

        # Ooops, the first file is gone => it should still be possible to open
        # the other files
        os.remove(FILENAME)
        tokens = FILENAME.split(".0.", 1)
        for i in range(1, self.no_of_images):
            fname = tokens[0] + "." + str(i) + "." + tokens[1]

            fmt_mng = dataio.find_fittest_converter(fname, mode=os.O_RDONLY)
            self.assertEqual(
                fmt_mng.FORMAT, "TIFF",
                "For '%s', expected format TIFF but got %s" %
                (fname, fmt_mng.FORMAT))
            rdata = fmt_mng.read_data(fname)
            # Assert that at least one DA is there
            # In practice, currently, we expected precisely 1
            self.assertGreaterEqual(len(rdata), 1)

            # Check the correct metadata is present
            self.assertAlmostEqual(rdata[0].metadata[model.MD_EXP_TIME],
                                   ldata[i].metadata[model.MD_EXP_TIME])

            rthumbnail = fmt_mng.read_thumbnail(fname)
            # No thumbnail handling for now, so assert that is empty
            self.assertEqual(rthumbnail, [])
Esempio n. 3
0
    def testMissing(self):
        """
        Check it's at least possible to open one DataArray, when the other parts
        are missing.
        """
        # create a simple greyscale image
        size = (512, 256)
        white = (12, 52)  # non symmetric position
        dtype = numpy.uint16
        ldata = []
        self.no_of_images = 2
        metadata = [{
                     model.MD_IN_WL: (500e-9, 520e-9),  # m
                     model.MD_EXP_TIME: 0.2,  # s
                    },
                    {
                     model.MD_EXP_TIME: 1.2,  # s
                    },
                   ]

        # Add metadata
        for i in range(self.no_of_images):
            a = model.DataArray(numpy.zeros(size[::-1], dtype), metadata[i])
            a[white[::-1]] = 124 + i
            ldata.append(a)

        # export
        stiff.export(FILENAME, ldata)

        # Ooops, the first file is gone => it should still be possible to open
        # the other files
        os.remove(FILENAME)
        tokens = FILENAME.split(".0.", 1)
        for i in range(1, self.no_of_images):
            fname = tokens[0] + "." + str(i) + "." + tokens[1]

            fmt_mng = dataio.find_fittest_converter(fname, mode=os.O_RDONLY)
            self.assertEqual(fmt_mng.FORMAT, "TIFF",
                   "For '%s', expected format TIFF but got %s" % (fname, fmt_mng.FORMAT))
            rdata = fmt_mng.read_data(fname)
            # Assert that at least one DA is there
            # In practice, currently, we expected precisely 1
            self.assertGreaterEqual(len(rdata), 1)

            # Check the correct metadata is present
            self.assertAlmostEqual(rdata[0].metadata[model.MD_EXP_TIME],
                                   ldata[i].metadata[model.MD_EXP_TIME])

            rthumbnail = fmt_mng.read_thumbnail(fname)
            # No thumbnail handling for now, so assert that is empty
            self.assertEqual(rthumbnail, [])
Esempio n. 4
0
    def testExportRead(self):
        """
        Checks that we can read back an image
        """
        # create 2 simple greyscale images
        sizes = [(512, 256), (500, 400)
                 ]  # different sizes to ensure different acquisitions
        dtype = numpy.dtype("uint16")
        white = (12, 52)  # non symmetric position
        ldata = []
        num = 2
        # TODO: check support for combining channels when same data shape
        for i in range(num):
            a = model.DataArray(numpy.zeros(sizes[i][-1:-3:-1], dtype))
            a[white[-1:-3:-1]] = 1027
            ldata.append(a)

        # thumbnail : small RGB completely red
        tshape = (sizes[0][1] // 8, sizes[0][0] // 8, 3)
        tdtype = numpy.uint8
        thumbnail = model.DataArray(numpy.zeros(tshape, tdtype))
        thumbnail[:, :, 0] += 255  # red
        blue = (12, 22)  # non symmetric position
        thumbnail[blue[-1:-3:-1]] = [0, 0, 255]

        # export
        stiff.export(FILENAME, ldata, thumbnail)

        tokens = FILENAME.split(".0.", 1)
        # Iterate through the files generated
        for file_index in range(num):
            fname = tokens[0] + "." + str(file_index) + "." + tokens[1]
            # check it's here
            st = os.stat(fname)  # this test also that the file is created
            self.assertGreater(st.st_size, 0)

            # check data
            rdata = tiff.read_data(fname)
            self.assertEqual(len(rdata), num)

            for i, im in enumerate(rdata):
                if len(im.shape) > 2:
                    subim = im[0, 0, 0]  # remove C,T,Z dimensions
                else:
                    subim = im  # TODO: should it always be 5 dim?
                self.assertEqual(subim.shape, sizes[i][-1::-1])
                self.assertEqual(subim[white[-1:-3:-1]],
                                 ldata[i][white[-1:-3:-1]])
Esempio n. 5
0
    def testExportReadPyramidal(self):
        """
        Checks that we can read back a pyramidal image
        """
        # create 2 simple greyscale images
        sizes = [(512, 256), (500, 400)] # different sizes to ensure different acquisitions
        dtype = numpy.dtype("uint16")
        white = (12, 52) # non symmetric position
        ldata = []
        num = 2
        # TODO: check support for combining channels when same data shape
        for i in range(num):
            a = model.DataArray(numpy.zeros(sizes[i][-1:-3:-1], dtype))
            a[white[-1:-3:-1]] = 1027
            ldata.append(a)

        # thumbnail : small RGB completely red
        tshape = (sizes[0][1] // 8, sizes[0][0] // 8, 3)
        tdtype = numpy.uint8
        thumbnail = model.DataArray(numpy.zeros(tshape, tdtype))
        thumbnail[:, :, 0] += 255 # red
        blue = (12, 22) # non symmetric position
        thumbnail[blue[-1:-3:-1]] = [0, 0, 255]

        # export
        stiff.export(FILENAME, ldata, thumbnail, pyramid=True)

        tokens = FILENAME.split(".0.", 1)
        # Iterate through the files generated
        for file_index in range(num):
            fname = tokens[0] + "." + str(file_index) + "." + tokens[1]
            # check it's here
            st = os.stat(fname)  # this test also that the file is created
            self.assertGreater(st.st_size, 0)

            # check data
            rdata = tiff.read_data(fname)
            self.assertEqual(len(rdata), num)

            for i, im in enumerate(rdata):
                if len(im.shape) > 2:
                    subim = im[0, 0, 0]  # remove C,T,Z dimensions
                else:
                    subim = im  # TODO: should it always be 5 dim?
                self.assertEqual(subim.shape, sizes[i][-1::-1])
                self.assertEqual(subim[white[-1:-3:-1]], ldata[i][white[-1:-3:-1]])
Esempio n. 6
0
    def testExportOpener(self):
        # create a simple greyscale image
        size = (512, 256)
        white = (12, 52)  # non symmetric position
        dtype = numpy.uint16
        ldata = []
        self.no_of_images = 2
        metadata = [
            {
                model.MD_IN_WL: (500e-9, 520e-9),  # m
            },
            {
                model.MD_EXP_TIME: 1.2,  # s
            },
        ]

        # Add wavelength metadata just to group them
        for i in range(self.no_of_images):
            a = model.DataArray(numpy.zeros(size[::-1], dtype), metadata[i])
            a[white[::-1]] = 124
            ldata.append(a)

        # export
        stiff.export(FILENAME, ldata)

        tokens = FILENAME.split(".0.", 1)

        # Iterate through the files generated. Opening any of them should be
        # returning _all_ the DAs
        for file_index in range(self.no_of_images):
            fname = tokens[0] + "." + str(file_index) + "." + tokens[1]

            fmt_mng = dataio.find_fittest_converter(fname, mode=os.O_RDONLY)
            self.assertEqual(
                fmt_mng.FORMAT, "TIFF",
                "For '%s', expected format TIFF but got %s" %
                (fname, fmt_mng.FORMAT))
            rdata = fmt_mng.read_data(fname)
            # Assert all the DAs are there
            self.assertEqual(len(rdata), len(ldata))
            for da in rdata:
                self.assertEqual(da[white[::-1]], 124)

            rthumbnail = fmt_mng.read_thumbnail(fname)
            # No thumbnail handling for now, so assert that is empty
            self.assertEqual(rthumbnail, [])
Esempio n. 7
0
    def testExportOpener(self):
        # create a simple greyscale image
        size = (512, 256)
        white = (12, 52)  # non symmetric position
        dtype = numpy.uint16
        ldata = []
        self.no_of_images = 2
        metadata = [{
                     model.MD_IN_WL: (500e-9, 520e-9),  # m
                    },
                    {
                     model.MD_EXP_TIME: 1.2,  # s
                    },
                   ]

        # Add wavelength metadata just to group them
        for i in range(self.no_of_images):
            a = model.DataArray(numpy.zeros(size[::-1], dtype), metadata[i])
            a[white[::-1]] = 124
            ldata.append(a)

        # export
        stiff.export(FILENAME, ldata)

        tokens = FILENAME.split(".0.", 1)

        # Iterate through the files generated. Opening any of them should be
        # returning _all_ the DAs
        for file_index in range(self.no_of_images):
            fname = tokens[0] + "." + str(file_index) + "." + tokens[1]

            fmt_mng = dataio.find_fittest_converter(fname, mode=os.O_RDONLY)
            self.assertEqual(fmt_mng.FORMAT, "TIFF",
                   "For '%s', expected format TIFF but got %s" % (fname, fmt_mng.FORMAT))
            rdata = fmt_mng.read_data(fname)
            # Assert all the DAs are there
            self.assertEqual(len(rdata), len(ldata))
            for da in rdata:
                self.assertEqual(da[white[::-1]], 124)

            rthumbnail = fmt_mng.read_thumbnail(fname)
            # No thumbnail handling for now, so assert that is empty
            self.assertEqual(rthumbnail, [])
Esempio n. 8
0
    def testExportMultiPage(self):
        # create a simple greyscale image
        size = (512, 256)
        white = (12, 52) # non symmetric position
        dtype = numpy.uint16
        ldata = []
        num = 2
        metadata = {
                    model.MD_IN_WL: (500e-9, 520e-9),  # m
                    }

        # Add wavelength metadata just to group them
        for i in range(num):
            a = model.DataArray(numpy.zeros(size[::-1], dtype), metadata)
            a[white[::-1]] = 124
            ldata.append(a)

        # export
        stiff.export(FILENAME, ldata)

        tokens = FILENAME.split(".0.", 1)
        self.no_of_images = 1
        # Iterate through the files generated
        for file_index in range(self.no_of_images):
            fname = tokens[0] + "." + str(file_index) + "." + tokens[1]
            # check it's here
            st = os.stat(fname)  # this test also that the file is created
            self.assertGreater(st.st_size, 0)
            im = Image.open(fname)
            self.assertEqual(im.format, "TIFF")

            # check the number of pages
            for i in range(num):
                im.seek(i)
                self.assertEqual(im.size, size)
                self.assertEqual(im.getpixel(white), 124)

            del im

        for file_index in range(self.no_of_images):
            fname = tokens[0] + "." + str(file_index) + "." + tokens[1]
            os.remove(fname)
Esempio n. 9
0
    def testExportOpener(self):
        # create a simple greyscale image
        size = (512, 256)
        white = (12, 52)  # non symmetric position
        dtype = numpy.uint16
        ldata = []
        num = 2
        metadata = {
            model.MD_IN_WL: (500e-9, 520e-9),  # m
        }
        for i in range(num):
            a = model.DataArray(numpy.zeros(size[::-1], dtype), metadata)
            a[white[::-1]] = 124
            ldata.append(a)

        # export
        stiff.export(FILENAME, ldata)

        tokens = FILENAME.split(".0.", 1)
        self.no_of_images = 1
        # Iterate through the files generated
        for file_index in range(self.no_of_images):
            fname = tokens[0] + "." + str(file_index) + "." + tokens[1]

            fmt_mng = dataio.find_fittest_converter(fname, mode=os.O_RDONLY)
            self.assertEqual(
                fmt_mng.FORMAT, "TIFF",
                "For '%s', expected format TIFF but got %s" %
                (fname, fmt_mng.FORMAT))
            rdata = fmt_mng.read_data(fname)
            # Assert all the DAs are there
            self.assertEqual(len(rdata[file_index]), len(ldata))

            rthumbnail = fmt_mng.read_thumbnail(fname)
            # No thumbnail handling for now, so assert that is empty
            self.assertEqual(rthumbnail, [])

        self.no_of_images = 1
        # Iterate through the files generated
        for file_index in range(self.no_of_images):
            fname = tokens[0] + "." + str(file_index) + "." + tokens[1]
            os.remove(fname)
Esempio n. 10
0
    def testExportMultiPage(self):
        # create a simple greyscale image
        size = (512, 256)
        white = (12, 52)  # non symmetric position
        dtype = numpy.uint16
        ldata = []
        num = 2
        metadata = {
            model.MD_IN_WL: (500e-9, 520e-9),  # m
        }

        # Add wavelength metadata just to group them
        for i in range(num):
            a = model.DataArray(numpy.zeros(size[::-1], dtype), metadata)
            a[white[::-1]] = 124
            ldata.append(a)

        # export
        stiff.export(FILENAME, ldata)

        tokens = FILENAME.split(".0.", 1)
        self.no_of_images = 1
        # Iterate through the files generated
        for file_index in range(self.no_of_images):
            fname = tokens[0] + "." + str(file_index) + "." + tokens[1]
            # check it's here
            st = os.stat(fname)  # this test also that the file is created
            self.assertGreater(st.st_size, 0)
            im = Image.open(fname)
            self.assertEqual(im.format, "TIFF")

            # check the number of pages
            for i in range(num):
                im.seek(i)
                self.assertEqual(im.size, size)
                self.assertEqual(im.getpixel(white), 124)

            del im

        for file_index in range(self.no_of_images):
            fname = tokens[0] + "." + str(file_index) + "." + tokens[1]
            os.remove(fname)
Esempio n. 11
0
    def testExportOpener(self):
        # create a simple greyscale image
        size = (512, 256)
        white = (12, 52)  # non symmetric position
        dtype = numpy.uint16
        ldata = []
        num = 2
        metadata = {
                    model.MD_IN_WL: (500e-9, 520e-9),  # m
                    }
        for i in range(num):
            a = model.DataArray(numpy.zeros(size[::-1], dtype), metadata)
            a[white[::-1]] = 124
            ldata.append(a)

        # export
        stiff.export(FILENAME, ldata)

        tokens = FILENAME.split(".0.", 1)
        self.no_of_images = 1
        # Iterate through the files generated
        for file_index in range(self.no_of_images):
            fname = tokens[0] + "." + str(file_index) + "." + tokens[1]
            
            fmt_mng = dataio.find_fittest_converter(fname, mode=os.O_RDONLY)
            self.assertEqual(fmt_mng.FORMAT, "TIFF",
                   "For '%s', expected format TIFF but got %s" % (fname, fmt_mng.FORMAT))
            rdata = fmt_mng.read_data(fname)
            # Assert all the DAs are there
            self.assertEqual(len(rdata[file_index]), len(ldata))
            
            rthumbnail = fmt_mng.read_thumbnail(fname)
            # No thumbnail handling for now, so assert that is empty
            self.assertEqual(rthumbnail, [])
        
        self.no_of_images = 1
        # Iterate through the files generated
        for file_index in range(self.no_of_images):
            fname = tokens[0] + "." + str(file_index) + "." + tokens[1]
            os.remove(fname)
Esempio n. 12
0
    def testExportMultiArrayPyramid(self):
        """
        Checks that we can export and read back the metadata and data of 1 SEM image,
        2 optical images, 1 RGB imagem and a RGB thumnail
        """
        metadata = [{model.MD_SW_VERSION: "1.0-test",
                     model.MD_HW_NAME: "fake hw",
                     model.MD_DESCRIPTION: "brightfield",
                     model.MD_ACQ_DATE: time.time(),
                     model.MD_BPP: 12,
                    },
                    {model.MD_SW_VERSION: "1.0-test",
                     model.MD_HW_NAME: "fake hw",
                     model.MD_DESCRIPTION: "blue dye",
                     model.MD_ACQ_DATE: time.time() + 1,
                     model.MD_BPP: 12,
                    },
                    {model.MD_SW_VERSION: "1.0-test",
                     model.MD_HW_NAME: "fake hw",
                     model.MD_DESCRIPTION: "green dye",
                     model.MD_ACQ_DATE: time.time() + 2,
                     model.MD_BPP: 12,
                    },
                    {model.MD_SW_VERSION: "1.0-test",
                     model.MD_HW_NAME: "fake hw",
                     model.MD_DESCRIPTION: "green dye",
                     model.MD_ACQ_DATE: time.time() + 2,
                     model.MD_BPP: 12,
                     model.MD_DIMS: "YXC",
                     # In order to test shear is applied even without rotation
                     # provided. And also check that *_COR is merged into its
                     # normal metadata brother.
                     # model.MD_SHEAR: 0.03,
                     model.MD_SHEAR_COR: 0.003,
                    },
                    ]
        # create 3 greyscale images of same size
        size = (5120, 7680)
        dtype = numpy.dtype("uint16")
        ldata = []
        # iterate on the first 3 metadata items
        for i, md in enumerate(metadata[:-1]):
            nparray = numpy.zeros(size[::-1], dtype)
            a = model.DataArray(nparray, md.copy())
            a[i, i + 10] = i  # "watermark" it
            ldata.append(a)

        # write a RGB image
        a = model.DataArray(numpy.zeros((514, 516, 3), dtype), metadata[3].copy())
        a[8:24, 24:40] = [5, 8, 13]  # "watermark" a square
        ldata.append(a)

        # thumbnail : small RGB completely green
        tshape = (size[1] // 8, size[0] // 8, 3)
        tdtype = numpy.uint8
        thumbnail = model.DataArray(numpy.zeros(tshape, tdtype))
        thumbnail.metadata[model.MD_DIMS] = "YXC"
        thumbnail.metadata[model.MD_POS] = (13.7e-3, -30e-3)
        thumbnail[:, :, 1] += 255  # green

        # export
        stiff.export(FILENAME, ldata, thumbnail, pyramid=True)

        tokens = FILENAME.split(".0.", 1)
        self.no_of_images = 4
        # Iterate through the files generated
        for file_index in range(self.no_of_images):
            fname = tokens[0] + "." + str(file_index) + "." + tokens[1]
            # check it's here
            st = os.stat(fname)  # this test also that the file is created

            self.assertGreater(st.st_size, 0)
            f = libtiff.TIFF.open(FILENAME)

            # read all images and subimages and store in main_images
            main_images = []
            count = 0
            for im in f.iter_images():
                zoom_level_images = []
                zoom_level_images.append(im)
                # get an array of offsets, one for each subimage
                sub_ifds = f.GetField(T.TIFFTAG_SUBIFD)
                if not sub_ifds:
                    main_images.append(zoom_level_images)
                    f.SetDirectory(count)
                    count += 1
                    continue

                for n in xrange(len(sub_ifds)):
                    # set the offset of the current subimage
                    f.SetSubDirectory(sub_ifds[n])
                    # read the subimage
                    subim = f.read_image()
                    zoom_level_images.append(subim)

                f.SetDirectory(count)
                count += 1

                main_images.append(zoom_level_images)

            # check the total number of main images
            self.assertEqual(len(main_images), 1)

            # check the sizes of each grayscale pyramidal image
            for main_image in main_images:
                self.assertEqual(len(main_image), 6)
                self.assertEqual(main_image[0].shape, (7680, 5120))
                self.assertEqual(main_image[1].shape, (3840, 2560))
                self.assertEqual(main_image[2].shape, (1920, 1280))
                self.assertEqual(main_image[3].shape, (960, 640))
                self.assertEqual(main_image[4].shape, (480, 320))
                self.assertEqual(main_image[5].shape, (240, 160))
Esempio n. 13
0
    def testReadMDFluo(self):
        """
        Checks that we can read back the metadata of a fluoresence image
        The OME-TIFF file will contain just one big array, but three arrays 
        should be read back with the right data.
        """
        metadata = [{model.MD_SW_VERSION: "1.0-test",
                     model.MD_HW_NAME: "fake hw",
                     model.MD_DESCRIPTION: "brightfield",
                     model.MD_ACQ_DATE: time.time(),
                     model.MD_BPP: 12,
                     model.MD_BINNING: (1, 1), # px, px
                     model.MD_PIXEL_SIZE: (1e-6, 1e-6), # m/px
                     model.MD_POS: (13.7e-3, -30e-3), # m
                     model.MD_EXP_TIME: 1.2, # s
                     model.MD_IN_WL: (400e-9, 630e-9), # m
                     model.MD_OUT_WL: (400e-9, 630e-9), # m
                     # correction metadata
                     model.MD_POS_COR: (-1e-6, 3e-6), # m
                     model.MD_PIXEL_SIZE_COR: (1.2, 1.2),
                     model.MD_ROTATION_COR: 6.27,  # rad
                     model.MD_SHEAR_COR: 0.005,
                    },
                    {model.MD_SW_VERSION: "1.0-test",
                     model.MD_HW_NAME: "fake hw",
                     model.MD_DESCRIPTION: "blue dye",
                     model.MD_ACQ_DATE: time.time() + 1,
                     model.MD_BPP: 12,
                     model.MD_BINNING: (1, 1), # px, px
                     model.MD_PIXEL_SIZE: (1e-6, 1e-6), # m/px
                     model.MD_POS: (13.7e-3, -30e-3), # m
                     model.MD_EXP_TIME: 1.2, # s
                     model.MD_IN_WL: (500e-9, 522e-9),  # m
                     model.MD_OUT_WL: (650e-9, 660e-9, 675e-9, 678e-9, 680e-9), # m
                     model.MD_USER_TINT: (255, 0, 65), # purple
                     model.MD_LIGHT_POWER: 100e-3 # W
                    },
                    {model.MD_SW_VERSION: "1.0-test",
                     model.MD_HW_NAME: "fake hw",
                     model.MD_DESCRIPTION: "green dye",
                     model.MD_ACQ_DATE: time.time() + 2,
                     model.MD_BPP: 12,
                     model.MD_BINNING: (1, 1), # px, px
                     model.MD_PIXEL_SIZE: (1e-6, 1e-6), # m/px
                     model.MD_POS: (13.7e-3, -30e-3), # m
                     model.MD_EXP_TIME: 1, # s
                     model.MD_IN_WL: (590e-9, 620e-9),  # m
                     model.MD_OUT_WL: (620e-9, 650e-9), # m
                     model.MD_ROTATION: 0.1,  # rad
                     model.MD_SHEAR: 0,
                     model.MD_BASELINE: 400.0
                    },
                    {model.MD_SW_VERSION: "1.0-test",
                     model.MD_HW_NAME: "fake hw",
                     model.MD_DESCRIPTION: "green dye",
                     model.MD_ACQ_DATE: time.time() + 2,
                     model.MD_BPP: 12,
                     model.MD_BINNING: (1, 1),  # px, px
                     model.MD_PIXEL_SIZE: (1e-6, 1e-6),  # m/px
                     model.MD_POS: (13.7e-3, -30e-3),  # m
                     model.MD_EXP_TIME: 1,  # s
                     model.MD_IN_WL: (600e-9, 630e-9),  # m
                     model.MD_OUT_WL: (620e-9, 650e-9),  # m
                     # In order to test shear is applied even without rotation
                     # provided. And also check that *_COR is merged into its
                     # normal metadata brother.
                     # model.MD_SHEAR: 0.03,
                     model.MD_SHEAR_COR: 0.003,
                    },
                    ]
        # create 3 greyscale images of same size
        size = (512, 256)
        dtype = numpy.dtype("uint16")
        ldata = []
        for i, md in enumerate(metadata):
            a = model.DataArray(numpy.zeros(size[::-1], dtype), md.copy())
            a[i, i] = i  # "watermark" it
            ldata.append(a)

        # thumbnail : small RGB completely red
        tshape = (size[1] // 8, size[0] // 8, 3)
        tdtype = numpy.uint8
        thumbnail = model.DataArray(numpy.zeros(tshape, tdtype))
        thumbnail[:, :, 1] += 255 # green

        # export
        stiff.export(FILENAME, ldata, thumbnail)

        tokens = FILENAME.split(".0.", 1)
        self.no_of_images = 4
        # Iterate through the files generated
        for file_index in range(self.no_of_images):
            fname = tokens[0] + "." + str(file_index) + "." + tokens[1]
            # check it's here
            st = os.stat(fname)  # this test also that the file is created
            self.assertGreater(st.st_size, 0)

            # check data
            rdata = tiff.read_data(fname)
            self.assertEqual(len(rdata), len(ldata))

            # TODO: rdata and ldata don't have to be in the same order
            for i, im in enumerate(rdata):
                md = metadata[i].copy()
                img.mergeMetadata(md)
                self.assertEqual(im.metadata[model.MD_DESCRIPTION], md[model.MD_DESCRIPTION])
                numpy.testing.assert_allclose(im.metadata[model.MD_POS], md[model.MD_POS], rtol=1e-4)
                numpy.testing.assert_allclose(im.metadata[model.MD_PIXEL_SIZE], md[model.MD_PIXEL_SIZE])
                self.assertAlmostEqual(im.metadata[model.MD_ACQ_DATE], md[model.MD_ACQ_DATE], delta=1)
                self.assertEqual(im.metadata[model.MD_BPP], md[model.MD_BPP])
                self.assertEqual(im.metadata[model.MD_BINNING], md[model.MD_BINNING])
                if model.MD_USER_TINT in md:
                    self.assertEqual(im.metadata[model.MD_USER_TINT], md[model.MD_USER_TINT])

                iwl = im.metadata[model.MD_IN_WL]  # nm
                self.assertTrue((md[model.MD_IN_WL][0] <= iwl[0] and
                                 iwl[1] <= md[model.MD_IN_WL][-1]))

                owl = im.metadata[model.MD_OUT_WL]  # nm
                self.assertTrue((md[model.MD_OUT_WL][0] <= owl[0] and
                                 owl[1] <= md[model.MD_OUT_WL][-1]))
                if model.MD_LIGHT_POWER in md:
                    self.assertEqual(im.metadata[model.MD_LIGHT_POWER], md[model.MD_LIGHT_POWER])

                self.assertAlmostEqual(im.metadata.get(model.MD_ROTATION, 0), md.get(model.MD_ROTATION, 0))
                self.assertAlmostEqual(im.metadata.get(model.MD_SHEAR, 0), md.get(model.MD_SHEAR, 0))
Esempio n. 14
0
    def testReadMDAR(self):
        """
        Checks that we can read back the metadata of an Angular Resolved image
        """
        metadata = [{model.MD_SW_VERSION: "1.0-test",
                     model.MD_HW_NAME: "fake hw",
                     model.MD_DESCRIPTION: "sem survey",
                     model.MD_ACQ_DATE: time.time(),
                     model.MD_BPP: 12,
                     model.MD_BINNING: (1, 2), # px, px
                     model.MD_PIXEL_SIZE: (1e-6, 2e-5), # m/px
                     model.MD_POS: (1e-3, -30e-3), # m
                     model.MD_EXP_TIME: 1.2, # s
                     model.MD_LENS_MAG: 1200, # ratio
                    },
                    {model.MD_SW_VERSION: "1.0-test",
                     model.MD_HW_NAME: "fake ccd",
                     model.MD_DESCRIPTION: "AR",
                     model.MD_ACQ_DATE: time.time(),
                     model.MD_BPP: 12,
                     model.MD_BINNING: (1, 1), # px, px
                     model.MD_SENSOR_PIXEL_SIZE: (13e-6, 13e-6), # m/px
                     model.MD_PIXEL_SIZE: (1e-6, 2e-5), # m/px
                     model.MD_POS: (1.2e-3, -30e-3), # m
                     model.MD_EXP_TIME: 1.2, # s
                     model.MD_AR_POLE: (253.1, 65.1), # px
                     model.MD_AR_XMAX: 12e-3,
                     model.MD_AR_HOLE_DIAMETER: 0.6e-3,
                     model.MD_AR_FOCUS_DISTANCE: 0.5e-3,
                     model.MD_AR_PARABOLA_F: 2e-3,
                     model.MD_LENS_MAG: 60, # ratio
                    },
                    {model.MD_SW_VERSION: "1.0-test",
                     model.MD_HW_NAME: "fake ccd",
                     model.MD_DESCRIPTION: "AR",
                     model.MD_ACQ_DATE: time.time(),
                     model.MD_BPP: 12,
                     model.MD_BINNING: (1, 1), # px, px
                     model.MD_SENSOR_PIXEL_SIZE: (13e-6, 13e-6), # m/px
                     model.MD_PIXEL_SIZE: (1e-6, 2e-5), # m/px
                     model.MD_POS: (1e-3, -30e-3), # m
                     model.MD_EXP_TIME: 1.2, # s
                     model.MD_AR_POLE: (253.1, 65.1), # px
                     model.MD_AR_XMAX: 12e-3,
                     model.MD_AR_HOLE_DIAMETER: 0.6e-3,
                     model.MD_AR_FOCUS_DISTANCE: 0.5e-3,
                     model.MD_AR_PARABOLA_F: 2e-3,
                     model.MD_LENS_MAG: 60, # ratio
                    },
                    ]
        # create 2 simple greyscale images
        sizes = [(512, 256), (500, 400), (500, 400)] # different sizes to ensure different acquisitions
        dtype = numpy.dtype("uint16")
        ldata = []
        for s, md in zip(sizes, metadata):
            a = model.DataArray(numpy.zeros(s[::-1], dtype), md)
            ldata.append(a)

        # thumbnail : small RGB completely red
        tshape = (sizes[0][1] // 8, sizes[0][0] // 8, 3)
        tdtype = numpy.uint8
        thumbnail = model.DataArray(numpy.zeros(tshape, tdtype))
        thumbnail[:, :, 1] += 255 # green

        # export
        stiff.export(FILENAME, ldata, thumbnail)

        tokens = FILENAME.split(".0.", 1)
        self.no_of_images = 2
        # Iterate through the files generated
        for file_index in range(self.no_of_images):
            fname = tokens[0] + "." + str(file_index) + "." + tokens[1]
            # check it's here
            st = os.stat(fname)  # this test also that the file is created
            self.assertGreater(st.st_size, 0)

            # check data
            rdata = tiff.read_data(fname)
            self.assertEqual(len(rdata), len(ldata))

            for im, md in zip(rdata, metadata):
                self.assertEqual(im.metadata[model.MD_DESCRIPTION], md[model.MD_DESCRIPTION])
                numpy.testing.assert_allclose(im.metadata[model.MD_POS], md[model.MD_POS], rtol=1e-4)
                numpy.testing.assert_allclose(im.metadata[model.MD_PIXEL_SIZE], md[model.MD_PIXEL_SIZE])
                self.assertAlmostEqual(im.metadata[model.MD_ACQ_DATE], md[model.MD_ACQ_DATE], delta=1)
                if model.MD_AR_POLE in md:
                    numpy.testing.assert_allclose(im.metadata[model.MD_AR_POLE], md[model.MD_AR_POLE])
                if model.MD_AR_XMAX in md:
                    self.assertAlmostEqual(im.metadata[model.MD_AR_XMAX], md[model.MD_AR_XMAX])
                if model.MD_AR_HOLE_DIAMETER in md:
                    self.assertAlmostEqual(im.metadata[model.MD_AR_HOLE_DIAMETER], md[model.MD_AR_HOLE_DIAMETER])
                if model.MD_AR_FOCUS_DISTANCE in md:
                    self.assertAlmostEqual(im.metadata[model.MD_AR_FOCUS_DISTANCE], md[model.MD_AR_FOCUS_DISTANCE])
                if model.MD_AR_PARABOLA_F in md:
                    self.assertAlmostEqual(im.metadata[model.MD_AR_PARABOLA_F], md[model.MD_AR_PARABOLA_F])
                if model.MD_LENS_MAG in md:
                    self.assertAlmostEqual(im.metadata[model.MD_LENS_MAG], md[model.MD_LENS_MAG])
Esempio n. 15
0
    def testReadMDSpec(self):
        """
        Checks that we can read back the metadata of a spectrum image
        """
        metadata = [{model.MD_SW_VERSION: "1.0-test",
                     model.MD_HW_NAME: "fake hw",
                     model.MD_DESCRIPTION: "test",
                     model.MD_ACQ_DATE: time.time(),
                     model.MD_BPP: 12,
                     model.MD_BINNING: (1, 2), # px, px
                     model.MD_PIXEL_SIZE: (1e-6, 2e-5), # m/px
                     model.MD_POS: (13.7e-3, -30e-3), # m
                     model.MD_EXP_TIME: 1.2, # s
                     model.MD_IN_WL: (500e-9, 520e-9), # m
                     model.MD_OUT_WL: (650e-9, 660e-9, 675e-9, 678e-9, 680e-9), # m
                    },
                    {model.MD_SW_VERSION: "1.0-test",
                     model.MD_HW_NAME: "fake spec",
                     model.MD_DESCRIPTION: "test3d",
                     model.MD_ACQ_DATE: time.time(),
                     model.MD_BPP: 12,
                     model.MD_BINNING: (1, 1), # px, px
                     model.MD_PIXEL_SIZE: (1e-6, 2e-5), # m/px
                     model.MD_WL_POLYNOMIAL: [500e-9, 1e-9], # m, m/px: wl polynomial
                     model.MD_POS: (13.7e-3, -30e-3), # m
                     model.MD_EXP_TIME: 1.2, # s
                    },
                    ]
        # create 2 simple greyscale images
        sizes = [(512, 256), (500, 400, 1, 1, 220)] # different sizes to ensure different acquisitions
        dtype = numpy.dtype("uint8")
        ldata = []
        for i, s in enumerate(sizes):
            a = model.DataArray(numpy.zeros(s[::-1], dtype), metadata[i])
            ldata.append(a)

        # thumbnail : small RGB completely red
        tshape = (sizes[0][1] // 8, sizes[0][0] // 8, 3)
        tdtype = numpy.uint8
        thumbnail = model.DataArray(numpy.zeros(tshape, tdtype))
        thumbnail[:, :, 1] += 255 # green

        # export
        stiff.export(FILENAME, ldata, thumbnail)

        tokens = FILENAME.split(".0.", 1)
        self.no_of_images = 2
        # Iterate through the files generated
        for file_index in range(self.no_of_images):
            fname = tokens[0] + "." + str(file_index) + "." + tokens[1]
            # check it's here
            st = os.stat(fname)  # this test also that the file is created
            self.assertGreater(st.st_size, 0)

            # check data
            rdata = tiff.read_data(fname)
            self.assertEqual(len(rdata), len(ldata))

            for i, im in enumerate(rdata):
                md = metadata[i]
                self.assertEqual(im.metadata[model.MD_DESCRIPTION], md[model.MD_DESCRIPTION])
                numpy.testing.assert_allclose(im.metadata[model.MD_POS], md[model.MD_POS], rtol=1e-4)
                numpy.testing.assert_allclose(im.metadata[model.MD_PIXEL_SIZE], md[model.MD_PIXEL_SIZE])
                self.assertAlmostEqual(im.metadata[model.MD_ACQ_DATE], md[model.MD_ACQ_DATE], delta=1)
                self.assertEqual(im.metadata[model.MD_BPP], md[model.MD_BPP])
                self.assertEqual(im.metadata[model.MD_BINNING], md[model.MD_BINNING])

                if model.MD_WL_POLYNOMIAL in md:
                    pn = md[model.MD_WL_POLYNOMIAL]
                    # 2 formats possible
                    if model.MD_WL_LIST in im.metadata:
                        l = ldata[i].shape[0]
                        npn = polynomial.Polynomial(pn,
                                        domain=[0, l - 1],
                                        window=[0, l - 1])
                        wl = npn.linspace(l)[1]
                        numpy.testing.assert_allclose(im.metadata[model.MD_WL_LIST], wl)
                    else:
                        numpy.testing.assert_allclose(im.metadata[model.MD_WL_POLYNOMIAL], pn)
Esempio n. 16
0
    def testExportNoWL(self):
        """
        Check it's possible to export/import a spectrum with missing wavelength
        info
        """
        dtype = numpy.dtype("uint16")
        size3d = (512, 256, 220) # X, Y, C
        size = (512, 256)
        metadata = [{model.MD_SW_VERSION: "1.0-test",
                    model.MD_HW_NAME: "bad spec",
                    model.MD_DESCRIPTION: "test3d",
                    model.MD_ACQ_DATE: time.time(),
                    model.MD_BPP: 12,
                    model.MD_BINNING: (1, 1), # px, px
                    model.MD_PIXEL_SIZE: (1e-6, 2e-5), # m/px
                    model.MD_WL_POLYNOMIAL: [0], # m, m/px: missing polynomial
                    model.MD_POS: (1e-3, -30e-3), # m
                    model.MD_EXP_TIME: 1.2, #s
                    },
                    {model.MD_SW_VERSION: "1.0-test",
                    model.MD_HW_NAME: u"", # check empty unicode strings
                    model.MD_DESCRIPTION: u"tÉst", # tiff doesn't support É (but XML does)
                    model.MD_ACQ_DATE: time.time(),
                    model.MD_BPP: 12,
                    model.MD_BINNING: (1, 2), # px, px
                    model.MD_PIXEL_SIZE: (1e-6, 2e-5), # m/px
                    model.MD_POS: (1e-3, -30e-3), # m
                    model.MD_EXP_TIME: 1.2, #s
                    model.MD_IN_WL: (500e-9, 520e-9), #m
                    }]
        ldata = []
        # 3D data generation (+ metadata): gradient along the wavelength
        data3d = numpy.empty(size3d[::-1], dtype=dtype)
        end = 2 ** metadata[0][model.MD_BPP]
        step = end // size3d[2]
        lin = numpy.arange(0, end, step, dtype=dtype)[:size3d[2]]
        lin.shape = (size3d[2], 1, 1) # to be able to copy it on the first dim
        data3d[:] = lin
        # introduce Time and Z dimension to state the 3rd dim is channel
        data3d = data3d[:, numpy.newaxis, numpy.newaxis, :, :]
        ldata.append(model.DataArray(data3d, metadata[0]))

        # an additional 2D data, for the sake of it
        ldata.append(model.DataArray(numpy.zeros(size[::-1], dtype), metadata[1]))

        # export
        stiff.export(FILENAME, ldata)

        # check 3D data
        tokens = FILENAME.split(".0.", 1)
        self.no_of_images = 2
        # Iterate through the files generated
        for file_index in range(self.no_of_images):
            fname = tokens[0] + "." + str(file_index) + "." + tokens[1]
            # check it's here
            st = os.stat(fname)  # this test also that the file is created
            self.assertGreater(st.st_size, 0)

            rdata = tiff.read_data(fname)
            self.assertEqual(len(rdata), len(ldata))

            for i, im in enumerate(rdata):
                md = metadata[i]
                self.assertEqual(im.metadata[model.MD_DESCRIPTION], md[model.MD_DESCRIPTION])
                numpy.testing.assert_allclose(im.metadata[model.MD_POS], md[model.MD_POS], rtol=1e-4)
                numpy.testing.assert_allclose(im.metadata[model.MD_PIXEL_SIZE], md[model.MD_PIXEL_SIZE])
                self.assertAlmostEqual(im.metadata[model.MD_ACQ_DATE], md[model.MD_ACQ_DATE], delta=1)
                self.assertEqual(im.metadata[model.MD_BPP], md[model.MD_BPP])
                self.assertEqual(im.metadata[model.MD_BINNING], md[model.MD_BINNING])

                if model.MD_WL_POLYNOMIAL in md:
                    pn = md[model.MD_WL_POLYNOMIAL]
                    # either identical, or nothing at all
                    if model.MD_WL_POLYNOMIAL in im.metadata:
                        numpy.testing.assert_allclose(im.metadata[model.MD_WL_POLYNOMIAL], pn)
                    else:
                        self.assertNotIn(model.MD_WL_LIST, im.metadata)
Esempio n. 17
0
    def testExportCube(self):
        """
        Check it's possible to export a 3D data (typically: 2D area with full
         spectrum for each point)
        """
        dtype = numpy.dtype("uint16")
        size3d = (512, 256, 220) # X, Y, C
        size = (512, 256)
        metadata3d = {model.MD_SW_VERSION: "1.0-test",
                    model.MD_HW_NAME: "fake spec",
                    model.MD_HW_VERSION: "1.23",
                    model.MD_DESCRIPTION: "test3d",
                    model.MD_ACQ_DATE: time.time(),
                    model.MD_BPP: 12,
                    model.MD_BINNING: (1, 1), # px, px
                    model.MD_PIXEL_SIZE: (1e-6, 2e-5), # m/px
                    model.MD_WL_POLYNOMIAL: [500e-9, 1e-9], # m, m/px: wl polynomial
                    model.MD_POS: (1e-3, -30e-3), # m
                    model.MD_EXP_TIME: 1.2, #s
                    model.MD_IN_WL: (500e-9, 520e-9), #m
                    }
        metadata = {model.MD_SW_VERSION: "1.0-test",
                    model.MD_HW_NAME: u"", # check empty unicode strings
                    model.MD_DESCRIPTION: u"tÉst", # tiff doesn't support É (but XML does)
                    model.MD_ACQ_DATE: time.time(),
                    model.MD_BPP: 12,
                    model.MD_BINNING: (1, 2), # px, px
                    model.MD_PIXEL_SIZE: (1e-6, 2e-5), # m/px
                    model.MD_POS: (1e-3, -30e-3), # m
                    model.MD_EXP_TIME: 1.2, #s
                    model.MD_IN_WL: (500e-9, 520e-9), #m
                    }
        ldata = []
        # 3D data generation (+ metadata): gradient along the wavelength
        data3d = numpy.empty(size3d[-1::-1], dtype=dtype)
        end = 2**metadata3d[model.MD_BPP]
        step = end // size3d[2]
        lin = numpy.arange(0, end, step, dtype=dtype)[:size3d[2]]
        lin.shape = (size3d[2], 1, 1) # to be able to copy it on the first dim
        data3d[:] = lin
        # introduce Time and Z dimension to state the 3rd dim is channel
        data3d = data3d[:, numpy.newaxis, numpy.newaxis,:,:] 
        ldata.append(model.DataArray(data3d, metadata3d))

        # an additional 2D data, for the sake of it
        ldata.append(model.DataArray(numpy.zeros(size[-1::-1], dtype), metadata))

        # export
        stiff.export(FILENAME, ldata)

        tokens = FILENAME.split(".0.", 1)
        fname = tokens[0] + "." + str(0) + "." + tokens[1]
        # check it's here
        st = os.stat(fname)  # this test also that the file is created
        self.assertGreater(st.st_size, 0)
        im = Image.open(fname)
        self.assertEqual(im.format, "TIFF")

        # check the 3D data (one image per channel)
        for i in range(size3d[2]):
            im.seek(i)
            self.assertEqual(im.size, size3d[0:2])
            self.assertEqual(im.getpixel((1, 1)), i * step)

        del im

        fname = tokens[0] + "." + str(1) + "." + tokens[1]
        # check it's here
        st = os.stat(fname)  # this test also that the file is created
        self.assertGreater(st.st_size, 0)
        im = Image.open(fname)
        self.assertEqual(im.format, "TIFF")
        # check the 2D data
        self.assertEqual(im.size, size)
        self.assertEqual(im.getpixel((1, 1)), 0)