Esempio n. 1
0
    def __init__(self, size, dtype):
        """Initialize a new instance.

        Parameters
        ----------
        size : `int`
            The number of dimensions of the space
        dtype : `object`
            The data type of the storage array. Can be provided in any
            way the `numpy.dtype` function understands, most notably
            as built-in type, as one of NumPy's internal datatype
            objects or as string.
            Only scalar data types (numbers) are allowed.
        """
        NtuplesBase.__init__(self, size, dtype)
        if not is_scalar_dtype(self.dtype):
            raise TypeError('{!r} is not a scalar data type.'.format(dtype))

        if is_real_dtype(self.dtype):
            field = RealNumbers()
            self._real_dtype = self.dtype
            self._is_real = True
        else:
            field = ComplexNumbers()
            self._real_dtype = _TYPE_MAP_C2R[self.dtype]
            self._is_real = False

        self._is_floating = is_floating_dtype(self.dtype)

        LinearSpace.__init__(self, field)
Esempio n. 2
0
def test_resizing_op_call(fn_impl):

    dtypes = [dt for dt in odl.FN_IMPLS[fn_impl].available_dtypes()
              if is_scalar_dtype(dt)]

    for dtype in dtypes:
        # Minimal test since this operator only wraps resize_array
        space = odl.uniform_discr([0, -1], [1, 1], (4, 5), impl=fn_impl)
        res_space = odl.uniform_discr([0, -0.6], [2, 0.2], (8, 2),
                                      impl=fn_impl)
        res_op = odl.ResizingOperator(space, res_space)
        out = res_op(space.one())
        true_res = np.zeros((8, 2))
        true_res[:4, :] = 1
        assert np.array_equal(out, true_res)

        out = res_space.element()
        res_op(space.one(), out=out)
        assert np.array_equal(out, true_res)

        # Test also mapping to default impl for other 'fn_impl'
        if fn_impl != 'numpy':
            space = odl.uniform_discr([0, -1], [1, 1], (4, 5), impl=fn_impl)
            res_space = odl.uniform_discr([0, -0.6], [2, 0.2], (8, 2))
            res_op = odl.ResizingOperator(space, res_space)
            out = res_op(space.one())
            true_res = np.zeros((8, 2))
            true_res[:4, :] = 1
            assert np.array_equal(out, true_res)

            out = res_space.element()
            res_op(space.one(), out=out)
            assert np.array_equal(out, true_res)
Esempio n. 3
0
def dspace_type(space, impl, dtype=None):
    """Select the correct corresponding n-tuples space.

    Parameters
    ----------
    space : `LinearSpace`
        Template space from which to infer an adequate data space. If
        it has a `LinearSpace.field` attribute, ``dtype`` must be
        consistent with it.
    impl : string
        Implementation backend for the data space
    dtype : `numpy.dtype`, optional
        Data type which the space is supposed to use. If ``None`` is
        given, the space type is purely determined from ``space`` and
        ``impl``. Otherwise, it must be compatible with the
        field of ``space``.

    Returns
    -------
    stype : type
        Space type selected after the space's field, the backend and
        the data type
    """
    spacetype_map = {RealNumbers: FN_IMPLS,
                     ComplexNumbers: FN_IMPLS,
                     type(None): NTUPLES_IMPLS}

    field_type = type(getattr(space, 'field', None))

    if dtype is None:
        pass
    elif is_real_floating_dtype(dtype):
        if field_type is None or field_type == ComplexNumbers:
            raise TypeError('real floating data type {!r} requires space '
                            'field to be of type RealNumbers, got {}'
                            ''.format(dtype, field_type))
    elif is_complex_floating_dtype(dtype):
        if field_type is None or field_type == RealNumbers:
            raise TypeError('complex floating data type {!r} requires space '
                            'field to be of type ComplexNumbers, got {!r}'
                            ''.format(dtype, field_type))
    elif is_scalar_dtype(dtype):
        if field_type == ComplexNumbers:
            raise TypeError('non-floating data type {!r} requires space field '
                            'to be of type RealNumbers, got {!r}'
                            .format(dtype, field_type))
    else:
        raise TypeError('non-scalar data type {!r} cannot be combined with '
                        'a `LinearSpace`'.format(dtype))

    stype = spacetype_map[field_type].get(impl, None)

    if stype is None:
        raise NotImplementedError('no corresponding data space available '
                                  'for space {!r} and implementation {!r}'
                                  ''.format(space, impl))
    return stype
Esempio n. 4
0
def test_resizing_op_inverse(padding, fn_impl):

    pad_mode, pad_const = padding
    dtypes = [dt for dt in odl.FN_IMPLS[fn_impl].available_dtypes()
              if is_scalar_dtype(dt)]

    for dtype in dtypes:
        space = odl.uniform_discr([0, -1], [1, 1], (4, 5), dtype=dtype,
                                  impl=fn_impl)
        res_space = odl.uniform_discr([0, -1.4], [1.5, 1.4], (6, 7),
                                      dtype=dtype, impl=fn_impl)
        res_op = odl.ResizingOperator(space, res_space, pad_mode=pad_mode,
                                      pad_const=pad_const)

        # Only left inverse if the operator extentds in all axes
        x = noise_element(space)
        assert res_op.inverse(res_op(x)) == x
Esempio n. 5
0
    def __init__(self, size, dtype):
        """Initialize a new instance.

        Parameters
        ----------
        size : non-negative int
            Number of entries in a tuple.
        dtype :
            Data type for each tuple entry. Can be provided in any
            way the `numpy.dtype` function understands, most notably
            as built-in type, as one of NumPy's internal datatype
            objects or as string.
            Only scalar data types (numbers) are allowed.
        """
        NtuplesBase.__init__(self, size, dtype)

        if not is_scalar_dtype(self.dtype):
            raise TypeError('{!r} is not a scalar data type'.format(dtype))

        if is_real_dtype(self.dtype):
            field = RealNumbers()
            self.__is_real = True
            self.__real_dtype = self.dtype
            self.__real_space = self
            try:
                self.__complex_dtype = complex_dtype(self.dtype)
            except ValueError:
                self.__complex_dtype = None
            self.__complex_space = None  # Set in first call of astype
        else:
            field = ComplexNumbers()
            self.__is_real = False
            try:
                self.__real_dtype = real_dtype(self.dtype)
            except ValueError:
                self.__real_dtype = None
            self.__real_space = None  # Set in first call of astype
            self.__complex_dtype = self.dtype
            self.__complex_space = self

        self.__is_floating = is_floating_dtype(self.dtype)
        LinearSpace.__init__(self, field)
Esempio n. 6
0
    def __init__(self, size, dtype):
        """Initialize a new instance.

        Parameters
        ----------
        size : `int`
            The number of dimensions of the space
        dtype : `object`
            The data type of the storage array. Can be provided in any
            way the `numpy.dtype` function understands, most notably
            as built-in type, as one of NumPy's internal datatype
            objects or as string.
            Only scalar data types (numbers) are allowed.
        """
        super().__init__(size, dtype)
        if not is_scalar_dtype(self.dtype):
            raise TypeError('{!r} is not a scalar data type.'.format(dtype))

        if is_real_dtype(self.dtype):
            self._field = RealNumbers()
        else:
            self._field = ComplexNumbers()
Esempio n. 7
0
def test_resizing_op_properties(fn_impl, padding):

    dtypes = [dt for dt in odl.FN_IMPLS[fn_impl].available_dtypes()
              if is_scalar_dtype(dt)]

    pad_mode, pad_const = padding

    for dtype in dtypes:
        # Explicit range
        space = odl.uniform_discr([0, -1], [1, 1], (10, 5), dtype=dtype)
        res_space = odl.uniform_discr([0, -3], [2, 3], (20, 15), dtype=dtype)
        res_op = odl.ResizingOperator(space, res_space, pad_mode=pad_mode,
                                      pad_const=pad_const)

        assert res_op.domain == space
        assert res_op.range == res_space
        assert res_op.offset == (0, 5)
        assert res_op.pad_mode == pad_mode
        assert res_op.pad_const == pad_const
        if pad_mode == 'constant' and pad_const != 0:
            assert not res_op.is_linear
        else:
            assert res_op.is_linear

        # Implicit range via ran_shp and offset
        res_op = odl.ResizingOperator(space, ran_shp=(20, 15), offset=[0, 5],
                                      pad_mode=pad_mode, pad_const=pad_const)
        assert np.allclose(res_op.range.min_pt, res_space.min_pt)
        assert np.allclose(res_op.range.max_pt, res_space.max_pt)
        assert np.allclose(res_op.range.cell_sides, res_space.cell_sides)
        assert res_op.range.dtype == res_space.dtype
        assert res_op.offset == (0, 5)
        assert res_op.pad_mode == pad_mode
        assert res_op.pad_const == pad_const
        if pad_mode == 'constant' and pad_const != 0:
            assert not res_op.is_linear
        else:
            assert res_op.is_linear
Esempio n. 8
0
    def __init__(self, size, dtype):
        """Initialize a new instance.

        Parameters
        ----------
        size : `int`
            The number of dimensions of the space
        dtype : `object`
            The data type of the storage array. Can be provided in any
            way the `numpy.dtype` function understands, most notably
            as built-in type, as one of NumPy's internal datatype
            objects or as string.
            Only scalar data types (numbers) are allowed.
        """
        NtuplesBase.__init__(self, size, dtype)

        if not is_scalar_dtype(self.dtype):
            raise TypeError('{!r} is not a scalar data type'.format(dtype))

        if is_real_dtype(self.dtype):
            field = RealNumbers()
            self._is_real = True
            self._real_dtype = self.dtype
            self._real_space = self
            self._complex_dtype = _TYPE_MAP_R2C.get(self.dtype, None)
            self._complex_space = None  # Set in first call of astype
        else:
            field = ComplexNumbers()
            self._is_real = False
            self._real_dtype = _TYPE_MAP_C2R[self.dtype]
            self._real_space = None  # Set in first call of astype
            self._complex_dtype = self.dtype
            self._complex_space = self

        self._is_floating = is_floating_dtype(self.dtype)
        LinearSpace.__init__(self, field)
Esempio n. 9
0
def test_is_scalar_dtype():
    for dtype in scalar_dtypes:
        assert is_scalar_dtype(dtype)
Esempio n. 10
0
def dspace_type(space, impl, dtype=None):
    """Select the correct corresponding n-tuples space.

    Parameters
    ----------
    space :
        Template space from which to infer an adequate data space. If
        it has a `LinearSpace.field` attribute, ``dtype`` must be
        consistent with it.
    impl : {'numpy', 'cuda'}
        Implementation backend for the data space
    dtype : `type`, optional
        Data type which the space is supposed to use. If `None`, the
        space type is purely determined from ``space`` and
        ``impl``. If given, it must be compatible with the
        field of ``space``.

    Returns
    -------
    stype : `type`
        Space type selected after the space's field, the backend and
        the data type
    """
    impl, impl_in = str(impl).lower(), impl
    if impl not in ('numpy', 'cuda'):
        raise ValueError("`impl` '{}' not understood"
                         ''.format(impl_in))

    if impl == 'cuda' and not CUDA_AVAILABLE:
        raise ValueError("'cuda' implementation not available")

    basic_map = {'numpy': Fn, 'cuda': CudaFn}

    spacetype_map = {
        'numpy': {RealNumbers: Fn, ComplexNumbers: Fn,
                  type(None): Ntuples},
        'cuda': {RealNumbers: CudaFn, ComplexNumbers: None,
                 type(None): CudaNtuples}
    }

    field_type = type(getattr(space, 'field', None))

    if dtype is None:
        stype = spacetype_map[impl][field_type]

    elif is_real_floating_dtype(dtype):
        if field_type is None or field_type == ComplexNumbers:
            raise TypeError('real floating data type {!r} requires space '
                            'field to be of type RealNumbers, got {}'
                            ''.format(dtype, field_type))
        stype = spacetype_map[impl][field_type]
    elif is_complex_floating_dtype(dtype):
        if field_type is None or field_type == RealNumbers:
            raise TypeError('complex floating data type {!r} requires space '
                            'field to be of type ComplexNumbers, got {!r}'
                            ''.format(dtype, field_type))
        stype = spacetype_map[impl][field_type]
    elif is_scalar_dtype(dtype):
        if field_type == ComplexNumbers:
            raise TypeError('non-floating data type {!r} requires space field '
                            'to be of type RealNumbers, got {!r}'
                            .format(dtype, field_type))
        elif field_type == RealNumbers:
            stype = basic_map[impl]
        else:
            stype = spacetype_map[impl][field_type]
    elif field_type is None:  # Only in this case are arbitrary types allowed
        stype = spacetype_map[impl][field_type]
    else:
        raise TypeError('non-scalar data type {!r} cannot be combined with '
                        'a `LinearSpace`'.format(dtype))

    if stype is None:
        raise NotImplementedError('no corresponding data space available '
                                  'for space {!r} and implementation {!r}'
                                  ''.format(space, impl))
    return stype
Esempio n. 11
0
def test_is_scalar_dtype():
    for dtype in scalar_dtypes:
        assert is_scalar_dtype(dtype)
Esempio n. 12
0
def vector(array, dtype=None, impl="numpy"):
    """Create an n-tuples type vector from an array.

    Parameters
    ----------
    array : array-like
        Array from which to create the vector. Scalars become
        one-dimensional vectors.
    dtype : `object`, optional
        Set the data type of the vector manually with this option.
        By default, the space type is inferred from the input data.
    impl : {'numpy', 'cuda'}
        Implementation backend for the vector

    Returns
    -------
    vec : `NtuplesBaseVector`
        Vector created from the input array. Its concrete type depends
        on the provided arguments.

    Notes
    -----
    This is a convenience function and not intended for use in
    speed-critical algorithms. It creates a NumPy array first, hence
    especially CUDA vectors as input result in a large speed penalty.

    Examples
    --------
    >>> vector([1, 2, 3])  # No automatic cast to float
    Fn(3, 'int').element([1, 2, 3])
    >>> vector([1, 2, 3], dtype=float)
    Rn(3).element([1.0, 2.0, 3.0])
    >>> vector([1 + 1j, 2, 3 - 2j])
    Cn(3).element([(1+1j), (2+0j), (3-2j)])

    Non-scalar types are also supported:

    >>> vector([u'Hello,', u' world!'])
    Ntuples(2, '<U7').element([u'Hello,', u' world!'])

    Scalars become a one-element vector:

    >>> vector(0.0)
    Rn(1).element([0.0])
    """
    # Sanitize input
    arr = np.array(array, copy=False, ndmin=1)
    impl = str(impl).lower()

    # Validate input
    if arr.ndim > 1:
        raise ValueError("array has {} dimensions, expected 1." "".format(arr.ndim))

    # Set dtype
    if dtype is not None:
        space_dtype = dtype
    elif arr.dtype == float and impl == "cuda":
        # Special case, default float is float32 on cuda
        space_dtype = "float32"
    else:
        space_dtype = arr.dtype

    # Select implementation
    if impl == "numpy":
        if is_real_floating_dtype(space_dtype):
            space_type = Rn
        elif is_complex_floating_dtype(space_dtype):
            space_type = Cn
        elif is_scalar_dtype(space_dtype):
            space_type = Fn
        else:
            space_type = Ntuples

    elif impl == "cuda":
        if not CUDA_AVAILABLE:
            raise ValueError("CUDA implementation not available.")

        if is_real_floating_dtype(space_dtype):
            space_type = CudaRn
        elif is_complex_floating_dtype(space_dtype):
            raise NotImplementedError("complex spaces in CUDA not supported.")
        elif is_scalar_dtype(space_dtype):
            space_type = CudaFn
        else:
            space_type = CudaNtuples

    else:
        raise ValueError("implementation '{}' not understood.".format(impl))

    return space_type(len(arr), dtype=space_dtype).element(arr)
Esempio n. 13
0
def vector(array, dtype=None, impl='numpy'):
    """Create an n-tuples type vector from an array.

    Parameters
    ----------
    array : `array-like`
        Array from which to create the vector. Scalars become
        one-dimensional vectors.
    dtype : optional
        Set the data type of the vector manually with this option.
        By default, the space type is inferred from the input data.
    impl : string
        The backend to use. See `odl.space.entry_points.NTUPLES_IMPLS` and
        `odl.space.entry_points.FN_IMPLS` for available options.

    Returns
    -------
    vec : `NtuplesBaseVector`
        Vector created from the input array. Its concrete type depends
        on the provided arguments.

    Notes
    -----
    This is a convenience function and not intended for use in
    speed-critical algorithms.

    Examples
    --------
    >>> vector([1, 2, 3])  # No automatic cast to float
    fn(3, 'int').element([1, 2, 3])
    >>> vector([1, 2, 3], dtype=float)
    rn(3).element([1.0, 2.0, 3.0])
    >>> vector([1 + 1j, 2, 3 - 2j])
    cn(3).element([(1+1j), (2+0j), (3-2j)])

    Non-scalar types are also supported:

    >>> vector([True, False])
    ntuples(2, 'bool').element([True, False])

    Scalars become a one-element vector:

    >>> vector(0.0)
    rn(1).element([0.0])
    """
    # Sanitize input
    arr = np.array(array, copy=False, ndmin=1)

    # Validate input
    if arr.ndim > 1:
        raise ValueError('array has {} dimensions, expected 1'
                         ''.format(arr.ndim))

    # Set dtype
    if dtype is not None:
        space_dtype = dtype
    else:
        space_dtype = arr.dtype

    # Select implementation
    if space_dtype is None or is_scalar_dtype(space_dtype):
        space_type = fn
    else:
        space_type = ntuples

    return space_type(len(arr), dtype=space_dtype, impl=impl).element(arr)
Esempio n. 14
0
 def contains_all(self, array):
     """Test if `array` is an array of real or complex numbers."""
     dtype = getattr(array, 'dtype', None)
     if dtype is None:
         dtype = np.result_type(*array)
     return is_scalar_dtype(dtype)
Esempio n. 15
0
File: sets.py Progetto: NikEfth/odl
 def contains_all(self, array):
     """Test if `array` is an array of real or complex numbers."""
     dtype = getattr(array, 'dtype', None)
     if dtype is None:
         dtype = np.result_type(*array)
     return is_scalar_dtype(dtype)
Esempio n. 16
0
File: sets.py Progetto: odlgroup/odl
 def contains_all(self, other):
     """Return ``True`` if ``other`` is a sequence of complex numbers."""
     dtype = getattr(other, 'dtype', None)
     if dtype is None:
         dtype = np.result_type(*other)
     return is_scalar_dtype(dtype)
Esempio n. 17
0
def dspace_type(space, impl, dtype=None):
    """Select the correct corresponding n-tuples space.

    Parameters
    ----------
    space : `object`
        The template space. If it has a ``field`` attribute,
        ``dtype`` must be consistent with it
    impl : {'numpy', 'cuda'}
        The backend for the data space
    dtype : `type`, optional
        Data type which the space is supposed to use. If `None`, the
        space type is purely determined from ``space`` and
        ``impl``. If given, it must be compatible with the
        field of ``space``. Non-floating types result in basic
        `Fn`-type spaces.

    Returns
    -------
    stype : `type`
        Space type selected after the space's field, the backend and
        the data type
    """
    impl_ = str(impl).lower()
    if impl_ not in ('numpy', 'cuda'):
        raise ValueError('implementation type {} not understood.'
                         ''.format(impl))

    if impl_ == 'cuda' and not CUDA_AVAILABLE:
        raise ValueError('CUDA implementation not available.')

    basic_map = {'numpy': Fn, 'cuda': CudaFn}

    spacetype_map = {
        'numpy': {RealNumbers: Rn, ComplexNumbers: Cn,
                  type(None): Ntuples},
        'cuda': {RealNumbers: CudaRn, ComplexNumbers: None,
                 type(None): CudaNtuples}
    }

    field_type = type(getattr(space, 'field', None))

    if dtype is None:
        stype = spacetype_map[impl_][field_type]
    elif is_real_floating_dtype(dtype):
        if field_type is None or field_type == ComplexNumbers:
            raise TypeError('real floating data type {!r} requires space '
                            'field to be of type `RealNumbers`, got {}.'
                            ''.format(dtype, field_type))
        stype = spacetype_map[impl_][field_type]
    elif is_complex_floating_dtype(dtype):
        if field_type is None or field_type == RealNumbers:
            raise TypeError('complex floating data type {!r} requires space '
                            'field to be of type `ComplexNumbers`, got {!r}.'
                            ''.format(dtype, field_type))
        stype = spacetype_map[impl_][field_type]
    elif is_scalar_dtype(dtype):
        if field_type == ComplexNumbers:
            raise TypeError('non-floating data type {!r} requires space field '
                            'to be of type `RealNumbers`, got {!r}.'
                            .format(dtype, field_type))
        elif field_type == RealNumbers:
            stype = basic_map[impl_]
        else:
            stype = spacetype_map[impl_][field_type]
    elif field_type is None:  # Only in this case are arbitrary types allowed
        stype = spacetype_map[impl_][field_type]
    else:
        raise TypeError('non-scalar data type {!r} cannot be combined with '
                        'a `LinearSpace`.'.format(dtype))

    if stype is None:
        raise NotImplementedError('no corresponding data space available '
                                  'for space {!r} and implementation {!r}.'
                                  ''.format(space, impl))
    return stype
Esempio n. 18
0
def vector(array, dtype=None, impl='numpy'):
    """Create an n-tuples type vector from an array.

    Parameters
    ----------
    array : `array-like`
        Array from which to create the vector. Scalars become
        one-dimensional vectors.
    dtype : `object`, optional
        Set the data type of the vector manually with this option.
        By default, the space type is inferred from the input data.
    impl : {'numpy', 'cuda'}
        Implementation backend for the vector

    Returns
    -------
    vec : `NtuplesBaseVector`
        Vector created from the input array. Its concrete type depends
        on the provided arguments.

    Notes
    -----
    This is a convenience function and not intended for use in
    speed-critical algorithms. It creates a NumPy array first, hence
    especially CUDA vectors as input result in a large speed penalty.

    Examples
    --------
    >>> vector([1, 2, 3])  # No automatic cast to float
    Fn(3, 'int').element([1, 2, 3])
    >>> vector([1, 2, 3], dtype=float)
    Rn(3).element([1.0, 2.0, 3.0])
    >>> vector([1 + 1j, 2, 3 - 2j])
    Cn(3).element([(1+1j), (2+0j), (3-2j)])

    Non-scalar types are also supported:

    >>> vector([True, False])
    Ntuples(2, 'bool').element([True, False])

    Scalars become a one-element vector:

    >>> vector(0.0)
    Rn(1).element([0.0])
    """
    # Sanitize input
    arr = np.array(array, copy=False, ndmin=1)
    impl, impl_in = str(impl).lower(), impl

    # Validate input
    if arr.ndim > 1:
        raise ValueError('array has {} dimensions, expected 1'
                         ''.format(arr.ndim))

    # Set dtype
    if dtype is not None:
        space_dtype = dtype
    elif arr.dtype == np.dtype('float64') and impl == 'cuda':
        # Special case, default float is float32 on cuda
        space_dtype = 'float32'
    else:
        space_dtype = arr.dtype

    # Select implementation
    if impl == 'numpy':
        if is_real_floating_dtype(space_dtype):
            space_type = Rn
        elif is_complex_floating_dtype(space_dtype):
            space_type = Cn
        elif is_scalar_dtype(space_dtype):
            space_type = Fn
        else:
            space_type = Ntuples

    elif impl == 'cuda':
        if not CUDA_AVAILABLE:
            raise ValueError("'cuda' implementation not available")

        if is_real_floating_dtype(space_dtype):
            space_type = CudaRn
        elif is_complex_floating_dtype(space_dtype):
            raise NotImplementedError('complex spaces in CUDA not supported')
        elif is_scalar_dtype(space_dtype):
            space_type = CudaFn
        else:
            space_type = CudaNtuples

    else:
        raise ValueError("`impl` '{}' not understood".format(impl_in))

    return space_type(len(arr), dtype=space_dtype).element(arr)