Esempio n. 1
0
def component_results(es, results, path, model):
    """ Writes results aggregated by component type
    """
    for k, v in es._typemap.items():

        if type(k) == str:
            _seq_by_type = [
                views.node(results, n, multiindex=True)['sequences']
                for n in es.nodes
                if isinstance(n, v) and not isinstance(n, Bus)
            ]
            if _seq_by_type:
                seq_by_type = pd.concat(_seq_by_type, axis=1)
                type_path = os.path.join(path, 'sequences')
                if not os.path.exists(type_path):
                    os.makedirs(type_path)
                seq_by_type.to_csv(os.path.join(type_path,
                                                str(k) + '.csv'),
                                   sep=";")

            _sca_by_type = [
                views.node(results, n, multiindex=True).get('scalars')
                for n in es.nodes
                if isinstance(n, v) and not isinstance(n, Bus)
            ]

            if [x for x in _sca_by_type if x is not None]:
                sca_by_type = pd.concat(_sca_by_type)
                type_path = os.path.join(path, 'scalars')
                if not os.path.exists(type_path):
                    os.makedirs(type_path)
                sca_by_type.to_csv(os.path.join(type_path,
                                                str(k) + '.csv'),
                                   header=True,
                                   sep=";")
Esempio n. 2
0
def check_results_dataframe(energysystem_data):
    """Explore optimized supply, storage and investments. 
    Also calculates renewable share in the system.

    :dict: results
    :dataframe: elect_bus
    """
    # Restore dumped result for - later Processing *
    # energysystem = solph.EnergySystem()
    # energysystem.restore(
    #     dpath='../data/03_urban_energy_requirements/', filename='om_data')
    results = energysystem_data.results['main']
    electricity_bus = views.node(results, 'electricity')
    custom_storage = views.node(results, 'storage')
    elect_bus = electricity_bus['sequences']
    print('** electricity sequence head(5) **')
    print(elect_bus.head(5))
    storage_ = custom_storage['sequences']
    print('** storage sequence head(5) **')
    print(storage_.head(5))
    my_results = electricity_bus['scalars']

    # installed capacity of storage in GWh
    my_results['storage_invest_GWh'] = (
        custom_storage['scalars'][(('storage', 'None'), 'invest')] / 1e6)

    # installed capacity of wind power plant in MW
    my_results['wind_invest_MW'] = (
        electricity_bus['scalars'][(('wind', 'electricity'), 'invest')] / 1e3)
    # resulting renewable energy share
    my_results['renewable_share'] = \
        (1 - electricity_bus['sequences'][(('pp_gas', 'electricity'), 'flow')].sum() /
         electricity_bus['sequences'][(('electricity', 'demand'), 'flow')].sum())
    logging.info("check optimisation results.")
    pp.pprint(my_results)
Esempio n. 3
0
def bus_results(es, results, select="sequences", concat=False):
    """ Aggregated for every bus of the energy system
    """
    br = {}

    buses = [b for b in es.nodes if isinstance(b, Bus)]

    for b in buses:
        if select == "sequences":
            bus_sequences = pd.concat(
                [
                    views.node(results, b, multiindex=True).get(
                        "sequences", pd.DataFrame())
                ],
                axis=1,
            )
            br[str(b)] = bus_sequences
        if select == "scalars":
            br[str(b)] = views.node(results, b, multiindex=True).get("scalars")

    if concat:
        if select == "sequences":
            axis = 1
        else:
            axis = 0
        br = pd.concat([b for b in br.values()], axis=axis)

    return br
Esempio n. 4
0
    def plot_results(results):
        # plot electrical bus

        result_data = views.node(results, 'bel')['sequences']
        result_data[(('bel', 'demand_el'), 'flow')] *= -1
        columns = [
            c for c in result_data.columns
            if not any(s in str(c) for s in ['status', 'costs'])
        ]
        result_data = result_data[columns]
        ax = result_data.plot(kind='line',
                              drawstyle='steps-post',
                              grid=True,
                              rot=0)
        ax.set_xlabel('Hour')
        ax.set_ylabel('P (MW)')
        plt.show()

        result_data = views.node(results, 'bth')['sequences']
        result_data[(('bth', 'demand_th'), 'flow')] *= -1
        columns = [
            c for c in result_data.columns
            if not any(s in str(c) for s in ['status', 'costs'])
        ]
        result_data = result_data[columns]
        ax = result_data.plot(kind='line',
                              drawstyle='steps-post',
                              grid=True,
                              rot=0)
        ax.set_xlabel('Hour')
        ax.set_ylabel('Q (MW)')
        plt.show()

        return result_data
Esempio n. 5
0
    def test_parameter_with_node_view(self):
        param_results = processing.parameter_as_dict(self.es,
                                                     exclude_none=True)
        bel1 = views.node(param_results, 'b_el1')
        eq_(bel1['scalars'][(('b_el1', 'storage'), 'variable_costs')], 3)

        bel1_m = views.node(param_results, 'b_el1', multiindex=True)
        eq_(bel1_m['scalars'].loc[('b_el1', 'storage', 'variable_costs')], 3)
Esempio n. 6
0
    def update_states(self, results, sim_params):
        # Update the states of the electrolyzer

        # If the states dict of this object wasn't created yet, it's done here.
        if not 'temperature' in self.states:
            self.states['temperature'] = [None] * sim_params.n_intervals

        # Get the flows of the electrolyzer for this time step.
        data_electrolyzer = views.node(results, self.name)
        df_electrolyzer = data_electrolyzer['sequences']

        # Get the hydrogen produced this time step [kg].
        for i_result in df_electrolyzer:
            if i_result[0][0] == self.name and i_result[1] == 'flow':
                # Case: This is the flow from the electrolyzer to the hydrogen bus, therefor the produced H2 [kg].
                this_h2_produced = df_electrolyzer[i_result][0]

        # With the hydrogen produced this step the according temperature can be interpolated from the supporting points.
        suporting_points_temp = self.supporting_points['temperature']
        suporting_points_h2 = self.supporting_points['h2_produced']
        this_temp = np.interp(this_h2_produced, suporting_points_h2, suporting_points_temp)

        # Update the current temperature and the temperature state for this time step.
        self.temperature = this_temp
        self.states['temperature'][sim_params.i_interval] = this_temp
Esempio n. 7
0
 def test_output_by_type_view(self):
     results = processing.results(self.om)
     transformer_output = views.node_output_by_type(results,
                                                    node_type=Transformer)
     compare = views.node(results, 'diesel',
                          multiindex=True)['sequences'][('diesel', 'b_el1',
                                                         'flow')]
     eq_(int(transformer_output.sum()), int(compare.sum()))
Esempio n. 8
0
 def test_net_storage_flow(self):
     results = processing.results(self.om)
     storage_flow = views.net_storage_flow(results,
                                           node_type=GenericStorage)
     compare = views.node(results, 'storage', multiindex=True)['sequences']
     eq_(((compare[('storage', 'b_el2', 'flow')] -
           compare[('b_el1', 'storage',
                    'flow')]).to_frame() == storage_flow.values).all()[0],
         True)
Esempio n. 9
0
def bus_results(es, results, path, model):
    """ Writes results aggregated for every bus of the energy system
    """
    buses = [b for b in es.nodes if isinstance(b, Bus)]
    for b in buses:
        bus_sequences = pd.concat(
            [views.node(results, b, multiindex=True)['sequences']], axis=1)
        type_path = os.path.join(path, 'sequences')
        if not os.path.exists(type_path):
            os.makedirs(type_path)
        bus_sequences.to_csv(os.path.join(type_path, str(b) + '.csv'), sep=";")
Esempio n. 10
0
def sizing_results(results, m, sizing_list):
    res = {}

    for i in range(len(sizing_list)):
        node = m.es.groups[sizing_list[i]]
        node_data = views.node(results, node)
        for nodes, flow_name in node_data['sequences']:
            if 'scalars' in node_data and node_data['scalars'].get(
                (nodes, 'invest')) is not None:
                res[nodes] = node_data['scalars'].get((nodes, 'invest'))

        df = pd.DataFrame.from_dict(res, orient='index')
    return df
Esempio n. 11
0
def results_postprocessing(n, component_list, time_horizon=None):
    generator_list = []

    for i in range(len(component_list)):
        d1 = views.node(n, component_list[i])['sequences']

        if time_horizon is not None:
            generator_list.append(d1.iloc[:time_horizon])
        else:
            generator_list.append(d1)

    res = pd.concat(generator_list, axis=1)

    return res
Esempio n. 12
0
def component_results(es, results, select="sequences"):
    """ Aggregated by component type
    """

    c = {}

    if not hasattr(es, "typemap"):
        setattr(es, "typemap", facades.TYPEMAP)

    for k, v in es.typemap.items():
        if type(k) == str:
            if select == "sequences":
                _seq_by_type = [
                    views.node(results, n, multiindex=True).get("sequences")
                    for n in es.nodes
                    if isinstance(n, v) and not isinstance(n, Bus)
                ]
                # check if dataframes / series have been returned
                if any([
                        isinstance(i, (pd.DataFrame, pd.Series))
                        for i in _seq_by_type
                ]):
                    seq_by_type = pd.concat(_seq_by_type, axis=1)
                    c[str(k)] = seq_by_type

            if select == "scalars":
                _sca_by_type = [
                    views.node(results, n, multiindex=True).get("scalars")
                    for n in es.nodes
                    if isinstance(n, v) and not isinstance(n, Bus)
                ]

                if [x for x in _sca_by_type if x is not None]:
                    _sca_by_type = pd.concat(_sca_by_type)
                    c[str(k)] = _sca_by_type

    return c
Esempio n. 13
0
def plot(energysystem_data, year):
    """This code is copied from the oemof plotting examples.

    It allows for the customization of the plot using oemof/oev plotting object.
    See link here: `oemof-plotting_examples`_
    https://github.com/oemof/oemof-examples/tree/master/oemof_examples/oemof.solph/v0.3.x/plotting_examples
    """
    results = energysystem_data.results['main']
    cdict = {
        (('electricity', 'demand'), 'flow'): '#ce4aff',
        (('electricity', 'excess_bel'), 'flow'): '#555555',
        (('electricity', 'storage'), 'flow'): '#42c77a',
        (('pp_gas', 'electricity'), 'flow'): '#636f6b',
        (('pv', 'electricity'), 'flow'): '#ffde32',
        (('storage', 'electricity'), 'flow'): '#42c77a',
        (('wind', 'electricity'), 'flow'): '#5b5bae'
    }
    inorder = [(('pv', 'electricity'), 'flow'),
               (('wind', 'electricity'), 'flow'),
               (('storage', 'electricity'), 'flow'),
               (('pp_gas', 'electricity'), 'flow')]

    fig = plt.figure(figsize=(14, 8))
    electricity_seq = views.node(results, 'electricity')['sequences']
    plot_slice = oev.plot.slice_df(
        electricity_seq[str(year) + '-03-01':str(year) + '-03-10'],
        date_from=pd.datetime(year, 1, 1))
    my_plot = oev.plot.io_plot('electricity',
                               plot_slice,
                               cdict=cdict,
                               inorder=inorder,
                               ax=fig.add_subplot(1, 1, 1),
                               smooth=True)
    ax = shape_legend('electricity', **my_plot)
    ax = oev.plot.set_datetime_ticks(ax,
                                     plot_slice.index,
                                     tick_distance=48,
                                     date_format='%d-%m-%H',
                                     offset=12)

    ax.set_ylabel('Power in MW')
    ax.set_xlabel(str(year))
    ax.set_title("Electricity bus")
    plt.savefig('../data/04_Visualisation/om.png', dpi=300)
    logging.info("Generate plot of optimized variables.")
    plt.show()
Esempio n. 14
0
def test_results_with_old_dump():
    """
    Test again with a stored dump created with v0.2.1dev (896a6d50)
    """
    energysystem = solph.EnergySystem()
    error = None
    try:
        energysystem.restore(dpath=os.path.dirname(os.path.realpath(__file__)),
                             filename='es_dump_test_2_1dev.oemof')
    except UnpicklingError as e:
        error = e

    # Just making sure, the right error is raised. If the error message
    # changes, the test has to be changed accordingly.
    eq_(len(str(error)), 431)

    # **************************************************
    # Test again with a stored dump created with v0.2.3dev (896a6d50)
    energysystem = solph.EnergySystem()
    energysystem.restore(dpath=os.path.dirname(os.path.realpath(__file__)),
                         filename='es_dump_test_2_3dev.oemof')
    # Note: This internal attribute is new in v.0.3.0, so the dump doesn't
    #       contain it for obvious reasons. Setting it manually to the correct
    #       value prevents the test from erroring.
    energysystem._first_ungrouped_node_index_ = len(energysystem.nodes)
    results = energysystem.results['main']

    electricity_bus = views.node(results, 'electricity')
    my_results = electricity_bus['sequences'].sum(axis=0).to_dict()
    storage = energysystem.groups['storage']
    my_results['storage_invest'] = results[(storage,
                                            None)]['scalars']['invest']

    stor_invest_dict = {
        'storage_invest': 2040000,
        (('electricity', 'demand'), 'flow'): 105867395,
        (('electricity', 'excess_bel'), 'flow'): 211771291,
        (('electricity', 'storage'), 'flow'): 2350931,
        (('pp_gas', 'electricity'), 'flow'): 5148414,
        (('pv', 'electricity'), 'flow'): 7488607,
        (('storage', 'electricity'), 'flow'): 1880745,
        (('wind', 'electricity'), 'flow'): 305471851
    }

    for key in stor_invest_dict.keys():
        eq_(int(round(my_results[key])), int(round(stor_invest_dict[key])))
Esempio n. 15
0
def test_results_with_actual_dump():
    energysystem = solph.EnergySystem()
    energysystem.restore()

    # Results
    results = energysystem.results['main']
    meta = energysystem.results['meta']

    electricity_bus = views.node(results, 'electricity')
    my_results = electricity_bus['sequences'].sum(axis=0).to_dict()
    storage = energysystem.groups['storage']
    my_results['storage_invest'] = results[(storage,
                                            None)]['scalars']['invest']

    stor_invest_dict = {
        'storage_invest': 2040000,
        (('electricity', 'None'), 'duals'): 10800000000321,
        (('electricity', 'demand'), 'flow'): 105867395,
        (('electricity', 'excess_bel'), 'flow'): 211771291,
        (('electricity', 'storage'), 'flow'): 2350931,
        (('pp_gas', 'electricity'), 'flow'): 5148414,
        (('pv', 'electricity'), 'flow'): 7488607,
        (('storage', 'electricity'), 'flow'): 1880745,
        (('wind', 'electricity'), 'flow'): 305471851
    }

    for key in stor_invest_dict.keys():
        eq_(int(round(my_results[key])), int(round(stor_invest_dict[key])))

    # Solver results
    eq_(str(meta['solver']['Termination condition']), 'optimal')
    eq_(meta['solver']['Error rc'], 0)
    eq_(str(meta['solver']['Status']), 'ok')

    # Problem results
    eq_(meta['problem']['Lower bound'], 4.231675777e+17)
    eq_(meta['problem']['Upper bound'], 4.231675777e+17)
    eq_(meta['problem']['Number of variables'], 2805)
    eq_(meta['problem']['Number of constraints'], 2806)
    eq_(meta['problem']['Number of nonzeros'], 1197)
    eq_(meta['problem']['Number of objectives'], 1)
    eq_(str(meta['problem']['Sense']), 'minimize')

    # Objective function
    eq_(round(meta['objective']), 423167578261115584)
Esempio n. 16
0
    def get_node_results_df(self, node_label):
        """Return DataFrame with optimization results (timeseries) for single
        node.

        Parameters
        ----------
        node_label : :obj:`str`
            Label of node the data should be looked up for

        Returns
        -------
        :pandas:`pandas.DataFrame`
            Node results (timeseries)
        """
        if node_label in [str(n) for n in self.simulation.esys.nodes]:
            return views.node(self.results_raw, node_label)
        else:
            raise ValueError(
                f'Node "{node_label}" not found in energy system!')
Esempio n. 17
0
    def update_states(self, results, sim_params):
        data_storage = views.node(results, self.name)
        df_storage = data_storage['sequences']

        # Loop Through the data frame values and update states accordingly.
        for i_result in df_storage:
            if i_result[1] == 'capacity':
                if 'storage_level' not in self.states:
                    # Initialize an array that tracks the state stored mass.
                    self.states['storage_level'] = [None
                                                    ] * sim_params.n_intervals
                    self.states['pressure'] = [None] * sim_params.n_intervals
                # Check if this result is the storage capacity.
                self.storage_level = df_storage[i_result][0]
                self.states['storage_level'][
                    sim_params.i_interval] = self.storage_level
                # Get the storage pressure [bar].
                self.pressure = self.get_pressure(self.storage_level)
                self.states['pressure'][sim_params.i_interval] = self.pressure
Esempio n. 18
0
def get_lcoe_for_DG(results, node):

    def get_variable_costs(flow_comp, current_flow):
        variable_costs_factor = flow_comp.variable_costs.data
        if variable_costs_factor[0] is not None:
            variable_costs_factors = pandas.Series(variable_costs_factor)
            variable_costs_factors.reset_index(drop=True)
            return current_flow.mul(variable_costs_factors).sum()
        else:
            return 0.0

    node_data = views.node( results, node )
    output=0
    resource=0
    invest=0
    if isinstance(node, str):
        raise TypeError('Node has to be a real node, not str')

    for nodes, flow_name in node_data['sequences']:
        flow = node_data['sequences'][(nodes, flow_name)]
        flow.reset_index( drop=True, inplace=True )

        if nodes[0]==node:
            flow_component = node.outputs[nodes[1]]

            if flow_name=='status':
                runtime_hours = flow.sum()
                om = flow_component.nonconvex.om_costs*runtime_hours*flow_component.nominal_value

            elif flow_name=='flow':
                output+=flow.sum()
                invest+=flow_component.fixed_costs*flow_component.nominal_value

        else:
            flow_component = node.inputs[nodes[0]]
            print(flow_component)
            resource += get_variable_costs( flow_component, flow )

    return map( lambda x: x, [invest, om, resource,output] )
Esempio n. 19
0
def sizing_results(results, m, sizing_list):
    """
     The function returns the sizes for the components that are attributed with Investment-object.

     :param results:        results table        pd.DataFrame
     :param  m:             operational model   om.solph.model
     :param  sizing list:   labels of sizing components ['PV', 'storage'] list of str
     :return: results       sizing results table pd.DataFrame
     """

    res = {}

    for i in range( len( sizing_list ) ):
        node = m.es.groups[sizing_list[i]]
        node_data = views.node( results, node )
        for nodes, flow_name in node_data['sequences']:
            if 'scalars' in node_data and node_data['scalars'].get( (nodes, 'invest') ) is not None:
                res[nodes] = node_data['scalars'].get( (nodes, 'invest') )

    result = pd.DataFrame.from_dict( res, orient='index' )

    return result
Esempio n. 20
0
    def update_flows(self, results, sim_params, comp_name=None):
        # Check if the component has an attribute 'flows', if not, create it as an empty dict.
        if not hasattr(self, 'flows'):
            self.flows = {}

        # While components can generate more than one oemof model, they sometimes need to give a custom name.
        if comp_name is None:
            comp_name = self.name

        this_comp_node = views.node(results, comp_name)
        this_df = this_comp_node['sequences']
        for i_result in this_df:
            # Check if this result is a flow
            if i_result[1] == 'flow':
                this_flow_name = 'flow: ' + i_result[0][0] + '-->' + i_result[
                    0][1]
                # Check if there already is an array to store the flow information, if not, create one.
                if this_flow_name not in self.flows:
                    self.flows[this_flow_name] = [None
                                                  ] * sim_params.n_intervals
                # Saving this flow value to the results file
                self.flows[this_flow_name][
                    sim_params.i_interval] = this_df[i_result][0]
Esempio n. 21
0
# initialise the operational model
om = solph.Model(energysystem)

# if tee_switch is true solver messages will be displayed
logging.info('Solve the optimization problem')
om.solve(solver='cbc', solve_kwargs={'tee': True})

##########################################################################
# Check and plot the results
##########################################################################

# check if the new result object is working for custom components
results = processing.results(om)

custom_storage = views.node(results, 'storage')
electricity_bus = views.node(results, 'electricity')

meta_results = processing.meta_results(om)
pp.pprint(meta_results)

my_results = electricity_bus['scalars']

# installed capacity of storage in GWh
my_results['storage_invest_GWh'] = (
    results[(storage, None)]['scalars']['invest'] / 1e6)

# resulting renewable energy share
my_results['res_share'] = (1 - results[(pp_gas, bel)]['sequences'].sum() /
                           results[(bel, demand)]['sequences'].sum())
Esempio n. 22
0
 def test_duals(self):
     results = processing.results(self.om)
     bel = views.node(results, 'b_el1', multiindex=True)
     eq_(int(bel['sequences']['b_el1', 'None', 'duals'].sum()), 48)
Esempio n. 23
0
 def test_multiindex_sequences(self):
     results = processing.results(self.om)
     bel1 = views.node(results, 'b_el1', multiindex=True)
     eq_(int(bel1['sequences'][('diesel', 'b_el1', 'flow')].sum()), 2875)
Esempio n. 24
0
##########################################################################

# create an optimization problem and solve it
om = solph.Model(es)

# solve model
om.solve(solver='cbc', solve_kwargs={'tee': True})

##########################################################################
# Check and plot the results
##########################################################################

results = processing.results(om)


invest = views.node(results, 'b_heat')['scalars']\
        [(('thermal_collector', 'b_heat'), 'invest')]

print("Invested in {} solar thermal power.".format(invest))

# plot data
if plt is not None:
    # plot electrical bus
    data = views.node(results, 'b_heat')['sequences']
    data[[(('b_heat', 'demand_heat'), 'flow')]]
    exclude = ['excess_heat', 'status']
    columns = [
        c for c in data.columns
        if not any(s in c[0] or s in c[1] for s in exclude)
    ]
    data = data[columns]
    ax = data.plot(kind='line', drawstyle='steps-post', grid=True, rot=0)
Esempio n. 25
0
def test_dispatch_example(solver='cbc', periods=24 * 5):
    """Create an energy system and optimize the dispatch at least costs."""
    Node.registry = None

    filename = os.path.join(os.path.dirname(__file__), 'input_data.csv')
    data = pd.read_csv(filename, sep=",")

    # ######################### create energysystem components ################

    # resource buses
    bcoal = Bus(label='coal', balanced=False)
    bgas = Bus(label='gas', balanced=False)
    boil = Bus(label='oil', balanced=False)
    blig = Bus(label='lignite', balanced=False)

    # electricity and heat
    bel = Bus(label='b_el')
    bth = Bus(label='b_th')

    # an excess and a shortage variable can help to avoid infeasible problems
    excess_el = Sink(label='excess_el', inputs={bel: Flow()})
    # shortage_el = Source(label='shortage_el',
    #                      outputs={bel: Flow(variable_costs=200)})

    # sources
    ep_wind = economics.annuity(capex=1000, n=20, wacc=0.05)
    wind = Source(label='wind',
                  outputs={
                      bel:
                      Flow(actual_value=data['wind'],
                           fixed=True,
                           investment=Investment(ep_costs=ep_wind,
                                                 existing=100))
                  })

    ep_pv = economics.annuity(capex=1500, n=20, wacc=0.05)
    pv = Source(label='pv',
                outputs={
                    bel:
                    Flow(actual_value=data['pv'],
                         fixed=True,
                         investment=Investment(ep_costs=ep_pv, existing=80))
                })

    # demands (electricity/heat)
    demand_el = Sink(label='demand_elec',
                     inputs={
                         bel:
                         Flow(nominal_value=85,
                              actual_value=data['demand_el'],
                              fixed=True)
                     })

    demand_th = Sink(label='demand_therm',
                     inputs={
                         bth:
                         Flow(nominal_value=40,
                              actual_value=data['demand_th'],
                              fixed=True)
                     })

    # power plants
    pp_coal = Transformer(
        label='pp_coal',
        inputs={bcoal: Flow()},
        outputs={bel: Flow(nominal_value=20.2, variable_costs=25)},
        conversion_factors={bel: 0.39})

    pp_lig = Transformer(
        label='pp_lig',
        inputs={blig: Flow()},
        outputs={bel: Flow(nominal_value=11.8, variable_costs=19)},
        conversion_factors={bel: 0.41})

    pp_gas = Transformer(
        label='pp_gas',
        inputs={bgas: Flow()},
        outputs={bel: Flow(nominal_value=41, variable_costs=40)},
        conversion_factors={bel: 0.50})

    pp_oil = Transformer(
        label='pp_oil',
        inputs={boil: Flow()},
        outputs={bel: Flow(nominal_value=5, variable_costs=50)},
        conversion_factors={bel: 0.28})

    # combined heat and power plant (chp)
    pp_chp = Transformer(label='pp_chp',
                         inputs={bgas: Flow()},
                         outputs={
                             bel: Flow(nominal_value=30, variable_costs=42),
                             bth: Flow(nominal_value=40)
                         },
                         conversion_factors={
                             bel: 0.3,
                             bth: 0.4
                         })

    # heatpump with a coefficient of performance (COP) of 3
    b_heat_source = Bus(label='b_heat_source')

    heat_source = Source(label='heat_source', outputs={b_heat_source: Flow()})

    cop = 3
    heat_pump = Transformer(label='el_heat_pump',
                            inputs={
                                bel: Flow(),
                                b_heat_source: Flow()
                            },
                            outputs={bth: Flow(nominal_value=10)},
                            conversion_factors={
                                bel: 1 / 3,
                                b_heat_source: (cop - 1) / cop
                            })

    datetimeindex = pd.date_range('1/1/2012', periods=periods, freq='H')
    energysystem = EnergySystem(timeindex=datetimeindex)
    energysystem.add(bcoal, bgas, boil, bel, bth, blig, excess_el, wind, pv,
                     demand_el, demand_th, pp_coal, pp_lig, pp_oil, pp_gas,
                     pp_chp, b_heat_source, heat_source, heat_pump)

    # ################################ optimization ###########################

    # create optimization model based on energy_system
    optimization_model = Model(energysystem=energysystem)

    # solve problem
    optimization_model.solve(solver=solver)

    # write back results from optimization object to energysystem
    optimization_model.results()

    # ################################ results ################################

    # generic result object
    results = processing.results(om=optimization_model)

    # subset of results that includes all flows into and from electrical bus
    # sequences are stored within a pandas.DataFrames and scalars e.g.
    # investment values within a pandas.Series object.
    # in this case the entry data['scalars'] does not exist since no investment
    # variables are used
    data = views.node(results, 'b_el')

    # generate results to be evaluated in tests
    comp_results = data['sequences'].sum(axis=0).to_dict()
    comp_results['pv_capacity'] = results[(pv, bel)]['scalars'].invest
    comp_results['wind_capacity'] = results[(wind, bel)]['scalars'].invest

    test_results = {
        (('wind', 'b_el'), 'flow'): 9239,
        (('pv', 'b_el'), 'flow'): 1147,
        (('b_el', 'demand_elec'), 'flow'): 7440,
        (('b_el', 'excess_el'), 'flow'): 6261,
        (('pp_chp', 'b_el'), 'flow'): 477,
        (('pp_lig', 'b_el'), 'flow'): 850,
        (('pp_gas', 'b_el'), 'flow'): 934,
        (('pp_coal', 'b_el'), 'flow'): 1256,
        (('pp_oil', 'b_el'), 'flow'): 0,
        (('b_el', 'el_heat_pump'), 'flow'): 202,
        'pv_capacity': 44,
        'wind_capacity': 246,
    }

    for key in test_results.keys():
        eq_(int(round(comp_results[key])), int(round(test_results[key])))
Esempio n. 26
0
    Beta=[0.19 for p in range(0, periods)],
    back_pressure=False)

# create an optimization problem and solve it
om = solph.Model(es)

# debugging
# om.write('generic_chp.lp', io_options={'symbolic_solver_labels': True})

# solve model
om.solve(solver='cbc', solve_kwargs={'tee': True})

# create result object
results = processing.results(om)

# plot data
if plt is not None:
    # plot PQ diagram from component results
    data = results[(ccet, None)]['sequences']
    ax = data.plot(kind='scatter', x='Q', y='P', grid=True)
    ax.set_xlabel('Q (MW)')
    ax.set_ylabel('P (MW)')
    plt.show()

    # plot thermal bus
    data = views.node(results, 'bth')['sequences']
    ax = data.plot(kind='line', drawstyle='steps-post', grid=True)
    ax.set_xlabel('Time (h)')
    ax.set_ylabel('Q (MW)')
    plt.show()
Esempio n. 27
0
def test_regression_investment_storage(solver='cbc'):
    """The problem was infeasible if the existing capacity and the maximum was
    defined in the Flow.
    """

    logging.info('Initialize the energy system')
    date_time_index = pd.date_range('1/1/2012', periods=4, freq='H')

    energysystem = solph.EnergySystem(timeindex=date_time_index)
    Node.registry = energysystem

    # Buses
    bgas = solph.Bus(label=('natural', 'gas'))
    bel = solph.Bus(label='electricity')

    solph.Sink(label='demand',
               inputs={
                   bel:
                   solph.Flow(actual_value=[209643, 207497, 200108, 191892],
                              fixed=True,
                              nominal_value=1)
               })

    # Sources
    solph.Source(label='rgas', outputs={bgas: solph.Flow()})

    # Transformer
    solph.Transformer(label='pp_gas',
                      inputs={bgas: solph.Flow()},
                      outputs={bel: solph.Flow(nominal_value=300000)},
                      conversion_factors={bel: 0.58})

    # Investment storage
    solph.components.GenericStorage(
        label='storage',
        inputs={
            bel:
            solph.Flow(
                investment=solph.Investment(existing=625046 / 6, maximum=0))
        },
        outputs={
            bel:
            solph.Flow(
                investment=solph.Investment(existing=104174.33, maximum=1))
        },
        loss_rate=0.00,
        initial_storage_level=0,
        invest_relation_input_capacity=1 / 6,
        invest_relation_output_capacity=1 / 6,
        inflow_conversion_factor=1,
        outflow_conversion_factor=0.8,
        investment=solph.Investment(ep_costs=50, existing=625046),
    )

    # Solve model
    om = solph.Model(energysystem)
    om.solve(solver=solver)

    # Results
    results = processing.results(om)

    electricity_bus = views.node(results, 'electricity')
    my_results = electricity_bus['sequences'].sum(axis=0).to_dict()
    storage = energysystem.groups['storage']
    my_results['storage_invest'] = results[(storage,
                                            None)]['scalars']['invest']
def rolling_horizon(
    PV,
    Storage,
    SH=8760,
    PH=120,
    CH=120,
):
    iter = 0
    start = 0
    stop = PH
    mode = 'simulation'
    initial_capacity = 0.5

    path = 'results'
    filepath = '/diesel_pv_batt_PH120_P1_B1'

    components_list = [
        'demand', 'PV', 'storage', 'pp_oil_1', 'pp_oil_2', 'pp_oil_3', 'excess'
    ]

    results_list = []
    economic_list = []

    cost = main.get_cost_dict(PH)
    file = 'data/timeseries.csv'

    timeseries = pd.read_csv(file, sep=';')
    timeseries.set_index(pd.DatetimeIndex(timeseries['timestamp'], freq='H'),
                         inplace=True)
    timeseries.drop(labels='timestamp', axis=1, inplace=True)
    timeseries[timeseries['PV'] > 1] = 1

    itermax = int((SH / CH) - 1)
    objective = 0.0

    while iter <= itermax:

        if iter == 0:
            status = True
        else:
            status = False

        feedin_RH = timeseries.iloc[start:stop]

        print(str(iter + 1) + '/' + str(itermax + 1))

        m = main.create_optimization_model(mode,
                                           feedin_RH,
                                           initial_capacity,
                                           cost,
                                           PV,
                                           Storage,
                                           iterstatus=status)[0]

        results_el = main.solve_and_create_results(m)
        objective += processing.meta_results(m)['objective']

        initial_capacity = views.node(
            results_el,
            'storage')['sequences'][(('storage', 'None'), 'capacity')][CH - 1]

        start += CH
        stop += CH

        iter += 1

    return objective
    invest_relation_output_capacity=1 / 6,
    inflow_conversion_factor=0.95,
    outflow_conversion_factor=0.95,
    investment=Investment(ep_costs=costs['storage']['epc']))

#################################################################
# Create model and solve
#################################################################

m = Model(energysystem)

# om.write(filename, io_options={'symbolic_solver_labels': True})

m.solve(solver='cbc', solve_kwargs={'tee': True})

results = processing.results(m)

views.node(results, 'storage')

views.node(results, 'micro_grid')['sequences'].plot(drawstyle='steps')

plt.show()

graph = create_graph(energysystem, m)
draw_graph(graph,
           plot=True,
           layout='neato',
           node_size=3000,
           arrows=False,
           node_color={'micro_grid': '#7EC0EE'})
Esempio n. 30
0
                                b_1: Flow(nominal_value=150,
                                          actual_value=[1, 0],
                                          fixed=True)}))

m = Model(energysystem=es)

# m.write('transshipment.lp', io_options={'symbolic_solver_labels': True})

m.solve(solver='cbc',
        solve_kwargs={'tee': True, 'keepfiles': False})

m.results()

graph = create_nx_graph(es, m)

draw_graph(graph, plot=True, layout='neato', node_size=3000,
           node_color={
                  'b_0': '#cd3333',
                  'b_1': '#7EC0EE',
                  'b_2': '#eeac7e'})

results = processing.results(m)

print(views.node(results, 'gen_0'))
print(views.node(results, 'gen_1'))

views.node(results, 'line_0')['sequences'].plot(kind='bar')

# look at constraints of Links in the pyomo model LinkBlock
m.LinkBlock.pprint()