def validate(net, path, image_size, data_loader, batch_size=100, device='cuda:0'):
    if 'cuda' in device:
        net = torch.nn.DataParallel(net).to(device)
    else:
        net = net.to(device)

    data_loader.dataset.transform = transforms.Compose([
        transforms.Resize(int(math.ceil(image_size / 0.875))),
        transforms.CenterCrop(image_size),
        transforms.ToTensor(),
        transforms.Normalize(
            mean=[0.485, 0.456, 0.406],
            std=[0.229, 0.224, 0.225]
        ),
    ])

    cudnn.benchmark = True
    criterion = nn.CrossEntropyLoss().to(device)

    net.eval()
    net = net.to(device)
    losses = AverageMeter()
    top1 = AverageMeter()
    top5 = AverageMeter()

    with torch.no_grad():
        with tqdm(total=len(data_loader), desc='Validate') as t:
            for i, (images, labels) in enumerate(data_loader):
                images, labels = images.to(device), labels.to(device)
                # compute output
                output = net(images)

                # # ? pc: handle abnormal labels
                # labels = labels-1
                # labels[labels<0]=0
                # print('-'*20)
                # print('MIN: %d | MAX: %d'%(min(labels), max(labels)))
                # loss = criterion(output, labels)

                # measure accuracy and record loss
                acc1, acc5 = accuracy(output, labels, topk=(1, 5))

                # losses.update(loss.item(), images.size(0))
                top1.update(acc1[0].item(), images.size(0))
                top5.update(acc5[0].item(), images.size(0))
                t.set_postfix({
                    'loss': losses.avg,
                    'top1': top1.avg,
                    'top5': top5.avg,
                    'img_size': images.size(2),
                })
                t.update(1)

    
    print('Results: loss=%.5f,\t top1=%.1f,\t top5=%.1f' % (losses.avg, top1.avg, top5.avg))
    return top1.avg
Esempio n. 2
0
    def validate(self, epoch=0, is_test=True, run_str='', net=None, data_loader=None, no_logs=False):
        if net is None:
            net = self.net
        if not isinstance(net, nn.DataParallel):
            net = nn.DataParallel(net)

        if data_loader is None:
            if is_test:
                data_loader = self.run_config.test_loader
            else:
                data_loader = self.run_config.valid_loader

        net.eval()

        losses = AverageMeter()
        top1 = AverageMeter()
        top5 = AverageMeter()

        with torch.no_grad():
            with tqdm(total=len(data_loader),
                      desc='Validate Epoch #{} {}'.format(epoch + 1, run_str), disable=no_logs) as t:
                for i, (images, labels) in enumerate(data_loader):
                    images, labels = images.to(self.device), labels.to(self.device)
                    # compute output
                    output = net(images)
                    loss = self.test_criterion(output, labels)
                    # measure accuracy and record loss
                    acc1, acc5 = accuracy(output, labels, topk=(1, 5))

                    losses.update(loss.item(), images.size(0))
                    top1.update(acc1[0].item(), images.size(0))
                    top5.update(acc5[0].item(), images.size(0))
                    t.set_postfix({
                        'loss': losses.avg,
                        'top1': top1.avg,
                        'top5': top5.avg,
                        'img_size': images.size(2),
                    })
                    t.update(1)
        return losses.avg, top1.avg, top5.avg
    def validate(self, epoch=0, is_test=True, run_str='', net=None, data_loader=None, no_logs=False):
        if net is None:
            net = self.net
        if data_loader is None:
            if is_test:
                data_loader = self.run_config.test_loader
            else:
                data_loader = self.run_config.valid_loader

        net.eval()

        losses = DistributedMetric('val_loss')
        top1 = DistributedMetric('val_top1')
        top5 = DistributedMetric('val_top5')

        with torch.no_grad():
            with tqdm(total=len(data_loader),
                      desc='Validate Epoch #{} {}'.format(epoch + 1, run_str),
                      disable=no_logs or not self.is_root) as t:
                for i, (images, labels) in enumerate(data_loader):
                    images, labels = images.cuda(), labels.cuda()
                    # compute output
                    output = net(images)
                    loss = self.test_criterion(output, labels)
                    # measure accuracy and record loss
                    acc1, acc5 = accuracy(output, labels, topk=(1, 5))

                    losses.update(loss, images.size(0))
                    top1.update(acc1[0], images.size(0))
                    top5.update(acc5[0], images.size(0))
                    t.set_postfix({
                        'loss': losses.avg.item(),
                        'top1': top1.avg.item(),
                        'top5': top5.avg.item(),
                        'img_size': images.size(2),
                    })
                    t.update(1)
        return losses.avg.item(), top1.avg.item(), top5.avg.item()
Esempio n. 4
0
criterion = nn.CrossEntropyLoss().cuda()

net.eval()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()

with torch.no_grad():
    with tqdm(total=len(data_loader), desc='Validate') as t:
        for i, (images, labels) in enumerate(data_loader):
            images, labels = images.cuda(), labels.cuda()
            # compute output
            output = net(images)
            loss = criterion(output, labels)
            # measure accuracy and record loss
            acc1, acc5 = accuracy(output, labels, topk=(1, 5))

            losses.update(loss.item(), images.size(0))
            top1.update(acc1[0].item(), images.size(0))
            top5.update(acc5[0].item(), images.size(0))
            t.set_postfix({
                'loss': losses.avg,
                'top1': top1.avg,
                'top5': top5.avg,
                'img_size': images.size(2),
            })
            t.update(1)

print('Test OFA specialized net <%s> with image size %d:' % (args.net, image_size))
print('Results: loss=%.5f,\t top1=%.1f,\t top5=%.1f' % (losses.avg, top1.avg, top5.avg))
def train_one_epoch(run_manager, args, epoch, warmup_epochs=0, warmup_lr=0):
    dynamic_net = run_manager.net

    # switch to train mode
    dynamic_net.train()
    run_manager.run_config.train_loader.sampler.set_epoch(epoch)
    MyRandomResizedCrop.EPOCH = epoch

    nBatch = len(run_manager.run_config.train_loader)

    data_time = AverageMeter()
    losses = DistributedMetric('train_loss')
    top1 = DistributedMetric('train_top1')
    top5 = DistributedMetric('train_top5')

    with tqdm(total=nBatch,
              desc='Train Epoch #{}'.format(epoch + 1),
              disable=not run_manager.is_root) as t:
        end = time.time()
        for i, (images,
                labels) in enumerate(run_manager.run_config.train_loader):
            data_time.update(time.time() - end)
            if epoch < warmup_epochs:
                new_lr = run_manager.run_config.warmup_adjust_learning_rate(
                    run_manager.optimizer,
                    warmup_epochs * nBatch,
                    nBatch,
                    epoch,
                    i,
                    warmup_lr,
                )
            else:
                new_lr = run_manager.run_config.adjust_learning_rate(
                    run_manager.optimizer, epoch - warmup_epochs, i, nBatch)

            images, labels = images.cuda(), labels.cuda()
            target = labels

            # soft target
            if args.kd_ratio > 0:
                args.teacher_model.train()
                with torch.no_grad():
                    soft_logits = args.teacher_model(images).detach()
                    soft_label = F.softmax(soft_logits, dim=1)

            # clear gradients
            run_manager.optimizer.zero_grad()

            loss_of_subnets, acc1_of_subnets, acc5_of_subnets = [], [], []
            # compute output
            subnet_str = ''
            for _ in range(args.dynamic_batch_size):

                # set random seed before sampling
                if args.independent_distributed_sampling:
                    subnet_seed = os.getpid() + time.time()
                else:
                    subnet_seed = int('%d%.3d%.3d' %
                                      (epoch * nBatch + i, _, 0))
                random.seed(subnet_seed)
                subnet_settings = dynamic_net.sample_active_subnet()
                subnet_str += '%d: ' % _ + ','.join([
                    '%s_%s' %
                    (key, '%.1f' %
                     subset_mean(val, 0) if isinstance(val, list) else val)
                    for key, val in subnet_settings.items()
                ]) + ' || '

                output = run_manager.net(images)
                if args.kd_ratio == 0:
                    loss = run_manager.train_criterion(output, labels)
                    loss_type = 'ce'
                else:
                    if args.kd_type == 'ce':
                        kd_loss = cross_entropy_loss_with_soft_target(
                            output, soft_label)
                    else:
                        kd_loss = F.mse_loss(output, soft_logits)
                    loss = args.kd_ratio * kd_loss + run_manager.train_criterion(
                        output, labels)
                    loss = loss * (2 / (args.kd_ratio + 1))
                    loss_type = '%.1fkd-%s & ce' % (args.kd_ratio,
                                                    args.kd_type)

                # measure accuracy and record loss
                acc1, acc5 = accuracy(output, target, topk=(1, 5))
                loss_of_subnets.append(loss)
                acc1_of_subnets.append(acc1[0])
                acc5_of_subnets.append(acc5[0])

                loss.backward()
            run_manager.optimizer.step()

            losses.update(list_mean(loss_of_subnets), images.size(0))
            top1.update(list_mean(acc1_of_subnets), images.size(0))
            top5.update(list_mean(acc5_of_subnets), images.size(0))

            t.set_postfix({
                'loss': losses.avg.item(),
                'top1': top1.avg.item(),
                'top5': top5.avg.item(),
                'R': images.size(2),
                'lr': new_lr,
                'loss_type': loss_type,
                'seed': str(subnet_seed),
                'str': subnet_str,
                'data_time': data_time.avg,
            })
            t.update(1)
            end = time.time()
    return losses.avg.item(), top1.avg.item(), top5.avg.item()
Esempio n. 6
0
 def update_metric(self, metric_dict, output, labels):
     acc1, acc5 = accuracy(output, labels, topk=(1, 5))
     metric_dict['top1'].update(acc1[0].item(), output.size(0))
     metric_dict['top5'].update(acc5[0].item(), output.size(0))
    def train_one_epoch(self, args, epoch, warmup_epochs=5, warmup_lr=0):
        self.net.train()
        self.run_config.train_loader.sampler.set_epoch(epoch)
        MyRandomResizedCrop.EPOCH = epoch

        nBatch = len(self.run_config.train_loader)

        losses = DistributedMetric('train_loss')
        top1 = DistributedMetric('train_top1')
        top5 = DistributedMetric('train_top5')
        data_time = AverageMeter()

        with tqdm(total=nBatch,
                  desc='Train Epoch #{}'.format(epoch + 1),
                  disable=not self.is_root) as t:
            end = time.time()
            for i, (images, labels) in enumerate(self.run_config.train_loader):
                data_time.update(time.time() - end)
                if epoch < warmup_epochs:
                    new_lr = self.run_config.warmup_adjust_learning_rate(
                        self.optimizer, warmup_epochs * nBatch, nBatch, epoch, i, warmup_lr,
                    )
                else:
                    new_lr = self.run_config.adjust_learning_rate(self.optimizer, epoch - warmup_epochs, i, nBatch)

                images, labels = images.cuda(), labels.cuda()
                target = labels

                # soft target
                if args.teacher_model is not None:
                    args.teacher_model.train()
                    with torch.no_grad():
                        soft_logits = args.teacher_model(images).detach()
                        soft_label = F.softmax(soft_logits, dim=1)

                # compute output
                output = self.net(images)

                if args.teacher_model is None:
                    loss = self.train_criterion(output, labels)
                    loss_type = 'ce'
                else:
                    if args.kd_type == 'ce':
                        kd_loss = cross_entropy_loss_with_soft_target(output, soft_label)
                    else:
                        kd_loss = F.mse_loss(output, soft_logits)
                    loss = args.kd_ratio * kd_loss + self.train_criterion(output, labels)
                    loss_type = '%.1fkd-%s & ce' % (args.kd_ratio, args.kd_type)

                # update
                self.optimizer.zero_grad()
                loss.backward()
                self.optimizer.step()

                # measure accuracy and record loss
                acc1, acc5 = accuracy(output, target, topk=(1, 5))
                losses.update(loss, images.size(0))
                top1.update(acc1[0], images.size(0))
                top5.update(acc5[0], images.size(0))

                t.set_postfix({
                    'loss': losses.avg.item(),
                    'top1': top1.avg.item(),
                    'top5': top5.avg.item(),
                    'img_size': images.size(2),
                    'lr': new_lr,
                    'loss_type': loss_type,
                    'data_time': data_time.avg,
                })
                t.update(1)
                end = time.time()

        return losses.avg.item(), top1.avg.item(), top5.avg.item()
Esempio n. 8
0
    def train_one_epoch(self, args, epoch, warmup_epochs=0, warmup_lr=0):
        # switch to train mode
        self.net.train()

        nBatch = len(self.run_config.train_loader)

        losses = AverageMeter()
        top1 = AverageMeter()
        top5 = AverageMeter()
        data_time = AverageMeter()

        with tqdm(total=nBatch,
                  desc='Train Epoch #{}'.format(epoch + 1)) as t:
            end = time.time()
            for i, (images, labels) in enumerate(self.run_config.train_loader):
                data_time.update(time.time() - end)
                if epoch < warmup_epochs:
                    new_lr = self.run_config.warmup_adjust_learning_rate(
                        self.optimizer, warmup_epochs * nBatch, nBatch, epoch, i, warmup_lr,
                    )
                else:
                    new_lr = self.run_config.adjust_learning_rate(self.optimizer, epoch - warmup_epochs, i, nBatch)

                images, labels = images.to(self.device), labels.to(self.device)
                target = labels

                # soft target
                if args.teacher_model is not None:
                    args.teacher_model.train()
                    with torch.no_grad():
                        soft_logits = args.teacher_model(images).detach()
                        soft_label = F.softmax(soft_logits, dim=1)

                # compute output
                if isinstance(self.network, torchvision.models.Inception3):
                    output, aux_outputs = self.net(images)
                    loss1 = self.train_criterion(output, labels)
                    loss2 = self.train_criterion(aux_outputs, labels)
                    loss = loss1 + 0.4 * loss2
                else:
                    output = self.net(images)
                    loss = self.train_criterion(output, labels)

                if args.teacher_model is None:
                    loss_type = 'ce'
                else:
                    if args.kd_type == 'ce':
                        kd_loss = cross_entropy_loss_with_soft_target(output, soft_label)
                    else:
                        kd_loss = F.mse_loss(output, soft_logits)
                    loss = args.kd_ratio * kd_loss + loss
                    loss_type = '%.1fkd-%s & ce' % (args.kd_ratio, args.kd_type)

                # compute gradient and do SGD step
                self.net.zero_grad()  # or self.optimizer.zero_grad()
                if self.mix_prec is not None:
                    from apex import amp
                    with amp.scale_loss(loss, self.optimizer) as scaled_loss:
                        scaled_loss.backward()
                else:
                    loss.backward()
                self.optimizer.step()

                # measure accuracy and record loss
                acc1, acc5 = accuracy(output, target, topk=(1, 5))
                losses.update(loss.item(), images.size(0))
                top1.update(acc1[0].item(), images.size(0))
                top5.update(acc5[0].item(), images.size(0))

                t.set_postfix({
                    'loss': losses.avg,
                    'top1': top1.avg,
                    'top5': top5.avg,
                    'img_size': images.size(2),
                    'lr': new_lr,
                    'loss_type': loss_type,
                    'data_time': data_time.avg,
                })
                t.update(1)
                end = time.time()
        return losses.avg, top1.avg, top5.avg