Esempio n. 1
0
    def _parse_single_example(self, example):
        """Parses a single serialized tf.Example proto.

    Args:
      example: a serialized tf.Example proto string.

    Returns:
      A dictionary of groundtruth with the following fields:
        source_id: a scalar tensor of int64 representing the image source_id.
        height: a scalar tensor of int64 representing the image height.
        width: a scalar tensor of int64 representing the image width.
        boxes: a float tensor of shape [K, 4], representing the groundtruth
          boxes in absolute coordinates with respect to the original image size.
        classes: a int64 tensor of shape [K], representing the class labels of
          each instances.
        is_crowds: a bool tensor of shape [K], indicating whether the instance
          is crowd.
        areas: a float tensor of shape [K], indicating the area of each
          instance.
        masks: a string tensor of shape [K], containing the bytes of the png
          mask of each instance.
    """
        decoder = tf_example_decoder.TfExampleDecoder(
            include_mask=self._include_mask)
        decoded_tensors = decoder.decode(example)

        image = decoded_tensors['image']
        image_size = tf.shape(image)[0:2]
        boxes = box_utils.denormalize_boxes(
            decoded_tensors['groundtruth_boxes'], image_size)
        groundtruths = {
            'source_id':
            tf.string_to_number(decoded_tensors['source_id'],
                                out_type=tf.int64),
            'height':
            decoded_tensors['height'],
            'width':
            decoded_tensors['width'],
            'num_detections':
            tf.shape(decoded_tensors['groundtruth_classes'])[0],
            'boxes':
            boxes,
            'classes':
            decoded_tensors['groundtruth_classes'],
            'is_crowds':
            decoded_tensors['groundtruth_is_crowd'],
            'areas':
            decoded_tensors['groundtruth_area'],
        }
        if self._include_mask:
            groundtruths.update({
                'masks':
                decoded_tensors['groundtruth_instance_masks_png'],
            })
        return groundtruths
Esempio n. 2
0
    def __init__(self,
                 output_size,
                 min_level,
                 max_level,
                 num_scales,
                 aspect_ratios,
                 anchor_size,
                 use_category=True,
                 outer_box_scale=1.0,
                 box_jitter_scale=0.025,
                 num_sampled_masks=8,
                 mask_crop_size=32,
                 mask_min_level=3,
                 mask_max_level=5,
                 upsample_factor=4,
                 match_threshold=0.5,
                 unmatched_threshold=0.5,
                 aug_rand_hflip=False,
                 aug_scale_min=1.0,
                 aug_scale_max=1.0,
                 skip_crowd_during_training=True,
                 max_num_instances=100,
                 use_bfloat16=True,
                 mask_train_class='all',
                 mode=None):
        """Initializes parameters for parsing annotations in the dataset.

    Args:
      output_size: `Tensor` or `list` for [height, width] of output image. The
        output_size should be divided by the largest feature stride 2^max_level.
      min_level: `int` number of minimum level of the output feature pyramid.
      max_level: `int` number of maximum level of the output feature pyramid.
      num_scales: `int` number representing intermediate scales added
        on each level. For instances, num_scales=2 adds one additional
        intermediate anchor scales [2^0, 2^0.5] on each level.
      aspect_ratios: `list` of float numbers representing the aspect raito
        anchors added on each level. The number indicates the ratio of width to
        height. For instances, aspect_ratios=[1.0, 2.0, 0.5] adds three anchors
        on each scale level.
      anchor_size: `float` number representing the scale of size of the base
        anchor to the feature stride 2^level.
      use_category: if `False`, treat all object in all classes in one
        foreground category.
      outer_box_scale: `float` number in a range of [1.0, inf) representing
        the scale from object box to outer box. The mask branch predicts
        instance mask enclosed in outer box.
      box_jitter_scale: `float` number representing the noise magnitude to
        jitter the training groundtruth boxes for mask branch.
      num_sampled_masks: `int` number of sampled masks for training.
      mask_crop_size: `list` for [height, width] of output training masks.
      mask_min_level: `int` number indicating the minimum feature level to
        obtain instance features.
      mask_max_level: `int` number indicating the maximum feature level to
        obtain instance features.
      upsample_factor: `int` factor of upsampling the fine mask predictions.
      match_threshold: `float` number between 0 and 1 representing the
        lower-bound threshold to assign positive labels for anchors. An anchor
        with a score over the threshold is labeled positive.
      unmatched_threshold: `float` number between 0 and 1 representing the
        upper-bound threshold to assign negative labels for anchors. An anchor
        with a score below the threshold is labeled negative.
      aug_rand_hflip: `bool`, if True, augment training with random
        horizontal flip.
      aug_scale_min: `float`, the minimum scale applied to `output_size` for
        data augmentation during training.
      aug_scale_max: `float`, the maximum scale applied to `output_size` for
        data augmentation during training.
      skip_crowd_during_training: `bool`, if True, skip annotations labeled with
        `is_crowd` equals to 1.
      max_num_instances: `int` number of maximum number of instances in an
        image. The groundtruth data will be padded to `max_num_instances`.
      use_bfloat16: `bool`, if True, cast output image to tf.bfloat16.
      mask_train_class: a string of experiment mode: `all`, `voc` or `nonvoc`.
      mode: a ModeKeys. Specifies if this is training, evaluation, prediction
        or prediction with groundtruths in the outputs.
    """
        self._mode = mode
        self._mask_train_class = mask_train_class
        self._max_num_instances = max_num_instances
        self._skip_crowd_during_training = skip_crowd_during_training
        self._is_training = (mode == ModeKeys.TRAIN)

        self._example_decoder = tf_example_decoder.TfExampleDecoder(
            include_mask=True)

        # Anchor.
        self._output_size = output_size
        self._min_level = min_level
        self._max_level = max_level
        self._num_scales = num_scales
        self._aspect_ratios = aspect_ratios
        self._anchor_size = anchor_size
        self._match_threshold = match_threshold
        self._unmatched_threshold = unmatched_threshold

        # Data augmentation.
        self._aug_rand_hflip = aug_rand_hflip
        self._aug_scale_min = aug_scale_min
        self._aug_scale_max = aug_scale_max

        # Device.
        self._use_bfloat16 = use_bfloat16

        # ShapeMask specific.
        # Control of which category to use.
        self._use_category = use_category
        self._num_sampled_masks = num_sampled_masks
        self._mask_crop_size = mask_crop_size
        self._mask_min_level = mask_min_level
        self._mask_max_level = mask_max_level
        self._outer_box_scale = outer_box_scale
        self._box_jitter_scale = box_jitter_scale
        self._up_sample_factor = upsample_factor

        # Data is parsed depending on the model Modekey.
        if mode == ModeKeys.TRAIN:
            self._parse_fn = self._parse_train_data
        elif mode == ModeKeys.EVAL:
            self._parse_fn = self._parse_eval_data
        elif mode == ModeKeys.PREDICT or mode == ModeKeys.PREDICT_WITH_GT:
            self._parse_fn = self._parse_predict_data
        else:
            raise ValueError('mode is not defined.')
Esempio n. 3
0
    def __init__(self,
                 output_size,
                 min_level,
                 max_level,
                 num_scales,
                 aspect_ratios,
                 anchor_size,
                 rpn_match_threshold=0.7,
                 rpn_unmatched_threshold=0.3,
                 rpn_batch_size_per_im=256,
                 rpn_fg_fraction=0.5,
                 aug_rand_hflip=False,
                 aug_scale_min=1.0,
                 aug_scale_max=1.0,
                 skip_crowd_during_training=True,
                 max_num_instances=100,
                 include_mask=False,
                 mask_crop_size=112,
                 use_bfloat16=True,
                 mode=None):
        """Initializes parameters for parsing annotations in the dataset.

    Args:
      output_size: `Tensor` or `list` for [height, width] of output image. The
        output_size should be divided by the largest feature stride 2^max_level.
      min_level: `int` number of minimum level of the output feature pyramid.
      max_level: `int` number of maximum level of the output feature pyramid.
      num_scales: `int` number representing intermediate scales added
        on each level. For instances, num_scales=2 adds one additional
        intermediate anchor scales [2^0, 2^0.5] on each level.
      aspect_ratios: `list` of float numbers representing the aspect raito
        anchors added on each level. The number indicates the ratio of width to
        height. For instances, aspect_ratios=[1.0, 2.0, 0.5] adds three anchors
        on each scale level.
      anchor_size: `float` number representing the scale of size of the base
        anchor to the feature stride 2^level.
      rpn_match_threshold:
      rpn_unmatched_threshold:
      rpn_batch_size_per_im:
      rpn_fg_fraction:
      aug_rand_hflip: `bool`, if True, augment training with random
        horizontal flip.
      aug_scale_min: `float`, the minimum scale applied to `output_size` for
        data augmentation during training.
      aug_scale_max: `float`, the maximum scale applied to `output_size` for
        data augmentation during training.
      skip_crowd_during_training: `bool`, if True, skip annotations labeled with
        `is_crowd` equals to 1.
      max_num_instances: `int` number of maximum number of instances in an
        image. The groundtruth data will be padded to `max_num_instances`.
      include_mask: a bool to indicate whether parse mask groundtruth.
      mask_crop_size: the size which groundtruth mask is cropped to.
      use_bfloat16: `bool`, if True, cast output image to tf.bfloat16.
      mode: a ModeKeys. Specifies if this is training, evaluation, prediction
        or prediction with groundtruths in the outputs.
    """
        self._mode = mode
        self._max_num_instances = max_num_instances
        self._skip_crowd_during_training = skip_crowd_during_training
        self._is_training = (mode == ModeKeys.TRAIN)

        self._example_decoder = tf_example_decoder.TfExampleDecoder(
            include_mask=include_mask)

        # Anchor.
        self._output_size = output_size
        self._min_level = min_level
        self._max_level = max_level
        self._num_scales = num_scales
        self._aspect_ratios = aspect_ratios
        self._anchor_size = anchor_size

        # Target assigning.
        self._rpn_match_threshold = rpn_match_threshold
        self._rpn_unmatched_threshold = rpn_unmatched_threshold
        self._rpn_batch_size_per_im = rpn_batch_size_per_im
        self._rpn_fg_fraction = rpn_fg_fraction

        # Data augmentation.
        self._aug_rand_hflip = aug_rand_hflip
        self._aug_scale_min = aug_scale_min
        self._aug_scale_max = aug_scale_max

        # Mask.
        self._include_mask = include_mask
        self._mask_crop_size = mask_crop_size

        # Device.
        self._use_bfloat16 = use_bfloat16

        # Data is parsed depending on the model Modekey.
        if mode == ModeKeys.TRAIN:
            self._parse_fn = self._parse_train_data
        elif mode == ModeKeys.EVAL:
            self._parse_fn = self._parse_eval_data
        elif mode == ModeKeys.PREDICT or mode == ModeKeys.PREDICT_WITH_GT:
            self._parse_fn = self._parse_predict_data
        else:
            raise ValueError('mode is not defined.')
Esempio n. 4
0
  def __init__(self,
               output_size,
               min_level,
               max_level,
               num_scales,
               aspect_ratios,
               anchor_size,
               match_threshold=0.5,
               unmatched_threshold=0.5,
               aug_rand_hflip=False,
               aug_scale_min=1.0,
               aug_scale_max=1.0,
               use_autoaugment=False,
               autoaugment_policy_name='v0',
               skip_crowd_during_training=True,
               max_num_instances=100,
               use_bfloat16=True,
               mode=None):
    """Initializes parameters for parsing annotations in the dataset.

    Args:
      output_size: `Tensor` or `list` for [height, width] of output image. The
        output_size should be divided by the largest feature stride 2^max_level.
      min_level: `int` number of minimum level of the output feature pyramid.
      max_level: `int` number of maximum level of the output feature pyramid.
      num_scales: `int` number representing intermediate scales added on each
        level. For instances, num_scales=2 adds one additional intermediate
        anchor scales [2^0, 2^0.5] on each level.
      aspect_ratios: `list` of float numbers representing the aspect raito
        anchors added on each level. The number indicates the ratio of width to
        height. For instances, aspect_ratios=[1.0, 2.0, 0.5] adds three anchors
        on each scale level.
      anchor_size: `float` number representing the scale of size of the base
        anchor to the feature stride 2^level.
      match_threshold: `float` number between 0 and 1 representing the
        lower-bound threshold to assign positive labels for anchors. An anchor
        with a score over the threshold is labeled positive.
      unmatched_threshold: `float` number between 0 and 1 representing the
        upper-bound threshold to assign negative labels for anchors. An anchor
        with a score below the threshold is labeled negative.
      aug_rand_hflip: `bool`, if True, augment training with random horizontal
        flip.
      aug_scale_min: `float`, the minimum scale applied to `output_size` for
        data augmentation during training.
      aug_scale_max: `float`, the maximum scale applied to `output_size` for
        data augmentation during training.
      use_autoaugment: `bool`, if True, use the AutoAugment augmentation policy
        during training.
      autoaugment_policy_name: `string` that specifies the name of the
        AutoAugment policy that will be used during training.
      skip_crowd_during_training: `bool`, if True, skip annotations labeled with
        `is_crowd` equals to 1.
      max_num_instances: `int` number of maximum number of instances in an
        image. The groundtruth data will be padded to `max_num_instances`.
      use_bfloat16: `bool`, if True, cast output image to tf.bfloat16.
      mode: a ModeKeys. Specifies if this is training, evaluation, prediction or
        prediction with groundtruths in the outputs.
    """
    self._mode = mode
    self._max_num_instances = max_num_instances
    self._skip_crowd_during_training = skip_crowd_during_training
    self._is_training = (mode == ModeKeys.TRAIN)

    self._example_decoder = tf_example_decoder.TfExampleDecoder(
        include_mask=False)

    # Anchor.
    self._output_size = output_size
    self._min_level = min_level
    self._max_level = max_level
    self._num_scales = num_scales
    self._aspect_ratios = aspect_ratios
    self._anchor_size = anchor_size
    self._match_threshold = match_threshold
    self._unmatched_threshold = unmatched_threshold

    # Data augmentation.
    self._aug_rand_hflip = aug_rand_hflip
    self._aug_scale_min = aug_scale_min
    self._aug_scale_max = aug_scale_max

    # Data Augmentation with AutoAugment.
    self._use_autoaugment = use_autoaugment
    self._autoaugment_policy_name = autoaugment_policy_name

    # Device.
    self._use_bfloat16 = use_bfloat16

    # Data is parsed depending on the model Modekey.
    if mode == ModeKeys.TRAIN:
      self._parse_fn = self._parse_train_data
    elif mode == ModeKeys.EVAL:
      self._parse_fn = self._parse_eval_data
    elif mode == ModeKeys.PREDICT or mode == ModeKeys.PREDICT_WITH_GT:
      self._parse_fn = self._parse_predict_data
    else:
      raise ValueError('mode is not defined.')