Esempio n. 1
0
def cifar10_model_fn(features, labels, mode, params):
    """Model function for CIFAR-10."""
    features = tf.reshape(features, [-1, _HEIGHT, _WIDTH, _NUM_CHANNELS])

    learning_rate_fn = resnet.learning_rate_with_decay(
        batch_size=params['batch_size'],
        batch_denom=128,
        num_images=_NUM_IMAGES['train'],
        boundary_epochs=[100, 150, 200],
        decay_rates=[1, 0.1, 0.01, 0.001])

    # We use a weight decay of 0.0002, which performs better
    # than the 0.0001 that was originally suggested.
    weight_decay = 2e-4

    # Empirical testing showed that including batch_normalization variables
    # in the calculation of regularized loss helped validation accuracy
    # for the CIFAR-10 dataset, perhaps because the regularization prevents
    # overfitting on the small data set. We therefore include all vars when
    # regularizing and computing loss during training.
    def loss_filter_fn(name):
        return True

    return resnet.resnet_model_fn(features,
                                  labels,
                                  mode,
                                  Cifar10Model,
                                  resnet_size=params['resnet_size'],
                                  weight_decay=weight_decay,
                                  learning_rate_fn=learning_rate_fn,
                                  momentum=0.9,
                                  data_format=params['data_format'],
                                  version=params['version'],
                                  loss_filter_fn=loss_filter_fn,
                                  multi_gpu=params['multi_gpu'])
Esempio n. 2
0
def imagenet_model_fn(features, labels, mode, params):
  """Our model_fn for ResNet to be used with our Estimator."""
  learning_rate_fn = resnet.learning_rate_with_decay(
      batch_size=params['batch_size'], batch_denom=256,
      num_images=_NUM_IMAGES['train'], boundary_epochs=[30, 60, 80, 90],
      decay_rates=[1, 0.1, 0.01, 0.001, 1e-4])

  return resnet.resnet_model_fn(features, labels, mode, ImagenetModel,
                                resnet_size=params['resnet_size'],
                                weight_decay=1e-4,
                                learning_rate_fn=learning_rate_fn,
                                momentum=0.9,
                                data_format=params['data_format'],
                                version=params['version'],
                                loss_filter_fn=None,
                                multi_gpu=params['multi_gpu'])
Esempio n. 3
0
def imagenet_model_fn(features, labels, mode, params):
    """Our model_fn for ResNet to be used with our Estimator."""
    learning_rate_fn = resnet.learning_rate_with_decay(
        batch_size=params['batch_size'],
        batch_denom=256,
        num_images=_NUM_IMAGES['train'],
        boundary_epochs=[30, 60, 80, 90],
        decay_rates=[1, 0.1, 0.01, 0.001, 1e-4])

    return resnet.resnet_model_fn(features,
                                  labels,
                                  mode,
                                  ImagenetModel,
                                  resnet_size=params['resnet_size'],
                                  weight_decay=1e-4,
                                  learning_rate_fn=learning_rate_fn,
                                  momentum=0.9,
                                  data_format=params['data_format'],
                                  loss_filter_fn=None,
                                  multi_gpu=params['multi_gpu'])