Esempio n. 1
0
  def test_serialize_deserialize(self):
    # Create a network object that sets all of its config options.
    kwargs = dict(
        min_level=3,
        max_level=7,
        endpoints_num_filters=256,
        resample_alpha=0.5,
        block_repeats=1,
        filter_size_scale=1.0,
        init_stochastic_depth_rate=0.2,
        use_sync_bn=False,
        activation='relu',
        norm_momentum=0.99,
        norm_epsilon=0.001,
        kernel_initializer='VarianceScaling',
        kernel_regularizer=None,
        bias_regularizer=None,
    )
    network = spinenet.SpineNet(**kwargs)

    expected_config = dict(kwargs)
    self.assertEqual(network.get_config(), expected_config)

    # Create another network object from the first object's config.
    new_network = spinenet.SpineNet.from_config(network.get_config())

    # Validate that the config can be forced to JSON.
    _ = new_network.to_json()

    # If the serialization was successful, the new config should match the old.
    self.assertAllEqual(network.get_config(), new_network.get_config())
Esempio n. 2
0
  def test_network_creation(self, input_size, filter_size_scale, block_repeats,
                            resample_alpha, endpoints_num_filters, min_level,
                            max_level):
    """Test creation of SpineNet models."""

    tf.keras.backend.set_image_data_format('channels_last')

    input_specs = tf.keras.layers.InputSpec(
        shape=[None, input_size, input_size, 3])
    model = spinenet.SpineNet(
        input_specs=input_specs,
        min_level=min_level,
        max_level=max_level,
        endpoints_num_filters=endpoints_num_filters,
        resample_alpha=resample_alpha,
        block_repeats=block_repeats,
        filter_size_scale=filter_size_scale,
        init_stochastic_depth_rate=0.2,
    )

    inputs = tf.keras.Input(shape=(input_size, input_size, 3), batch_size=1)
    endpoints = model(inputs)

    for l in range(min_level, max_level + 1):
      self.assertIn(str(l), endpoints.keys())
      self.assertAllEqual(
          [1, input_size / 2**l, input_size / 2**l, endpoints_num_filters],
          endpoints[str(l)].shape.as_list())
Esempio n. 3
0
 def build_spinenet(input_size):
   tf.keras.backend.set_image_data_format('channels_last')
   input_specs = tf.keras.layers.InputSpec(
       shape=[None, input_size[0], input_size[1], 3])
   model = spinenet.SpineNet(
       input_specs=input_specs,
       min_level=3,
       max_level=7,
       endpoints_num_filters=384,
       resample_alpha=1.0,
       block_repeats=2,
       filter_size_scale=0.5)
   return model
Esempio n. 4
0
 def test_invalid_activation_raises_valurerror(self):
   with self.assertRaises(ValueError):
     spinenet.SpineNet(activation='invalid_activation_name')
Esempio n. 5
0
 def test_activation(self, activation, activation_fn):
   model = spinenet.SpineNet(activation=activation)
   self.assertEqual(model._activation_fn, activation_fn)