Esempio n. 1
0
    def test_global_average_pool_basic(self):
        pool = nn_layers.GlobalAveragePool3D(keepdims=True)

        inputs = tf.ones([1, 2, 3, 4, 1])
        outputs = pool(inputs, output_states=False)

        expected = tf.ones([1, 1, 1, 1, 1])

        self.assertEqual(outputs.shape, expected.shape)
        self.assertAllEqual(outputs, expected)
Esempio n. 2
0
    def test_global_average_pool_keras(self):
        pool = nn_layers.GlobalAveragePool3D(keepdims=False)
        keras_pool = tf.keras.layers.GlobalAveragePooling3D()

        inputs = 10 * tf.random.normal([1, 2, 3, 4, 1])

        outputs = pool(inputs, output_states=False)
        keras_output = keras_pool(inputs)

        self.assertAllEqual(outputs.shape, keras_output.shape)
        self.assertAllClose(outputs, keras_output)
Esempio n. 3
0
    def test_stream_global_average_pool(self):
        gap = nn_layers.GlobalAveragePool3D(keepdims=True, causal=False)

        inputs = tf.range(4, dtype=tf.float32) + 1.
        inputs = tf.reshape(inputs, [1, 4, 1, 1, 1])
        inputs = tf.tile(inputs, [1, 1, 2, 2, 3])
        expected, _ = gap(inputs)

        for num_splits in [1, 2, 4]:
            frames = tf.split(inputs, num_splits, axis=1)
            states = {}
            predicted = None
            for frame in frames:
                predicted, states = gap(frame, states=states)

            self.assertEqual(predicted.shape, expected.shape)
            self.assertAllClose(predicted, expected)
            self.assertAllClose(predicted, [[[[[2.5, 2.5, 2.5]]]]])
Esempio n. 4
0
    def test_causal_stream_global_average_pool(self):
        gap = nn_layers.GlobalAveragePool3D(keepdims=True, causal=True)

        inputs = tf.range(4, dtype=tf.float32) + 1.
        inputs = tf.reshape(inputs, [1, 4, 1, 1, 1])
        inputs = tf.tile(inputs, [1, 1, 2, 2, 3])
        expected, _ = gap(inputs, output_states=True)

        for num_splits in [1, 2, 4]:
            frames = tf.split(inputs, num_splits, axis=1)
            states = {}
            predicted = []
            for frame in frames:
                x, states = gap(frame, states=states, output_states=True)
                predicted.append(x)
            predicted = tf.concat(predicted, axis=1)

            self.assertEqual(predicted.shape, expected.shape)
            self.assertAllClose(predicted, expected)
            self.assertAllClose(predicted,
                                [[[[[1.0, 1.0, 1.0]]], [[[1.5, 1.5, 1.5]]],
                                  [[[2.0, 2.0, 2.0]]], [[[2.5, 2.5, 2.5]]]]])