Esempio n. 1
0
 def to_minimize(mu_star):
     mbmod = ConstantMassBalance(gdir,
                                 mu_star=mu_star,
                                 bias=0,
                                 check_calib_params=False,
                                 y0=df['t_star'])
     smb = mbmod.get_annual_mb(heights=topo)
     return np.sum(smb)**2
Esempio n. 2
0
    def test_constant_mb_model(self, hef_gdir):
        y0 = 2000
        halfsize = 15
        combine_mb_model = ConstantMassBalanceTorch(hef_gdir,
                                                    y0=y0,
                                                    halfsize=halfsize)
        oggm_mb_model = ConstantMassBalance(hef_gdir, y0=y0, halfsize=halfsize)
        test_height_shift = 100.
        combine_mb_model_shift = ConstantMassBalanceTorch(
            hef_gdir, y0=y0, halfsize=halfsize, height_shift=test_height_shift)

        fls = hef_gdir.read_pickle('model_flowlines')
        h = []
        for fl in fls:
            # We use bed because of overdeepenings
            h = np.append(h, fl.bed_h)
            h = np.append(h, fl.surface_h)
        zminmax = np.round([np.min(h), np.max(h)])
        heights = np.linspace(zminmax[0], zminmax[1], num=20)
        heights_torch = torch.tensor(heights, dtype=torch.double)
        heights_torch_shift = heights_torch + torch.tensor(test_height_shift,
                                                           dtype=torch.double)

        # test annual
        oggm_annual_mbs = oggm_mb_model.get_annual_mb(heights)
        combine_annual_mbs = combine_mb_model.get_annual_mb(heights_torch)
        combine_annual_mbs_shift = \
            combine_mb_model_shift.get_annual_mb(heights_torch_shift)

        assert np.allclose(oggm_annual_mbs, combine_annual_mbs)
        assert type(combine_annual_mbs) == torch.Tensor
        assert combine_annual_mbs.shape == heights_torch.shape
        assert np.allclose(combine_annual_mbs, combine_annual_mbs_shift)
        assert type(combine_annual_mbs_shift) == torch.Tensor
        assert combine_annual_mbs_shift.shape == heights_torch_shift.shape

        # test monthly
        for month in np.arange(12) + 1:
            yr = date_to_floatyear(0, month)
            oggm_monthly_mbs = oggm_mb_model.get_monthly_mb(heights, year=yr)
            combine_monthly_mbs = combine_mb_model.get_monthly_mb(
                heights_torch, year=yr)
            combine_monthly_mbs_shift = \
                combine_mb_model_shift.get_monthly_mb(heights_torch_shift, year=yr)

            assert np.allclose(oggm_monthly_mbs, combine_monthly_mbs)
            assert type(combine_monthly_mbs) == torch.Tensor
            assert combine_monthly_mbs.shape == heights_torch.shape
            assert np.allclose(combine_monthly_mbs, combine_monthly_mbs_shift)
            assert type(combine_monthly_mbs_shift) == torch.Tensor
            assert combine_monthly_mbs_shift.shape == heights_torch_shift.shape
Esempio n. 3
0
# Average oberved mass-balance
ref_mb = mbdf.ANNUAL_BALANCE.mean()
mb_per_mu = prcp_yr - mu_yr_clim * temp_yr

# Diff to reference
diff = mb_per_mu - ref_mb
pdf = pd.DataFrame()
pdf[r'$\mu (t)$'] = mu_yr_clim
pdf['bias'] = diff
res = t_star_from_refmb(gdir, mbdf=mbdf.ANNUAL_BALANCE)

# For the mass flux
cl = gdir.read_pickle('inversion_input')[-1]
mbmod = ConstantMassBalance(gdir)
mbx = (mbmod.get_annual_mb(cl['hgt']) * cfg.SEC_IN_YEAR *
       cfg.PARAMS['ice_density'])
fdf = pd.DataFrame(index=np.arange(len(mbx)) * cl['dx'])
fdf['Flux'] = cl['flux']
fdf['Mass balance'] = mbx

# For the distributed thickness
tasks.mass_conservation_inversion(gdir, glen_a=2.4e-24 * 3, fs=0)
tasks.distribute_thickness_per_altitude(gdir)


# plot functions
def example_plot_temp_ts():
    d = xr.open_dataset(gdir.get_filepath('climate_historical'))
    temp = d.temp.resample(time='12MS').mean('time').to_series()
    temp.index = temp.index.year
Esempio n. 4
0
    def test_mb(self):

        # This is a function to produce the MB function needed by Anna

        # Download the RGI file for the run
        # Make a new dataframe of those
        rgidf = gpd.read_file(get_demo_file('SouthGlacier.shp'))

        # Go - initialize working directories
        gdirs = workflow.init_glacier_regions(rgidf)

        # Preprocessing tasks
        task_list = [
            tasks.glacier_masks,
            tasks.compute_centerlines,
            tasks.initialize_flowlines,
            tasks.catchment_area,
            tasks.catchment_intersections,
            tasks.catchment_width_geom,
            tasks.catchment_width_correction,
        ]
        for task in task_list:
            execute_entity_task(task, gdirs)

        # Climate tasks -- only data IO and tstar interpolation!
        execute_entity_task(tasks.process_cru_data, gdirs)
        tasks.distribute_t_stars(gdirs)
        execute_entity_task(tasks.apparent_mb, gdirs)

        mbref = salem.GeoTiff(get_demo_file('mb_SouthGlacier.tif'))
        demref = salem.GeoTiff(get_demo_file('dem_SouthGlacier.tif'))

        mbref = mbref.get_vardata()
        mbref[mbref == -9999] = np.NaN
        demref = demref.get_vardata()[np.isfinite(mbref)]
        mbref = mbref[np.isfinite(mbref)] * 1000

        # compute the bias to make it 0 SMB on the 2D DEM
        mbmod = ConstantMassBalance(gdirs[0], bias=0)
        mymb = mbmod.get_annual_mb(demref) * cfg.SEC_IN_YEAR * cfg.RHO
        mbmod = ConstantMassBalance(gdirs[0], bias=np.average(mymb))
        mymb = mbmod.get_annual_mb(demref) * cfg.SEC_IN_YEAR * cfg.RHO
        np.testing.assert_allclose(np.average(mymb), 0., atol=1e-3)

        # Same for ref
        mbref = mbref - np.average(mbref)
        np.testing.assert_allclose(np.average(mbref), 0., atol=1e-3)

        # Fit poly
        p = np.polyfit(demref, mbref, deg=2)
        poly = np.poly1d(p)
        myfit = poly(demref)
        np.testing.assert_allclose(np.average(myfit), 0., atol=1e-3)

        if do_plot:
            import matplotlib.pyplot as plt
            plt.scatter(mbref, demref, s=5, label='Obs (2007-2012), shifted to '
                                                   'Avg(SMB) = 0')
            plt.scatter(mymb, demref, s=5, label='OGGM MB at t*')
            plt.scatter(myfit, demref, s=5, label='Polyfit', c='C3')
            plt.xlabel('MB (mm w.e yr-1)')
            plt.ylabel('Altidude (m)')
            plt.legend()
            plt.show()
Esempio n. 5
0
class BiasedConstantMassBalance(MassBalanceModel):
    """Time-dependant Temp and PRCP delta ConstantMassBalance model"""
    def __init__(self,
                 gdir,
                 temp_bias_ts=None,
                 prcp_fac_ts=None,
                 mu_star=None,
                 bias=None,
                 y0=None,
                 halfsize=15,
                 filename='climate_historical',
                 input_filesuffix='',
                 **kwargs):
        """Initialize

        Parameters
        ----------
        gdir : GlacierDirectory
            the glacier directory
        magicc_ts : pd.Series
            the GMT time series
        mu_star : float, optional
            set to the alternative value of mu* you want to use
            (the default is to use the calibrated value)
        bias : float, optional
            set to the alternative value of the annual bias [mm we yr-1]
            you want to use (the default is to use the calibrated value)
        y0 : int, optional, default: tstar
            the year at the center of the period of interest. The default
            is to use tstar as center.
        dt_per_dt : float, optional, default 1
            the local climate change signal, in units of °C per °C
        halfsize : int, optional
            the half-size of the time window (window size = 2 * halfsize + 1)
        filename : str, optional
            set to a different BASENAME if you want to use alternative climate
            data.
        input_filesuffix : str
            the file suffix of the input climate file
        """

        super(BiasedConstantMassBalance, self).__init__()

        self.mbmod = ConstantMassBalance(gdir,
                                         mu_star=mu_star,
                                         bias=bias,
                                         y0=y0,
                                         halfsize=halfsize,
                                         filename=filename,
                                         input_filesuffix=input_filesuffix,
                                         **kwargs)

        self.valid_bounds = self.mbmod.valid_bounds
        self.hemisphere = gdir.hemisphere

        # Set ys and ye
        self.ys = int(temp_bias_ts.index[0])
        self.ye = int(temp_bias_ts.index[-1])

        if prcp_fac_ts is None:
            prcp_fac_ts = temp_bias_ts * 0

        self.prcp_fac_ts = self.mbmod.prcp_fac + prcp_fac_ts
        self.temp_bias_ts = temp_bias_ts

    @property
    def temp_bias(self):
        """Temperature bias to add to the original series."""
        return self.mbmod.temp_bias

    @temp_bias.setter
    def temp_bias(self, value):
        """Temperature bias to add to the original series."""
        self.mbmod.temp_bias = value

    @property
    def prcp_fac(self):
        """Precipitation factor to apply to the original series."""
        return self.mbmod.prcp_fac

    @prcp_fac.setter
    def prcp_fac(self, value):
        """Precipitation factor to apply to the original series."""
        self.mbmod.prcp_fac = value

    @property
    def bias(self):
        """Residual bias to apply to the original series."""
        return self.mbmod.bias

    @bias.setter
    def bias(self, value):
        """Residual bias to apply to the original series."""
        self.mbmod.bias = value

    def _check_bias(self, year):
        t = np.asarray(self.temp_bias_ts.loc[int(year)])
        if np.any(t != self.temp_bias):
            self.temp_bias = t
        p = np.asarray(self.prcp_fac_ts.loc[int(year)])
        if np.any(p != self.prcp_fac):
            self.prcp_fac = p

    def get_monthly_mb(self, heights, year=None, **kwargs):
        self._check_bias(year)
        return self.mbmod.get_monthly_mb(heights, year=year, **kwargs)

    def get_annual_mb(self, heights, year=None, **kwargs):
        self._check_bias(year)
        return self.mbmod.get_annual_mb(heights, year=year, **kwargs)
Esempio n. 6
0
    def test_mb(self):

        # This is a function to produce the MB function needed by Anna

        # Download the RGI file for the run
        # Make a new dataframe of those
        rgidf = gpd.read_file(get_demo_file('SouthGlacier.shp'))

        # Go - initialize working directories
        gdirs = workflow.init_glacier_regions(rgidf)

        # Preprocessing tasks
        task_list = [
            tasks.glacier_masks,
            tasks.compute_centerlines,
            tasks.initialize_flowlines,
            tasks.catchment_area,
            tasks.catchment_intersections,
            tasks.catchment_width_geom,
            tasks.catchment_width_correction,
            tasks.process_cru_data,
            tasks.local_t_star,
            tasks.mu_star_calibration,
        ]
        for task in task_list:
            execute_entity_task(task, gdirs)

        mbref = salem.GeoTiff(get_demo_file('mb_SouthGlacier.tif'))
        demref = salem.GeoTiff(get_demo_file('dem_SouthGlacier.tif'))

        mbref = mbref.get_vardata()
        mbref[mbref == -9999] = np.NaN
        demref = demref.get_vardata()[np.isfinite(mbref)]
        mbref = mbref[np.isfinite(mbref)] * 1000

        # compute the bias to make it 0 SMB on the 2D DEM
        rho = cfg.PARAMS['ice_density']
        mbmod = ConstantMassBalance(gdirs[0], bias=0)
        mymb = mbmod.get_annual_mb(demref) * cfg.SEC_IN_YEAR * rho
        mbmod = ConstantMassBalance(gdirs[0], bias=np.average(mymb))
        mymb = mbmod.get_annual_mb(demref) * cfg.SEC_IN_YEAR * rho
        np.testing.assert_allclose(np.average(mymb), 0., atol=1e-3)

        # Same for ref
        mbref = mbref - np.average(mbref)
        np.testing.assert_allclose(np.average(mbref), 0., atol=1e-3)

        # Fit poly
        p = np.polyfit(demref, mbref, deg=2)
        poly = np.poly1d(p)
        myfit = poly(demref)
        np.testing.assert_allclose(np.average(myfit), 0., atol=1e-3)

        if do_plot:
            import matplotlib.pyplot as plt
            plt.scatter(mbref, demref, s=5,
                        label='Obs (2007-2012), shifted to Avg(SMB) = 0')
            plt.scatter(mymb, demref, s=5, label='OGGM MB at t*')
            plt.scatter(myfit, demref, s=5, label='Polyfit', c='C3')
            plt.xlabel('MB (mm w.e yr-1)')
            plt.ylabel('Altidude (m)')
            plt.legend()
            plt.show()
Esempio n. 7
0
# Average oberved mass-balance
ref_mb = mbdf.ANNUAL_BALANCE.mean()
mb_per_mu = prcp_yr - mu_yr_clim * temp_yr

# Diff to reference
diff = mb_per_mu - ref_mb
pdf = pd.DataFrame()
pdf[r'$\mu (t)$'] = mu_yr_clim
pdf['bias'] = diff
res = t_star_from_refmb(gdir, mbdf=mbdf.ANNUAL_BALANCE)

# For the mass flux
cl = gdir.read_pickle('inversion_input')[-1]
mbmod = ConstantMassBalance(gdir)
mbx = (mbmod.get_annual_mb(cl['hgt']) * cfg.SEC_IN_YEAR *
       cfg.PARAMS['ice_density'])
fdf = pd.DataFrame(index=np.arange(len(mbx))*cl['dx'])
fdf['Flux'] = cl['flux']
fdf['Mass balance'] = mbx

# For the distributed thickness
tasks.mass_conservation_inversion(gdir, glen_a=2.4e-24 * 3, fs=0)
tasks.distribute_thickness_per_altitude(gdir)


# plot functions
def example_plot_temp_ts():
    d = xr.open_dataset(gdir.get_filepath('climate_monthly'))
    temp = d.temp.resample(time='12MS').mean('time').to_series()
    del temp.index.name