Esempio n. 1
0
def test_macro_table_SS():
    df = output_tables.macro_table_SS(base_ss, reform_ss)
    assert isinstance(df, pd.DataFrame)
Esempio n. 2
0
def comp_output(base_params,
                base_ss,
                reform_params,
                reform_ss,
                time_path,
                base_tpi=None,
                reform_tpi=None,
                var='cssmat'):
    '''
    Function to create output for the COMP platform
    '''
    if time_path:
        table_title = 'Percentage Changes in Economic Aggregates Between'
        table_title += ' Baseline and Reform Policy'
        plot1_title = 'Pct Changes in Economic Aggregates Between'
        plot1_title += ' Baseline and Reform Policy'
        plot2_title = 'Pct Changes in Interest Rates and Wages'
        plot2_title += ' Between Baseline and Reform Policy'
        plot3_title = 'Differences in Fiscal Variables Relative to GDP'
        plot3_title += ' Between Baseline and Reform Policy'
        out_table = ot.tp_output_dump_table(base_params,
                                            base_tpi,
                                            reform_params,
                                            reform_tpi,
                                            table_format='csv')
        html_table = ot.macro_table(
            base_tpi,
            base_params,
            reform_tpi,
            reform_params,
            var_list=['Y', 'C', 'I_total', 'L', 'D', 'G', 'r', 'w'],
            output_type='pct_diff',
            num_years=10,
            include_SS=True,
            include_overall=True,
            start_year=base_params.start_year,
            table_format='html')
        fig1 = op.plot_aggregates(base_tpi,
                                  base_params,
                                  reform_tpi,
                                  reform_params,
                                  var_list=['Y', 'C', 'K', 'L'],
                                  plot_type='pct_diff',
                                  num_years_to_plot=50,
                                  start_year=base_params.start_year,
                                  vertical_line_years=[
                                      base_params.start_year + base_params.tG1,
                                      base_params.start_year + base_params.tG2
                                  ],
                                  plot_title=None,
                                  path=None)
        in_memory_file1 = io.BytesIO()
        fig1.savefig(in_memory_file1, format="png", bbox_inches="tight")
        in_memory_file1.seek(0)
        fig2 = op.plot_aggregates(base_tpi,
                                  base_params,
                                  reform_tpi,
                                  reform_params,
                                  var_list=['r_gov', 'w'],
                                  plot_type='pct_diff',
                                  num_years_to_plot=50,
                                  start_year=base_params.start_year,
                                  vertical_line_years=[
                                      base_params.start_year + base_params.tG1,
                                      base_params.start_year + base_params.tG2
                                  ],
                                  plot_title=None,
                                  path=None)
        in_memory_file2 = io.BytesIO()
        fig2.savefig(in_memory_file2, format="png", bbox_inches="tight")
        in_memory_file2.seek(0)
        fig3 = op.plot_gdp_ratio(base_tpi,
                                 base_params,
                                 reform_tpi,
                                 reform_params,
                                 var_list=['D', 'G', 'total_tax_revenue'],
                                 plot_type='diff',
                                 num_years_to_plot=50,
                                 start_year=base_params.start_year,
                                 vertical_line_years=[
                                     base_params.start_year + base_params.tG1,
                                     base_params.start_year + base_params.tG2
                                 ],
                                 plot_title=None,
                                 path=None)
        in_memory_file3 = io.BytesIO()
        fig3.savefig(in_memory_file3, format="png", bbox_inches="tight")
        in_memory_file3.seek(0)

        comp_dict = {
            "renderable": [{
                "media_type": "PNG",
                "title": plot1_title,
                "data": in_memory_file1.read()
            }, {
                "media_type": "PNG",
                "title": plot2_title,
                "data": in_memory_file2.read()
            }, {
                "media_type": "PNG",
                "title": plot3_title,
                "data": in_memory_file3.read()
            }, {
                "media_type": "table",
                "title": table_title,
                "data": html_table
            }],
            "downloadable": [{
                "media_type": "CSV",
                "title": table_title,
                "data": out_table.to_csv()
            }]
        }
    else:
        table_title = 'Percentage Changes in Economic Aggregates Between'
        table_title += ' Baseline and Reform Policy'
        plot_title = 'Percentage Changes in Consumption by Lifetime Income'
        plot_title += ' Percentile Group'
        out_table = ot.macro_table_SS(base_ss,
                                      reform_ss,
                                      var_list=[
                                          'Yss', 'Css', 'Iss_total', 'Gss',
                                          'total_tax_revenue', 'Lss', 'rss',
                                          'wss'
                                      ],
                                      table_format='csv')
        html_table = ot.macro_table_SS(base_ss,
                                       reform_ss,
                                       var_list=[
                                           'Yss', 'Css', 'Iss_total', 'Gss',
                                           'total_tax_revenue', 'Lss', 'rss',
                                           'wss'
                                       ],
                                       table_format='html')
        fig = op.ability_bar_ss(base_ss,
                                base_params,
                                reform_ss,
                                reform_params,
                                var=var)
        in_memory_file = io.BytesIO()
        fig.savefig(in_memory_file, format="png", bbox_inches="tight")
        in_memory_file.seek(0)

        comp_dict = {
            "renderable": [{
                "media_type": "PNG",
                "title": plot_title,
                "data": in_memory_file.read()
            }, {
                "media_type": "table",
                "title": table_title,
                "data": html_table
            }],
            "downloadable": [{
                "media_type": "CSV",
                "title": table_title,
                "data": out_table.to_csv()
            }]
        }

    return comp_dict