Esempio n. 1
0
def test_top_share():
    '''
    Test of top share calculation
    '''
    ineq = Inequality(dist, pop_weights, ability_weights, S, J)
    top_share = ineq.top_share(0.05)
    assert np.allclose(top_share, 0.285714286)
Esempio n. 2
0
def wealth_moments_table(base_ss, base_params, table_format=None, path=None):
    '''
    Creates table with moments of the wealth distribution from the model
    and SCF data.

    Args:
        base_ss (dictionary): SS output from baseline run
        base_params (OG-USA Specifications class): baseline parameters
            object
        table_format (string): format to return table in: 'csv', 'tex',
            'excel', 'json', if None, a DataFrame is returned
        path (string): path to save table to

    Returns:
        table (various): table in DataFrame or string format or `None`
            if saved to disk

    '''
    table_dict = {
        'Moment': [
            'Share 0-25%', 'Share 25-50%', 'Share 50-70%', 'Share 70-80%',
            'Share 80-90%', 'Share 90-99%', 'Share 99-100%',
            'Gini Coefficient', 'var(ln(Wealth))'
        ],
        'Data': [],
        'Model': []
    }
    base_ineq = Inequality(base_ss['bssmat_splus1'], base_params.omega_SS,
                           base_params.lambdas, base_params.S, base_params.J)
    base_values = [
        1 - base_ineq.top_share(0.75),
        base_ineq.top_share(0.75) - base_ineq.top_share(0.5),
        base_ineq.top_share(0.5) - base_ineq.top_share(0.3),
        base_ineq.top_share(0.3) - base_ineq.top_share(0.2),
        base_ineq.top_share(0.2) - base_ineq.top_share(0.1),
        base_ineq.top_share(0.1) - base_ineq.top_share(0.01),
        base_ineq.top_share(0.01),
        base_ineq.gini(),
        base_ineq.var_of_logs()
    ]
    table_dict['Model'].extend(base_values)
    # get moments from Survey of Consumer Finances data
    scf = wealth.get_wealth_data()
    table_dict['Data'] = wealth.compute_wealth_moments(scf,
                                                       base_params.lambdas)
    # Make df with dict so can use pandas functions
    table_df = pd.DataFrame.from_dict(table_dict)
    table = save_return_table(table_df, table_format, path, precision=3)

    return table
def calc_moments(ss_output, p):
    """
    This function calculates moments from the SS output that correspond
    to the data moments used for estimation.

    Args:
    ss_output = dictionary, variables from SS of model
    p (OG-USA Specifications object): model parameters

    Returns:
        model_moments (array-like): Array of model moments

    """
    # Create Inequality object
    wealth_ineq = Inequality(ss_output["bssmat_splus1"], p.omega_SS, p.lambdas,
                             p.S, p.J)

    # wealth moments
    # moments are: bottom 25% of wealth, next 25% share of wealth
    #  (25-50 pctile), next 20% share of wealth (50-70 pctile),
    #  next 10% share (70-80 pctile), next 10% share (80-90 pctile),
    #  next 9% share (90-99 pctile), top 1% share,
    # gini coefficient, variance of log wealth
    model_moments = np.array([
        1 - wealth_ineq.top_share(0.75),
        wealth_ineq.top_share(0.75) - wealth_ineq.top_share(0.50),
        wealth_ineq.top_share(0.50) - wealth_ineq.top_share(0.30),
        wealth_ineq.top_share(0.30) - wealth_ineq.top_share(0.20),
        wealth_ineq.top_share(0.20) - wealth_ineq.top_share(0.10),
        wealth_ineq.top_share(0.10) - wealth_ineq.top_share(0.01),
        wealth_ineq.top_share(0.01),
        wealth_ineq.gini(),
        wealth_ineq.var_of_logs(),
    ])

    return model_moments
Esempio n. 4
0
def inequality_plot(
    base_tpi, base_params, reform_tpi=None, reform_params=None,
    var='c_path', ineq_measure='gini', pctiles=None, plot_type='levels',
    num_years_to_plot=50, start_year=DEFAULT_START_YEAR,
    vertical_line_years=None, plot_title=None, path=None):
    '''
    Plot measures of inequality over the time path.

    Args:
        base_tpi (dictionary): TPI output from baseline run
        base_params (OG-USA Specifications class): baseline parameters
            object
        reform_tpi (dictionary): TPI output from reform run
        reform_params (OG-USA Specifications class): reform parameters
            object
        var(string): name of variable to plot
        ineq_measure (string): inequality measure to plot, can be:
            'gini': Gini coefficient
            'var_of_logs': variance of logs
            'pct_ratio': percentile ratio
            'top_share': top share of total
        pctiles (tuple or None): percentiles for percentile ratios
            (numerator, denominator) or percentile for top share (not
            required for Gini or var_of_logs)
        plot_type (string): type of plot, can be:
            'pct_diff': plots percentage difference between baselien
                and reform ((reform-base)/base)
            'diff': plots difference between baseline and reform
                (reform-base)
            'levels': plot variables in model units
        num_years_to_plot (integer): number of years to include in plot
        start_year (integer): year to start plot
        vertical_line_years (list): list of integers for years want
            vertical lines at
        plot_title (string): title for plot
        path (string): path to save figure to

    Returns:
        fig (Matplotlib plot object): plot of inequality measure

    '''
    assert isinstance(start_year, (int, np.integer))
    assert (isinstance(num_years_to_plot, int))
    # Make sure both runs cover same time period
    if reform_tpi:
        assert (base_params.start_year == reform_params.start_year)
    assert ineq_measure in ['gini', 'var_of_logs', 'pct_ratio',
                            'top_share']
    if (ineq_measure == 'pct_ratio') | (ineq_measure == 'top_share'):
        assert pctiles
    year_vec = np.arange(start_year, start_year + num_years_to_plot)
    # Check that reform included if doing pct_diff or diff plot
    if plot_type == 'pct_diff' or plot_type == 'diff':
        assert (reform_tpi is not None)
    fig1, ax1 = plt.subplots()
    base_values = np.zeros(num_years_to_plot)
    for t in range(num_years_to_plot):
        idx = (t + start_year) - base_params.start_year
        ineq = Inequality(
            base_tpi[var][idx, :, :], base_params.omega[idx, :],
            base_params.lambdas, base_params.S, base_params.J)
        if ineq_measure == 'gini':
            base_values[t] = ineq.gini()
            ylabel = r'Gini Coefficient'
        elif ineq_measure == 'var_of_logs':
            base_values[t] = ineq.var_of_logs()
            ylabel = r'var(ln(' + VAR_LABELS[var] + r'))'
        elif ineq_measure == 'pct_ratio':
            base_values[t] = ineq.ratio_pct1_pct2(pctiles[0],
                                                  pctiles[1])
            ylabel = r'Ratio'
        elif ineq_measure == 'top_share':
            base_values[t] = ineq.top_share(pctiles)
            ylabel = r'Share of Total ' + VAR_LABELS[var]
    if reform_tpi:
        reform_values = np.zeros_like(base_values)
        for t in range(num_years_to_plot):
            idx = (t + start_year) - base_params.start_year
            ineq = Inequality(
                reform_tpi[var][idx, :, :], reform_params.omega[idx, :],
                reform_params.lambdas, reform_params.S, reform_params.J)
            if ineq_measure == 'gini':
                reform_values[t] = ineq.gini()
            elif ineq_measure == 'var_of_logs':
                reform_values[t] = ineq.var_of_logs()
            elif ineq_measure == 'pct_ratio':
                reform_values[t] = ineq.ratio_pct1_pct2(pctiles[0],
                                                        pctiles[1])
            elif ineq_measure == 'top_share':
                reform_values[t] = ineq.top_share(pctiles)
    if plot_type == 'pct_diff':
        plot_var = (reform_values - base_values) / base_values
        ylabel = r'Pct. change'
        plt.plot(year_vec, plot_var)
    elif plot_type == 'diff':
        plot_var = reform_values - base_values
        ylabel = r'Difference'
        plt.plot(year_vec, plot_var)
    elif plot_type == 'levels':
        plt.plot(year_vec, base_values, label='Baseline')
        if reform_tpi:
            plt.plot(year_vec, reform_values, label='Reform')
    # vertical markers at certain years
    if vertical_line_years:
        for yr in vertical_line_years:
            plt.axvline(x=yr, linewidth=0.5, linestyle='--', color='k')
    plt.xlabel(r'Year $t$')
    plt.ylabel(ylabel)
    if plot_title:
        plt.title(plot_title, fontsize=15)
    vals = ax1.get_yticks()
    if plot_type == 'pct_diff':
        ax1.set_yticklabels(['{:,.2%}'.format(x) for x in vals])
    plt.xlim((base_params.start_year - 1, base_params.start_year +
              num_years_to_plot))
    plt.legend(loc=9, bbox_to_anchor=(0.5, -0.15), ncol=2)
    if path:
        fig_path1 = os.path.join(path)
        plt.savefig(fig_path1, bbox_inches="tight")
    else:
        return fig1
    plt.close()
Esempio n. 5
0
def ineq_table(base_ss,
               base_params,
               reform_ss=None,
               reform_params=None,
               var_list=['cssmat'],
               table_format=None,
               path=None):
    '''
    Creates table with various inequality measures in the model
    steady-state.

    Args:
        base_ss (dictionary): SS output from baseline run
        base_params (OG-USA Specifications class): baseline parameters
            object
        reform_ss (dictionary): SS output from reform run
        reform_params (OG-USA Specifications class): reform parameters
            object
        var_list (list): names of variable to use in table
        table_format (string): format to return table in: 'csv', 'tex',
            'excel', 'json', if None, a DataFrame is returned
        path (string): path to save table to

    Returns:
        table (various): table in DataFrame or string format or `None`
            if saved to disk

    '''
    table_dict = {
        'Steady-State Variable': [],
        'Inequality Measure': [],
        'Baseline': []
    }
    if reform_ss:
        table_dict['Reform'] = []
        table_dict['% Change'] = []
    for i, v in enumerate(var_list):
        base_ineq = Inequality(base_ss[v], base_params.omega_SS,
                               base_params.lambdas, base_params.S,
                               base_params.J)
        if reform_ss:
            reform_ineq = Inequality(reform_ss[v], reform_params.omega_SS,
                                     reform_params.lambdas, reform_params.S,
                                     reform_params.J)
        table_dict['Steady-State Variable'].extend(
            [VAR_LABELS[v], '', '', '', ''])
        table_dict['Inequality Measure'].extend([
            'Gini Coefficient', 'Var of Logs', '90/10 Ratio', 'Top 10% Share',
            'Top 1% Share'
        ])
        base_values = np.array([
            base_ineq.gini(),
            base_ineq.var_of_logs(),
            base_ineq.ratio_pct1_pct2(0.90, 0.10),
            base_ineq.top_share(0.1),
            base_ineq.top_share(0.01)
        ])
        table_dict['Baseline'].extend(list(base_values))
        if reform_ss:
            reform_values = np.array([
                reform_ineq.gini(),
                reform_ineq.var_of_logs(),
                reform_ineq.ratio_pct1_pct2(0.90, 0.10),
                reform_ineq.top_share(0.1),
                reform_ineq.top_share(0.01)
            ])
            table_dict['Reform'].extend(list(reform_values))
            table_dict['% Change'].extend(
                list(((reform_values - base_values) / base_values) * 100))
    # Make df with dict so can use pandas functions
    table_df = pd.DataFrame.from_dict(table_dict)
    table = save_return_table(table_df, table_format, path, precision=3)

    return table