Esempio n. 1
0
  def extract(self,year,level=3,version=2,lims=False):
    a=SMOSdownload(self.path)
    p=a.destination_folder(year,level,version,gen=False)
    files=glob.glob(os.path.join(p,'*.nc'))
    files.sort()

    res=OrderedDict()
    for f in files:
      print(' -- extracting from %s'%f)
      if f==files[0]:
        lon=netcdf.use(f,'longitude')
        lat=netcdf.use(f,'latitude')
        if lims:
          i0,i1,j0,j1=calc.ij_limits(lon,lat,lims[:2],lims[2:],margin=2)
          ii='%d:%d'%(i0,i1+1)
          jj='%d:%d'%(j0,j1+1)
          lon=netcdf.use(f,'longitude',longitude=ii)
          lat=netcdf.use(f,'latitude',latitude=jj)
        else: ii,jj=':',':'

      date0=netcdf.nctime(f,'date_start')[0]
      date1=netcdf.nctime(f,'date_stop')[0]
      date=netcdf.nctime(f,'time')[0]
      sss=netcdf.use(f,'sss',longitude=ii,latitude=jj)
      res[date]=date0,date1,sss

    return lon,lat,res
Esempio n. 2
0
    def extract(self, year, level=3, version=2, lims=False):
        a = SMOSdownload(self.path)
        p = a.destination_folder(year, level, version, gen=False)
        files = glob.glob(os.path.join(p, '*.nc'))
        files.sort()

        res = OrderedDict()
        for f in files:
            print(' -- extracting from %s' % f)
            if f == files[0]:
                lon = netcdf.use(f, 'longitude')
                lat = netcdf.use(f, 'latitude')
                if lims:
                    i0, i1, j0, j1 = calc.ij_limits(lon,
                                                    lat,
                                                    lims[:2],
                                                    lims[2:],
                                                    margin=2)
                    ii = '%d:%d' % (i0, i1 + 1)
                    jj = '%d:%d' % (j0, j1 + 1)
                    lon = netcdf.use(f, 'longitude', longitude=ii)
                    lat = netcdf.use(f, 'latitude', latitude=jj)
                else:
                    ii, jj = ':', ':'

            date0 = netcdf.nctime(f, 'date_start')[0]
            date1 = netcdf.nctime(f, 'date_stop')[0]
            date = netcdf.nctime(f, 'time')[0]
            sss = netcdf.use(f, 'sss', longitude=ii, latitude=jj)
            res[date] = date0, date1, sss

        return lon, lat, res
Esempio n. 3
0
File: ccmp.py Progetto: jcmt/okean
def make_frc(frcname,grd,date0,date1):
  g=roms.Grid(grd)

  if not os.path.isfile(frcname):
    # create file:
    gen_frc(frcname,grd)
  else:
    last=netcdf.nctime(frcname,'wind_time',wind_time=-1)
    print '-->found file %s with last time %s'%(frcname,last.isoformat())
    date0=last+datetime.timedelta(1/4.)

  dates=[date0]
  while dates[-1]<date1:
    dates+=[dates[-1]+datetime.timedelta(1/4.)]

  n=-1
  for d in dates:
    n+=1
    if d==dates[0]:
      x,y,u,v,ij=read_wind(grd,d,ij=False)
    else:
      u,v=read_wind(grd,d,ij)

    U=calc.griddata(x,y,u,g.lon,g.lat)
    V=calc.griddata(x,y,v,g.lon,g.lat)

     # rotate wind,
    print ' --> rot U,V'
    angle=g.use('angle')
    U,V=calc.rot2d(U,V,angle)

    print '  filling %s'%d.isoformat(' ')
    fill_frc(frcname,d,U,V)
Esempio n. 4
0
 def load_time(f):
     time = np.array((), datetime.datetime)
     ff = glob.glob(f)
     ff.sort()
     for f in ff:
         time = np.append(time, netcdf.nctime(f, 'time'))
     return time
Esempio n. 5
0
def make_frc(frcname, grd, date0, date1):
    g = roms.Grid(grd)

    if not os.path.isfile(frcname):
        # create file:
        gen_frc(frcname, grd)
    else:
        last = netcdf.nctime(frcname, 'wind_time', wind_time=-1)
        print '-->found file %s with last time %s' % (frcname,
                                                      last.isoformat())
        date0 = last + datetime.timedelta(1.)  # daily

    dates = [date0]
    while dates[-1] < date1:
        dates += [dates[-1] + datetime.timedelta(1.)]  # daily

    n = -1
    for d in dates:
        n += 1
        if d == dates[0]:
            x, y, u, v, ij = read_wind(grd, d, ij=False)
        else:
            u, v = read_wind(grd, d, ij)

        U = calc.griddata(x, y, u, g.lon, g.lat, extrap=True)
        V = calc.griddata(x, y, v, g.lon, g.lat, extrap=True)

        # rotate wind,
        print ' --> rot U,V'
        angle = g.use('angle')
        U, V = calc.rot2d(U, V, angle)

        print '  filling %s' % d.isoformat(' ')
        fill_frc(frcname, d, U, V)
Esempio n. 6
0
File: aoscat.py Progetto: jcmt/okean
def source(date):
  src=glob.glob('%d/aoscat_%d_*.nc'%(date.year,date.year))
  src.sort()
  # cant return all files cos MFDataset wont work with files
  # without unlimited dimension !
  for s in src:
    t=netcdf.nctime(s,'time')
    if date>=t[0] and date<=t[-1]: return s
Esempio n. 7
0
def source(date):
    src = glob.glob('%d/aoscat_%d_*.nc' % (date.year, date.year))
    src.sort()
    # cant return all files cos MFDataset wont work with files
    # without unlimited dimension !
    for s in src:
        t = netcdf.nctime(s, 'time')
        if date >= t[0] and date <= t[-1]: return s
Esempio n. 8
0
def read_wind(grd, date, ij=False):
    f = source(date)
    print('-- reading from %s' % f)
    time = netcdf.nctime(f, 'time')

    if 0:
        try:
            i = np.where(time == date)[0][0]
        except:
            return 'date %s not found' % date.isoformat(' ')
    else:
        i = 0

    returnXY = False
    if ij is False:
        returnXY = True
        lon = netcdf.use(f, 'longitude')  # -180..180
        lat = netcdf.use(f, 'latitude')
        g = roms.Grid(grd)
        xl0 = np.asarray((g.lon.min(), g.lon.max()))
        xl = np.asarray((g.lon.min(), g.lon.max()))
        if np.any(xl > 180) or np.any(xl < -180):
            print('ERROR: grid is supposed to be -180<x<180')
            print(
                'Can be implemented with mpl_toolkits.basemap.shiftgrid ... TODO'
            )
            print('(http://matplotlib.org/basemap/api/basemap_api.html)')
            return

        yl = g.lat.min(), g.lat.max()
        ij = calc.ij_limits(lon, lat, xl, yl, margin=1)

    i0, i1, j0, j1 = ij
    u = netcdf.use(f,
                   'eastward_wind',
                   longitude='%d:%d' % (i0, i1),
                   latitude='%d:%d' % (j0, j1),
                   time=i)
    v = netcdf.use(f,
                   'northward_wind',
                   longitude='%d:%d' % (i0, i1),
                   latitude='%d:%d' % (j0, j1),
                   time=i)
    if returnXY:
        lon = netcdf.use(f,
                         'longitude',
                         longitude='%d:%d' % (i0, i1),
                         latitude='%d:%d' % (j0, j1))
        lat = netcdf.use(f,
                         'latitude',
                         longitude='%d:%d' % (i0, i1),
                         latitude='%d:%d' % (j0, j1))

        lon, lat = np.meshgrid(lon, lat)
        #if np.all(xl0<0): lon=lon-360 # this may be wrong ... if xl is near 0, lon ay have pos and neg values !!! fix this one day ...
        return lon, lat, u, v, ij
    else:
        return u, v
Esempio n. 9
0
def make_blk_wrf(wrfpath,grd,bulk,date0=False,date1=False,**kargs):
  '''
  see make_blk_interim

  '''

  quiet  = kargs.get('quiet',0)
  create = kargs.get('create',1)
  model  = kargs.get('model','roms') # or roms-agrif
  wrffiles=kargs.get('wrffiles','wrfout*')
  dt     = kargs.get('dt',6)
  proj   = kargs.get('proj','auto')

  data=load_blkdata_wrf(wrfpath,wrffiles,date0,date1,quiet)

  if not len(data): return

  g=roms.Grid(grd)
  if proj=='auto': kargs['proj']=g.get_projection()

  q=gennc.GenBlk(bulk,grd,**kargs)
  if create:
    # about original data, run data2romsblk once to test for x_original:
    tmp=data2romsblk(data[list(data.keys())[0]],g,**kargs)
    if 'x_original' in tmp: original=tmp['x_original'].shape
    else: original=False

    q.create(model,original)


  for d in data:

    # be sure time increases. Note that in load_blkdata_wrf
    # we checked if time increases in the dataset... not if dates are higher
    # then previous dates in file
    ntimes=netcdf.fdim(bulk,'time')
    if ntimes:
      tin=netcdf.nctime(bulk,'time')

      if tin.size and (d-tin[-1])<datetime.timedelta(hours=dt-0.1):
        print('-> not including %s'%d.isoformat())
        continue

    if model=='roms':
       if not quiet: print('  converting units:'),
       conv_units(data[d],model,quiet)

    D=data2romsblk(data[d],g,**kargs)
    D['date']=d

    if not quiet: print('  =>filling date=%s' % d.isoformat(' '))
    q.fill(D,quiet=quiet)
Esempio n. 10
0
def make_blk_wrf(wrfpath, grd, bulk, date0=False, date1=False, **kargs):
    """
  see make_blk_interim

  """

    quiet = kargs.get("quiet", 0)
    create = kargs.get("create", 1)
    model = kargs.get("model", "roms")  # or roms-agrif
    wrffiles = kargs.get("wrffiles", "wrfout*")
    dt = kargs.get("dt", 6)

    data = load_blkdata_wrf(wrfpath, wrffiles, date0, date1, quiet)

    if not len(data):
        return

    q = gennc.GenBlk(bulk, grd, **kargs)
    if create:
        # about original data, run data2romsblk once to test for x_original:
        tmp = data2romsblk(data[data.keys()[0]], grd, **kargs)
        if "x_original" in tmp.keys():
            original = tmp["x_original"].shape
        else:
            original = False

        q.create(model, original)

    for d in data.keys():

        # be sure time increases. Note that in load_blkdata_wrf
        # we checked if time increases in the dataset... not if dates are higher
        # then previous dates in file
        ntimes = netcdf.fdim(bulk, "time")
        if ntimes:
            tin = netcdf.nctime(bulk, "time")

            if tin.size and (d - tin[-1]) < datetime.timedelta(hours=dt - 0.1):
                print "-> not including %s" % d.isoformat()
                continue

        if model == "roms":
            if not quiet:
                print "  converting units:",
            conv_units(data[d], model, quiet)

        D = data2romsblk(data[d], grd, **kargs)
        D["date"] = d

        if not quiet:
            print "  =>filling date=%s" % d.isoformat(" ")
        q.fill(D, quiet=quiet)
Esempio n. 11
0
def make_blk_wrf(wrfpath, grd, bulk, date0=False, date1=False, **kargs):
    '''
  see make_blk_interim

  '''

    quiet = kargs.get('quiet', 0)
    create = kargs.get('create', 1)
    model = kargs.get('model', 'roms')  # or roms-agrif
    wrffiles = kargs.get('wrffiles', 'wrfout*')
    dt = kargs.get('dt', 6)
    proj = kargs.get('proj', 'auto')

    data = load_blkdata_wrf(wrfpath, wrffiles, date0, date1, quiet)

    if not len(data): return

    g = roms.Grid(grd)
    if proj == 'auto': kargs['proj'] = g.get_projection()

    q = gennc.GenBlk(bulk, grd, **kargs)
    if create:
        # about original data, run data2romsblk once to test for x_original:
        tmp = data2romsblk(data[list(data.keys())[0]], g, **kargs)
        if 'x_original' in tmp: original = tmp['x_original'].shape
        else: original = False

        q.create(model, original)

    for d in data:

        # be sure time increases. Note that in load_blkdata_wrf
        # we checked if time increases in the dataset... not if dates are higher
        # then previous dates in file
        ntimes = netcdf.fdim(bulk, 'time')
        if ntimes:
            tin = netcdf.nctime(bulk, 'time')

            if tin.size and (d - tin[-1]) < datetime.timedelta(hours=dt - 0.1):
                print('-> not including %s' % d.isoformat())
                continue

        if model == 'roms':
            if not quiet: print('  converting units:'),
            conv_units(data[d], model, quiet)

        D = data2romsblk(data[d], g, **kargs)
        D['date'] = d

        if not quiet: print('  =>filling date=%s' % d.isoformat(' '))
        q.fill(D, quiet=quiet)
Esempio n. 12
0
def __update_wind(fname, datapath, source, **kargs):
    if source == 'quikscat':
        new_wind_info = 'wind from quikscat'
        from okean.datasets import quikscat
        a = quikscat.WINDData(datapath)
    elif source == 'blended':
        new_wind_info = 'wind from myocean blended'
        from okean.datasets import blended_wind
        a = blended_wind.WINDData(datapath)

    time = netcdf.nctime(fname, 'time')
    date0 = dts.next_date(time[0], -1)
    date1 = dts.next_date(time[-1], +2)
    data = a.data(date0, date1)

    update_wind(fname, data, new_wind_info, **kargs)
Esempio n. 13
0
def __update_wind(fname,datapath,source,**kargs):
  if source=='quikscat':
    new_wind_info='wind from quikscat'
    from okean.datasets import quikscat
    a=quikscat.WINDData(datapath)
  elif source=='blended':
    new_wind_info='wind from myocean blended'
    from okean.datasets import blended_wind
    a=blended_wind.WINDData(datapath)

  time=netcdf.nctime(fname,'time')
  date0=dts.next_date(time[0],-1)
  date1=dts.next_date(time[-1],+2)
  data=a.data(date0,date1)

  update_wind(fname,data,new_wind_info,**kargs)
Esempio n. 14
0
    def extract(self, year, type, lims=False, date=False):
        a = OSTIAdownload(self.path)
        p = a.destination_folder(year, type)  #########level,version,gen=False)
        files = glob.glob(os.path.join(p, '*.nc'))
        files.sort()

        res = OrderedDict()
        c = -1
        for f in files:
            c += 1
            print(' -- extracting from %s' % f)
            if c == 0:
                lon = netcdf.use(f, 'lon')
                lat = netcdf.use(f, 'lat')
                if lims:
                    i0, i1, j0, j1 = calc.ij_limits(lon,
                                                    lat,
                                                    lims[:2],
                                                    lims[2:],
                                                    margin=2)
                    ii = '%d:%d' % (i0, i1 + 1)
                    jj = '%d:%d' % (j0, j1 + 1)
                    lon = netcdf.use(f, 'lon', lon=ii)
                    lat = netcdf.use(f, 'lat', lat=jj)
                else:
                    ii, jj = ':', ':'

            date = netcdf.nctime(f, 'time')[0]
            u = netcdf.use(f, 'analysed_sst', lon=ii, lat=jj)
            if c == 0:
                sst = np.ma.zeros((len(files), ) + u.shape, u.dtype)
                time = np.zeros(len(files), datetime.datetime)

            sst[c] = u
            time[c] = date


###      date0=netcdf.nctime(f,'date_start')[0]
###      date1=netcdf.nctime(f,'date_stop')[0]
#      res[date]=sst
#####  return lon,lat,res

        return time, lon, lat, sst
Esempio n. 15
0
def make_frc(frcname, grd, date0, date1):
    g = roms.Grid(grd)

    if not os.path.isfile(frcname):
        # create file:
        gen_frc(frcname, grd)
    else:
        last = netcdf.nctime(frcname, 'wind_time', wind_time=-1)
        print('-->found file %s with last time %s' %
              (frcname, last.isoformat()))
        date0 = last + datetime.timedelta(1 / 4.)  # 6h data

    dates = [date0]
    while dates[-1] < date1:
        dates += [dates[-1] + datetime.timedelta(1 / 4.)]  # 6h data

    n = -1
    ij = False
    for d in dates:
        n += 1
        if ij is False:
            tmp = read_wind(grd, d, ij=False)
            if isinstance(tmp, basestring):
                continue  # some error, like date not found!
            else:
                x, y, u, v, ij = tmp
        else:
            tmp = read_wind(grd, d, ij)
            if isinstance(tmp, basestring): continue
            else: u, v = tmp

        U = calc.griddata(x, y, u, g.lon, g.lat, extrap=True)
        V = calc.griddata(x, y, v, g.lon, g.lat, extrap=True)

        # rotate wind,
        print(' --> rot U,V')
        angle = g.use('angle')
        U, V = calc.rot2d(U, V, angle)

        print('  filling %s' % d.isoformat(' '))
        fill_frc(frcname, d, U, V)
Esempio n. 16
0
File: ascat.py Progetto: jcmt/okean
def read_wind(grd,date,ij=False):
  f=source(date)
  print '-- reading from %s'%f
  time=netcdf.nctime(f,'time')

  if 0:
    try:
      i=np.where(time==date)[0][0]
    except:
      return 'date %s not found'%date.isoformat(' ')
  else: i=0

  returnXY=False
  if ij is False:
    returnXY=True
    lon=netcdf.use(f,'longitude') # -180..180
    lat=netcdf.use(f,'latitude')
    g=roms.Grid(grd)
    xl0=np.asarray((g.lon.min(),g.lon.max()))
    xl=np.asarray((g.lon.min(),g.lon.max()))
    if np.any(xl>180) or np.any(xl<-180):
      print 'ERROR: grid is supposed to be -180<x<180'
      print 'Can be implemented with mpl_toolkits.basemap.shiftgrid ... TODO'
      print '(http://matplotlib.org/basemap/api/basemap_api.html)'
      return

    yl=g.lat.min(),g.lat.max()
    ij=calc.ij_limits(lon,lat,xl,yl,margin=1)

  i0,i1,j0,j1=ij
  u=netcdf.use(f,'eastward_wind',longitude='%d:%d'%(i0,i1),latitude='%d:%d'%(j0,j1),time=i)
  v=netcdf.use(f,'northward_wind',longitude='%d:%d'%(i0,i1),latitude='%d:%d'%(j0,j1),time=i)
  if returnXY:
    lon=netcdf.use(f,'longitude',longitude='%d:%d'%(i0,i1),latitude='%d:%d'%(j0,j1))
    lat=netcdf.use(f,'latitude',longitude='%d:%d'%(i0,i1),latitude='%d:%d'%(j0,j1))

    lon,lat=np.meshgrid(lon,lat)
    #if np.all(xl0<0): lon=lon-360 # this may be wrong ... if xl is near 0, lon ay have pos and neg values !!! fix this one day ...
    return lon,lat,u,v, ij
  else: return u,v
Esempio n. 17
0
File: aoscat.py Progetto: jcmt/okean
def make_frc(frcname,grd,date0,date1):
  g=roms.Grid(grd)

  if not os.path.isfile(frcname):
    # create file:
    gen_frc(frcname,grd)
  else:
    last=netcdf.nctime(frcname,'wind_time',wind_time=-1)
    print '-->found file %s with last time %s'%(frcname,last.isoformat())
    date0=last+datetime.timedelta(1/4.) # 6h data

  dates=[date0]
  while dates[-1]<date1:
    dates+=[dates[-1]+datetime.timedelta(1/4.)] # 6h data

  n=-1
  ij=False
  for d in dates:
    n+=1
    if ij is False:
      tmp=read_wind(grd,d,ij=False)
      if isinstance(tmp,basestring): continue # some error, like date not found!
      else: x,y,u,v,ij=tmp
    else:
      tmp=read_wind(grd,d,ij)
      if isinstance(tmp,basestring): continue
      else: u,v=tmp

    U=calc.griddata(x,y,u,g.lon,g.lat,extrap=True)
    V=calc.griddata(x,y,v,g.lon,g.lat,extrap=True)

     # rotate wind,
    print ' --> rot U,V'
    angle=g.use('angle')
    U,V=calc.rot2d(U,V,angle)

    print '  filling %s'%d.isoformat(' ')
    fill_frc(frcname,d,U,V)
Esempio n. 18
0
  def extract(self,year,type,lims=False,date=False):
    a=OSTIAdownload(self.path)
    p=a.destination_folder(year,type)#########level,version,gen=False)
    files=glob.glob(os.path.join(p,'*.nc'))
    files.sort()

    res=OrderedDict()
    c=-1
    for f in files:
      c+=1
      print(' -- extracting from %s'%f)
      if c==0:
        lon=netcdf.use(f,'lon')
        lat=netcdf.use(f,'lat')
        if lims:
          i0,i1,j0,j1=calc.ij_limits(lon,lat,lims[:2],lims[2:],margin=2)
          ii='%d:%d'%(i0,i1+1)
          jj='%d:%d'%(j0,j1+1)
          lon=netcdf.use(f,'lon',lon=ii)
          lat=netcdf.use(f,'lat',lat=jj)
        else: ii,jj=':',':'


      date=netcdf.nctime(f,'time')[0]
      u=netcdf.use(f,'analysed_sst',lon=ii,lat=jj)
      if c==0:
        sst=np.ma.zeros((len(files),)+u.shape,u.dtype)
        time=np.zeros(len(files),datetime.datetime)

      sst[c]=u
      time[c]=date

###      date0=netcdf.nctime(f,'date_start')[0]
###      date1=netcdf.nctime(f,'date_stop')[0]
#      res[date]=sst
#####  return lon,lat,res

    return time,lon,lat,sst
Esempio n. 19
0
def read_wind(grd,date,ij=False):
  f=source(date)
  print '-- reading from %s'%f
  time=netcdf.nctime(f,'time')
  try:
    i=np.where(time==date)[0][0]
  except:
    return 'date %s not found'%d.isoformat(' ')

  returnXY=False
  if ij is False:
    returnXY=True
    lon=netcdf.use(f,'lon')
    lat=netcdf.use(f,'lat')
    g=roms.Grid(grd)
    xl0=np.asarray((g.lon.min(),g.lon.max()))
    xl=np.asarray((g.lon.min(),g.lon.max()))
    if np.all(xl<0): xl=xl+360
    elif np.any(xl<0) and np.any(xl>0):
      print 'ERROR: zero crossing not implemented !!!'
      print 'can be done with mpl_toolkits.basemap.shiftgrid ... TODO'
      print '(http://matplotlib.org/basemap/api/basemap_api.html)'
      return

    yl=g.lat.min(),g.lat.max()
    ij=calc.ij_limits(lon,lat,xl,yl,margin=1)

  i0,i1,j0,j1=ij
  u=netcdf.use(f,'uwnd',lon='%d:%d'%(i0,i1),lat='%d:%d'%(j0,j1),time=i)
  v=netcdf.use(f,'vwnd',lon='%d:%d'%(i0,i1),lat='%d:%d'%(j0,j1),time=i)
  if returnXY:
    lon=netcdf.use(f,'lon',lon='%d:%d'%(i0,i1),lat='%d:%d'%(j0,j1))
    lat=netcdf.use(f,'lat',lon='%d:%d'%(i0,i1),lat='%d:%d'%(j0,j1))
    lon,lat=np.meshgrid(lon,lat)
    if np.all(xl0<0): lon=lon-360 # this may be wrong ... if xl is near 0, lon ay have pos and neg values !!! fix this one day ...
    return lon,lat,u,v, ij
  else: return u,v
Esempio n. 20
0
def plt_wind(conf, plconf, date, FA='a', nest=0, **kargs):
    err = ''
    fig = False
    info = ''

    ifig = kargs.get('ifig', 0)
    day = kargs.get('day', 0)
    quiet = kargs.get('quiet', 0)

    time = day
    date = dateu.parse_date(date)

    # find input files:
    args = {'cf': conf, 'date': date, 'FA': FA, 'nest': nest}
    atm = opt.nameof('in', 'blk', **args)
    grd = opt.nameof('in', 'grd', **args)
    if not os.path.isfile(atm):
        err = 'ATM file not found (%s)' % atm
        return err, fig, info
    if not os.path.isfile(grd):
        err = 'Grid file not found (%s)' % grd
        return err, fig, info

    Data, err = opt.get_plconf(plconf, 'WIND')
    dcurr = Data['dcurr'][ifig]
    lcurr = Data['lcurr'][ifig]
    scurr = Data['scurr'][ifig]
    clim = Data['clim'][ifig]
    tind = Data['time'][ifig]

    x = netcdf.use(grd, 'lon_rho')
    y = netcdf.use(grd, 'lat_rho')
    wtime = netcdf.nctime(atm, 'time')
    cnd = (wtime >= date + datetime.timedelta(days=day)) & (
        date < date + datetime.timedelta(days=day + 1))
    u = netcdf.use(atm, 'Uwind', time=cnd)
    v = netcdf.use(atm, 'Uwind', time=cnd)
    if tind == 'dailyMean':
        u = u.mean(0)
        v = v.mean(0)
        sdate = wtime[cnd][
            0]  # for title... 1st day 00h is expected to be 1st date,
        # or model should not run!
    else:  # tind of some day, ex: tind 0 from forec day 3
        u = u[tind]
        v = v[tind]
        sdate = wtime[cnd][tind]

    if day > len(u) - 1:
        err = 'Invalid day %d (max=%d)' % (day, len(u) - 1)
        return err, fig, info

    # plot grid:
    proj, fig, ax = plt_grid(plconf, grd, ifig)

    # no mask on land:
    mask = np.zeros(u.shape, 'bool')
    mask[::dcurr[0], ::dcurr[1]] = True
    xm, ym = proj(x, y)

    s = np.sqrt(u**2 + v**2)
    q = pl.quiver(xm[mask],
                  ym[mask],
                  u[mask],
                  v[mask],
                  s[mask],
                  scale=scurr,
                  zorder=100)

    pl.clim(clim[0], clim[1])

    def add_colorbar(handle, **args):
        ax = pl.gca()
        Data, err = opt.get_plconf(plconf, 'AXES')
        cbpos = Data['cbpos'][ifig]
        cbbgpos = Data['cbbgpos'][ifig]
        cbbgc = Data['cbbgcolor'][ifig]
        cbbga = Data['cbbgalpha'][ifig]
        cblab = Data['cblabel'][ifig]

        # colorbar bg axes:
        if cbbgpos:
            rec = pl.axes((cbpos[0] - cbpos[2] * cbbgpos[0],
                           cbpos[1] - cbbgpos[2] * cbpos[3], cbpos[2] *
                           (1 + cbbgpos[0] + cbbgpos[1]), cbpos[3] *
                           (1 + cbbgpos[2] + cbbgpos[3])),
                          axisbg=cbbgc,
                          frameon=1)

            rec.patch.set_alpha(cbbga)
            rec.set_xticks([])
            rec.set_yticks([])
            for k in rec.axes.spines.keys():
                rec.axes.spines[k].set_color(cbbgc)
                rec.axes.spines[k].set_alpha(cbbga)

        # colorbar:
        if cbpos:
            cbax = fig.add_axes(cbpos)
            if cbpos[2] > cbpos[3]: orient = 'horizontal'
            else: orient = 'vertical'
            cb = pl.colorbar(handle,
                             cax=cbax,
                             orientation=orient,
                             drawedges=0,
                             **args)
            pl.axes(ax)

            # colorbar label:
            cb.set_label(r'Wind Speed [m s$^{\rm{-1}}$]')

    def add_currkey(handle):
        pos = Data['kcurrpos'][ifig]
        if pos:
            pl.quiverkey(handle,
                         pos[0],
                         pos[1],
                         lcurr,
                         '%s m/s' % str(lcurr),
                         labelpos='S',
                         coordinates='axes')

    add_colorbar(q)
    add_currkey(q)

    # tilte:
    Title, err = opt.get_plconf(plconf, 'AXES', 'title')
    if Title[ifig]:
        simpleTitle = 1

        rdate = date.strftime('%d-%m-%Y')
        title = 'wind %s %s %d' % (rdate, FA, day)

        if simpleTitle:  # simpler version of title:
            if FA == 'f':  # forecast date:
                rdate = dateu.next_date(date, day)
                rdate = rdate.strftime('%d-%m-%Y')

            title = 'wind %s' % (rdate)
            if FA == 'f':
                title = title + ' (forec)'

        pl.title(title)

    # logo:
    if ifig == 0:
        im = os.path.join(os.path.dirname(__file__), 'logo_INOCAR.png')
        i = pl.imread(im)
        h, w = i.shape[:2]
        rx = .12
        W = (proj.xmax - proj.xmin) * rx
        H = W * h / w
        l = proj.xmax
        #pl.fill([proj.xmax-W, proj.xmax, proj.xmax,     proj.xmax-W],
        #           [proj.ymin,   proj.ymin, proj.ymin+2.8*H, proj.ymin+2.8*H],
        #           '#500000',alpha=0.25,ec='none')

        ax.imshow(i,
                  extent=(proj.xmax * .98 - W, proj.xmax * .98,
                          proj.ymin + H * .1, proj.ymin + H * 1.1),
                  zorder=1e3)
        #pl.text(proj.xmax-W/2., proj.ymin+2.2*H,'OOF',
        #           fontdict={'size':14,'family':'serif'},
        #           color='#500000',ha='center',weight='bold')

        pl.text(
            proj.xmax * .8,
            proj.ymax * (-.1),
            sdate.strftime("%d %b %Y"),
            #pl.text(proj.xmax*.62, proj.ymax*.93,sdate.strftime("%d %b %Y"),
            fontdict={
                'size': 13,
                'family': 'monospace'
            },
            ha='center')
        # change date format if tind is not daily mean, ie, add hour, etc

        if FA == 'f':
            s = 'Pronostico desde %s' % date.strftime("%d %b %Y")
            pl.text(
                proj.xmax * .8,
                proj.ymax * (-.15),
                s,  ##this is outside
                #pl.text(proj.xmax-W/2., proj.ymin+1.1*H,s, ##this is in the proj (inside)
                fontdict={'fontsize': 10},
                ha='center')
    # logo.

    # lims change in some mpl versions !!
    pl.gca().axis([proj.xmin, proj.xmax, proj.ymin, proj.ymax])

    return err, fig, info
Esempio n. 21
0
File: gnome.py Progetto: jcmt/okean
def frc2gnome(fname,frc,grd,xylim=False,dates=False,ij=(1,1),**kargs):
  '''
  Creates GNOME wind file
  kargs:
    t[u,v]var
    t[u,v]dim
    x[y,ang]var

  Ex:
    .frc2gnome(out,frc,grd,ij=(10,10),dates=dates,**{'tdim':'Time'})
  '''

  deta,dxi=ij

  tvar='time'
  uvar='Uwind'
  vvar='Vwind'
  #tvar='bulk_time'
  #uvar='uwnd'
  #vvar='vwnd'

  tdim='time'
  #tdim='bulk_time'
  xdim='xi_rho'
  ydim='eta_rho'

  xvar='lon_rho'
  yvar='lat_rho'
  angvar='angle'

  if 'tvar' in kargs.keys(): tvar=kargs['tvar']
  if 'uvar' in kargs.keys(): uvar=kargs['uvar']
  if 'vvar' in kargs.keys(): vvar=kargs['vvar']

  if 'tdim' in kargs.keys(): tdim=kargs['tdim']
  if 'xdim' in kargs.keys(): xdim=kargs['xdim']
  if 'ydim' in kargs.keys(): ydim=kargs['ydim']

  if 'xvar' in kargs.keys(): xvar=kargs['xvar']
  if 'yvar' in kargs.keys(): yvar=kargs['yvar']
  if 'angvar' in kargs.keys(): angvar=kargs['angvar']


  dims=netcdf.fdim(grd)
  xi,eta=dims[xdim],dims[ydim]
  xi0,eta0=xi,eta

  ncg=netcdf.ncopen(grd)

  nc0=netcdf.ncopen(frc)
  try:
   t=netcdf.nctime(nc0,tvar)
  except:
    t=netcdf.use(nc0,tvar)
    t=netcdf.num2date(t,'days since %d-01-01' % year0)

  time=netcdf.date2num(t,tunits)

  x0=netcdf.use(grd,xvar)
  y0=netcdf.use(grd,yvar)
  if x0.ndim==1: x0,y0=np.meshgrid(x0,y0)

  if angvar:
    ang=netcdf.use(grd,angvar)

  if not xylim is False:
    xlim=xylim[:2]
    ylim=xylim[2:]
    i1,i2,j1,j2=calc.ij_limits(x0,y0,xlim,ylim)
    xi=i2-i1
    eta=j2-j1
  else:
    i1,i2=0,xi
    j1,j2=0,eta

  XI  ='%d:%d:%d' %(i1,i2,dxi)
  ETA ='%d:%d:%d' %(j1,j2,deta)

  xi=len(range(i1,i2,dxi))
  eta=len(range(j1,j2,deta))

  # create file:
  create_wind(fname,xi,eta)

  nc=netcdf.ncopen(fname,'a')

  x=x0[j1:j2:deta,i1:i2:dxi]
  y=y0[j1:j2:deta,i1:i2:dxi]

  nc.vars['lon'][:]=x
  nc.vars['lat'][:]=y
  if angvar: ang=ang[j1:j2:deta,i1:i2:dxi]

  n=-1
  for it in range(len(time)):

    if not dates is False:
      d0,d1=dates
      if t[it]<d0 or t[it]>=d1: continue

    n+=1
    u=netcdf.use(nc0,uvar,**{xdim:XI,ydim:ETA,tdim:it})
    v=netcdf.use(nc0,vvar,**{xdim:XI,ydim:ETA,tdim:it})

    # rotate uv:
    if angvar:
      print 'rotating ...'
      u,v=calc.rot2d(u,v,-ang)


    nc.vars['time'][n]=time[it]
    print 'filling uv',n,t[it]
    nc.vars['air_u'][n,...]=u
    nc.vars['air_v'][n,...]=v


  nc.close()
  nc0.close()
  ncg.close()
Esempio n. 22
0
def update_wind_blended2(fname, datapaths, **kargs):
    """
  In days without blended data will try to use quikscat data
  """
    from okean.datasets import quikscat
    from okean.datasets import blended_wind

    a = blended_wind.WINDData(datapaths[0])
    b = quikscat.WINDData(datapaths[1])

    time = netcdf.nctime(fname, "time")
    date0 = dts.next_date(time[0], -1)
    date1 = dts.next_date(time[-1], +2)

    data = a.data(date0, date1)

    # limit are... otherwise, quikscat interp will be very slow!
    grd = netcdf.fatt(fname, "grd_file")
    import os

    if not os.path.isfile(grd):
        grd = kargs["grd"]
    cond, inds = rt.grid_vicinity(grd, data["x"], data["y"], margin=5, rect=True, retinds=True)
    i1, i2, j1, j2 = inds
    for d in data.keys():
        if d == "x":
            data[d] = data[d][i1:i2]
        elif d == "y":
            data[d] = data[d][j1:j2]
        else:
            data[d] = data[d][j1:j2, i1:i2]

    # check for missing days:
    time0 = data.keys()
    x0 = data["x"]
    y0 = data["y"]
    x0, y0 = np.meshgrid(x0, y0)
    time0.remove("x")
    time0.remove("y")

    out = cb.odict()
    out["x"] = x0
    out["y"] = y0
    info = ""
    qs_ij_limits_done = False
    for d in dts.drange(date0, date1):
        found = 0
        for t in time0:
            if (t.year, t.month, t.day) == (d.year, d.month, d.day):
                print "==> blended : ", t
                out[t] = data[t]
                found = 1

        if not found:  # use quikscat:
            print "==> quikscat : ", d.strftime("%Y-%m-%d")
            tmp = b.data(d, dts.next_date(d))
            if not tmp.has_key("x"):
                continue
            x, y = tmp["x"], tmp["y"]
            x, y = np.meshgrid(x, y)

            # reduce qs data:
            if not qs_ij_limits_done:
                i1, i2, j1, j2 = calc.ij_limits(x, y, [x0.min(), x0.max()], [y0.min(), y0.max()])
                qs_ij_limits_done = True

            x = x[j1:j2, i1:i2]
            y = y[j1:j2, i1:i2]
            tmp[tmp.keys()[0]] = tmp[tmp.keys()[0]][j1:j2, i1:i2]

            print "  griddata u"
            u = calc.griddata(x, y, tmp[tmp.keys()[0]].real, x0, y0)
            print "  griddata v"
            v = calc.griddata(x, y, tmp[tmp.keys()[0]].imag, x0, y0)
            out[tmp.keys()[0]] = u + 1.0j * v
            info += "#" + d.strftime("%Y%m%d")

    new_wind_info = "blended+quikscat at days: " + info
    update_wind(fname, out, new_wind_info, **kargs)
Esempio n. 23
0
def roms2swan_wind(frc,date0,date1,fname='swan_wind.dat',**kargs):
  tname='wind_time'
  uname='Uwind'
  vname='Vwind'
  grd=False # needed if wind is 1d
  dt=1 # hours
  path=''
  if 'tname' in kargs.keys(): tname=kargs['tname']
  if 'uname' in kargs.keys(): uname=kargs['uname']
  if 'vname' in kargs.keys(): vname=kargs['vname']
  if 'grd'   in kargs.keys(): grd  =kargs['grd']
  if 'dt'    in kargs.keys(): dt   =kargs['dt']
  if 'path'  in kargs.keys(): path =kargs['path']
 
  print 'wind: loading time ...' 
  
  time=netcdf.nctime(frc,tname)
  #time=np.load('tfile')
  #cond=(time>=date0)&(time<=date1)
  cond=(time>=date0)&(time<=date1+datetime.timedelta(days=1)) # add one day at the end, just to avoid the "repeating last"
  time=time[cond]
  d=np.diff(pl.date2num(time))
  print 'current max and min dt = %6.2f %6.2f hrs = %6.2f %6.2f mins'%(d.max()*24, d.min()*24, d.max()*24*60, d.min()*24*60)
#  time=time[::dt]
#  d=np.diff(pl.date2num(time))
#  print ' final  max and min dt = %6.2f %6.2f hrs = %6.2f %6.2f mins'%(d.max()*24, d.min()*24, d.max()*24*60, d.min()*24*60)

  print 'wind: loading u ...' 
  u,nc=netcdf.var(frc,uname)
  print 'wind: loading v ...' 
  v,nc=netcdf.var(nc,uname)
#  u=u[cond,...][::dt,...]
#  v=v[cond,...][::dt,...]
  u=u[cond,...]
  v=v[cond,...]
  nc.close()


  if u.ndim==1:
    if not grd:
      print 'must provide grd karg!'
      return

    nt=u.size
    eta=netcdf.fdim(grd)['eta_rho']
    xi=netcdf.fdim(grd)['xi_rho']
  else:
    nt,eta,xi=u.shape

# array may be too big, so do this later (for each it)
#
#    u=np.tile(u[:,np.newaxis,np.newaxis],(1,eta,xi))
#    v=np.tile(v[:,np.newaxis,np.newaxis],(1,eta,xi))



  i=open(fname,'w')

  times=[]
  time0=time[0]-datetime.timedelta(hours=dt)
  ITs=[]
  for it in range(nt):
    time0=time0+datetime.timedelta(hours=dt)
    if time0>date1: break

    if time0>time[-1]:
      print 'Warning : repeating last ...', it

    times+=[time0]
    d=np.abs(time-time0)
    it=np.where(d==d.min())[0][0]
    ITs+=[it]

    if it%100==0: print 'saving u %s %s'%(fname,time[it].isoformat(' '))
    if u[it,...].ndim==0:
      U=np.tile(u[it,...],(eta,xi)).flatten()
    else:
      U=u[it,...].flatten()

    [i.write('%8.4f\n'%uu) for uu in U]

  for it in ITs:
    if it%100==0: print 'saving v %s %s'%(fname,time[it].isoformat(' '))
    if v[it,...].ndim==0:
      V=np.tile(v[it,...],(eta,xi)).flatten()
    else:
      V=v[it,...].flatten()

    [i.write('%8.4f\n'%vv) for vv in V]



  times=np.asarray(times)
  t0iso=times[0].strftime('%Y%m%d.%H%M%S')
  t1iso=times[-1].strftime('%Y%m%d.%H%M%S')
  dt=times[1]-times[0]
  dth=dt.days*24. + dt.seconds/60.**2

  print ' -- created swan wind file %s\n'%fname

  # add to swan INPUT:
  print '\n'
  print 'INPGRID WIND CURVILINEAR 0 0 %d %d EXC 9.999000e+003 &'%(xi-1,eta-1)
  print '       NONSTATIONARY %s %.2f HR %s'%(t0iso,dth,t1iso)
  print 'READINP WIND 1 \'%s\' 4 0 FREE '%(os.path.join(path,fname))
  print '\n'
import matplotlib.pyplot as plt
from matplotlib.dates import MO, TU, WE, TH, FR, SA, SU

# <markdowncell>

# Lets use some ROMS-ESPRESSO output and load info from a glider:

# <codecell>

froms='http://tds.marine.rutgers.edu/thredds/dodsC/roms/espresso/2009_da/his'
fglider='http://tds.marine.rutgers.edu/thredds/dodsC/cool/glider/mab/Gridded/20121025T000000_20121105T000000_maracoos_ru23.nc'
fglider='http://tds.marine.rutgers.edu:8080/thredds/dodsC/cool/glider/all/ru23-20121025T1944.ncCFMA.nc3.nc'

x=netcdf.use(fglider,'longitude')
y=netcdf.use(fglider,'latitude')
t=netcdf.nctime(fglider,'time')

a=glider.RomsGlider(froms,x,y,t)
a.plot()

# <markdowncell>

# Extract and plot the glider data

# <codecell>

z=netcdf.use(fglider,'depth')
v=netcdf.use(fglider,'temperature')

# <codecell>
Esempio n. 25
0
def frc2gnome(fname, frc, grd, xylim=False, dates=False, ij=(1, 1), **kargs):
    '''
  Creates GNOME wind file
  kargs:
    t[u,v]var
    t[u,v]dim
    x[y,ang]var

  Ex:
    .frc2gnome(out,frc,grd,ij=(10,10),dates=dates,**{'tdim':'Time'})
  '''

    deta, dxi = ij

    tvar = 'time'
    uvar = 'Uwind'
    vvar = 'Vwind'
    #tvar='bulk_time'
    #uvar='uwnd'
    #vvar='vwnd'

    tdim = 'time'
    #tdim='bulk_time'
    xdim = 'xi_rho'
    ydim = 'eta_rho'

    xvar = 'lon_rho'
    yvar = 'lat_rho'
    angvar = 'angle'

    if 'tvar' in kargs.keys(): tvar = kargs['tvar']
    if 'uvar' in kargs.keys(): uvar = kargs['uvar']
    if 'vvar' in kargs.keys(): vvar = kargs['vvar']

    if 'tdim' in kargs.keys(): tdim = kargs['tdim']
    if 'xdim' in kargs.keys(): xdim = kargs['xdim']
    if 'ydim' in kargs.keys(): ydim = kargs['ydim']

    if 'xvar' in kargs.keys(): xvar = kargs['xvar']
    if 'yvar' in kargs.keys(): yvar = kargs['yvar']
    if 'angvar' in kargs.keys(): angvar = kargs['angvar']

    dims = netcdf.fdim(grd)
    xi, eta = dims[xdim], dims[ydim]
    xi0, eta0 = xi, eta

    ncg = netcdf.ncopen(grd)

    nc0 = netcdf.ncopen(frc)
    try:
        t = netcdf.nctime(nc0, tvar)
    except:
        t = netcdf.use(nc0, tvar)
        t = netcdf.num2date(t, 'days since %d-01-01' % year0)

    time = netcdf.date2num(t, tunits)

    x0 = netcdf.use(grd, xvar)
    y0 = netcdf.use(grd, yvar)
    if x0.ndim == 1: x0, y0 = np.meshgrid(x0, y0)

    if angvar:
        ang = netcdf.use(grd, angvar)

    if not xylim is False:
        xlim = xylim[:2]
        ylim = xylim[2:]
        i1, i2, j1, j2 = calc.ij_limits(x0, y0, xlim, ylim)
        xi = i2 - i1
        eta = j2 - j1
    else:
        i1, i2 = 0, xi
        j1, j2 = 0, eta

    XI = '%d:%d:%d' % (i1, i2, dxi)
    ETA = '%d:%d:%d' % (j1, j2, deta)

    xi = len(range(i1, i2, dxi))
    eta = len(range(j1, j2, deta))

    # create file:
    create_wind(fname, xi, eta)

    nc = netcdf.ncopen(fname, 'a')

    x = x0[j1:j2:deta, i1:i2:dxi]
    y = y0[j1:j2:deta, i1:i2:dxi]

    nc.vars['lon'][:] = x
    nc.vars['lat'][:] = y
    if angvar: ang = ang[j1:j2:deta, i1:i2:dxi]

    n = -1
    for it in range(len(time)):

        if not dates is False:
            d0, d1 = dates
            if t[it] < d0 or t[it] >= d1: continue

        n += 1
        u = netcdf.use(nc0, uvar, **{xdim: XI, ydim: ETA, tdim: it})
        v = netcdf.use(nc0, vvar, **{xdim: XI, ydim: ETA, tdim: it})

        # rotate uv:
        if angvar:
            print('rotating ...')
            u, v = calc.rot2d(u, v, -ang)

        nc.vars['time'][n] = time[it]
        print('filling uv', n, t[it])
        nc.vars['air_u'][n, ...] = u
        nc.vars['air_v'][n, ...] = v

    nc.close()
    nc0.close()
    ncg.close()
Esempio n. 26
0
def update_wind(fname,data,new_wind_info,**kargs):
  '''
  new_wind_info will be added to fname as global attribute
  (ex: 'new wind from database xxx')

  '''
  quiet  = False
  Margin = 4 # for griddata and for original data to keep
  grd    = False
  keepOriginal = 2

  for k in kargs.keys():
    if   k=='quiet':  quiet=kargs[k]
    elif k=='margin': Margin=kargs[k]
    elif k=='grid':   grd=kargs[k]
    elif k.lower().startswith('keepor'): keepOriginal=kargs[k]

  if not grd: grd=netcdf.fatt(fname,'grd_file')
  g=roms.Grid(grd)

  x0=data['x']
  y0=data['y']
  if x0.ndim==1: x0,y0=np.meshgrid(x0,y0)
  dates=data.keys()[:]
  dates.remove('x')
  dates.remove('y')
  dates=np.array(dates)


  # interp in time:
  time=netcdf.nctime(fname,'time')
  cond=False
  tind=-1
  fob=gennc.GenBlk(fname,grd)
  for t in time:
    newWind={}
    tind+=1

    I,=np.where(dates==t)
    if I.size:
      I=I[0]
      uv=data[dates[I]]
      if not quiet: print(t,dates[I])
    else:
      i1,=np.where(dates>t)
      i0,=np.where(dates<t)
      if i0.size and i1.size:
        i1=i1[0]
        i0=i0[-1]
        d0=t-dates[i0]
        d1=dates[i1]-t
        d0=d0.days+d0.seconds/86400.
        d1=d1.days+d1.seconds/86400.
        uv=(data[dates[i0]]*d1+data[dates[i1]]*d0)/(d0+d1)
        if not quiet: print(t,dates[i0],dates[i1], d0,d1)
      elif not i1.size:
        uv=data[dates[-1]]
        if not quiet: print(t,dates[-1])
      elif not i0.size:
        uv=data[dates[0]]
        if not quiet: print(t,dates[0])

    # interp to grid:
    if cond is False:
      cond,inds=rt.grid_vicinity(grd,x0,y0,margin=Margin,rect=True,retinds=True)
      i1,i2,j1,j2=inds

    if not quiet: print(' --> inter uv %s' % t.isoformat(' '))
    u=calc.griddata(x0[cond],y0[cond],uv.real[cond],g.lon,g.lat,extrap=True)
    v=calc.griddata(x0[cond],y0[cond],uv.imag[cond],g.lon,g.lat,extrap=True)


    # rotate wind, calc stress:
    if not quiet: print(' --> rot U,V wind and U,V wind stress')
    wspd=np.sqrt(u**2+v**2)
    sustr,svstr=air_sea.wind_stress(u,v)
    angle=g.use('angle')
    uwnd,vwnd=calc.rot2d(u,v,angle)
    sustr,svstr=calc.rot2d(sustr,svstr,angle)
    sustr=rt.rho2uvp(sustr,'u')
    svstr=rt.rho2uvp(svstr,'v')

    # update wind data:
    newWind['date']  = t
    newWind['uwnd']  = uwnd
    newWind['vwnd']  = vwnd
    newWind['sustr'] = sustr
    newWind['svstr'] = svstr
    newWind['wspd']  = wspd
    # original xy:
    if tind==0:
      newWind['attr']={'new_wind_info':new_wind_info}
      if not quiet: print(' --> original xy')
      if keepOriginal==1:
        newWind['x_wind']=x0
        newWind['y_wind']=y0
      elif keepOriginal==2:
        newWind['x_wind']=x0[j1:j2,i1:i2]
        newWind['y_wind']=y0[j1:j2,i1:i2]


    # add to file:
    if not quiet: print(' --> adding to file')
    fob.update_wind(newWind,quiet=quiet)
    if not quiet: print('')
Esempio n. 27
0
def load_data(f,quiet=0,**kargs):
  '''
  Loads prognostic variables (temp,salt,u,v,ubar,vbar,zeta) from
  netcdf file or opendap server. Also loads lon,lat, depth, and time.

  If f is a file, it must include the 1d variables lon,lat and depth;
  the 2d variable ssh (zeta) and the 3d variables temp, salt, u and v;
  ie, each file must contain data for a simgle time. The file must also
  contain the variable time.

  If f is a opendap address, it must contain also all these variables
  or the ones defined in the input karg settings (DataAccess object)

  To deal with the case of variables in different files/opendap addresses,
  f can also be a dictionary with keys the variables and values the files
  or opendap addresses. In this case, the keys must be:
    - temp
    - salt
    - u
    - v
    - ssh
    - misc, for lon, lat, depth, time and dimensions
      or xy for lon,lat and x,ydim; z for depth and zdim, time for time

  The output data (dict) is suitable to be used by data2roms, which
  interpolates the data to ROMS 3d grid.
  Also outputs an error/status string.

  kargs:
    inds, dict with dimension names/values (where time dim can be integer
          or datetime)
    settings, DataAccess object
    extra, extra misc vars to load [(outKey0,fileVar0),...]
    t_units, units of variable time, by default the att  units is used
  '''

  sett=DataAccess()
  inds={}
  extra=[]
  t_units=[]
  if 'settings' in kargs.keys(): sett    = kargs['settings']
  if 'inds'     in kargs.keys(): inds    = kargs['inds']
  if 'extra'    in kargs.keys(): extra   = kargs['extra']
  if 't_units'  in kargs.keys(): t_units = kargs['t_units']

  res={}
  msg=''

  if not isinstance(f,dict) and not f.startswith('http') and not isfile(f):
    msg='file not found %s' % f
    if not quiet: print msg
    return res, msg

  # load nc files:
  if not isinstance(f,dict):
    f={'temp':f,'salt':f,'u':f,'v':f,'ssh':f,'misc':f}

  if not f.has_key('xy'):   f['xy']   = f['misc']
  if not f.has_key('z'):    f['z']    = f['misc']
  if not f.has_key('time'): f['time'] = f['misc']

  filesUsed=[]
  ncUsed=[]
  for i in f.keys():
    if not quiet: print '(%s) loading from %s' % (i.ljust(5),f[i])

    if i=='temp':
      if f[i] in filesUsed: ncTemp=ncUsed[filesUsed.index(f[i])]
      else:
        ncTemp=netcdf.ncopen(f[i])
        filesUsed+=[f[i]]
        ncUsed+=[ncTemp]

    elif i=='salt':
      if f[i] in filesUsed: ncSalt=ncUsed[filesUsed.index(f[i])]
      else:
        ncSalt=netcdf.ncopen(f[i])
        filesUsed+=[f[i]]
        ncUsed+=[ncSalt]

    elif i=='u':
      if f[i] in filesUsed: ncU=ncUsed[filesUsed.index(f[i])]
      else:
        ncU=netcdf.ncopen(f[i])
        filesUsed+=[f[i]]
        ncUsed+=[ncU]

    elif i=='v':
      if f[i] in filesUsed: ncV=ncUsed[filesUsed.index(f[i])]
      else:
        ncV=netcdf.ncopen(f[i])
        filesUsed+=[f[i]]
        ncUsed+=[ncV]

    elif i=='ssh':
      if f[i] in filesUsed: ncSsh=ncUsed[filesUsed.index(f[i])]
      else:
        ncSsh=netcdf.ncopen(f[i])
        filesUsed+=[f[i]]
        ncUsed+=[ncSsh]

    elif i=='xy':
      if f[i] in filesUsed: ncXy=ncUsed[filesUsed.index(f[i])]
      else:
        ncXy=netcdf.ncopen(f[i])
        filesUsed+=[f[i]]
        ncUsed+=[ncXy]

    elif i=='z':
      if f[i] in filesUsed: ncZ=ncUsed[filesUsed.index(f[i])]
      else:
        ncZ=netcdf.ncopen(f[i])
        filesUsed+=[f[i]]
        ncUsed+=[ncZ]

    elif i=='time':
      if f[i] in filesUsed: ncTime=ncUsed[filesUsed.index(f[i])]
      else:
        ncTime=netcdf.ncopen(f[i])
        filesUsed+=[f[i]]
        ncUsed+=[ncTime]

    elif i=='misc':
      if f[i] in filesUsed: ncMisc=ncUsed[filesUsed.index(f[i])]
      else:
        ncMisc=netcdf.ncopen(f[i])
        filesUsed+=[f[i]]
        ncUsed+=[ncMisc]


  # load dims:
  if not quiet: print '  loading dims...'
  dimsXy=netcdf.fdim(ncXy)
  dimsZ =netcdf.fdim(ncZ)

  res['NX']=dimsXy[sett.xdim]
  res['NY']=dimsXy[sett.ydim]
  ###if sett.z_name:
  if sett.zdim:
    res['NZ']=dimsZ[sett.zdim]
  else:
    res['NZ']=1

  # about horizontal inds:
  if inds.has_key(sett.xdim) and len(inds[sett.xdim])==2 and not isinstance(inds[sett.xdim],basestring):
    if not quiet: print '  calc horizontal inds...'
    xlim=inds[sett.xdim]
    ylim=inds[sett.ydim]

    inds.pop(sett.xdim)
    inds.pop(sett.ydim)

    lon=netcdf.use(ncXy,sett.x_name,**inds)
    if np.any(lon>360): lon=np.mod(lon,360.)
    lat=netcdf.use(ncXy,sett.y_name,**inds)
    i0,i1,j0,j1=calc.ij_limits(lon,lat,xlim,ylim,margin=3)
    inds[sett.xdim]='%d:%d' % (i0,i1)
    inds[sett.ydim]='%d:%d' % (j0,j1)


  if not quiet: print '  loading lon, lat, depth...'
  res['lon']  = netcdf.use(ncXy,sett.x_name,**inds)
  if np.any(res['lon']>360): res['lon']=np.mod(res['lon'],360.)
  res['lat']  = netcdf.use(ncXy,sett.y_name,**inds)
  if sett.z_name:
    res['depth'] = -netcdf.use(ncZ,sett.z_name,**inds)
  else: res['depth']=False

  if res['lon'].size!=res['lat'].size:
    res['lon'],res['lat']=np.meshgrid(res['lon'],res['lat'])
    # needed for griddata, later

  # update nx,ny:
  if inds.has_key(sett.xdim):
    res['NY'],res['NX']=res['lon'].shape

  # extra misc vars:
  if len(extra):
    for outKey,fileVar in extra:
      if not quiet: print '  loading extra misc... %s %s' % (outKey,fileVar)
      res[outKey]=netcdf.use(ncMisc,fileVar,**inds)


  # time:
  # file may have one or several times. If several, time dim must be given
  # with kargs inds!
  if not quiet: print '  loading time...'
  if t_units:
    times=netcdf.use(ncTime,sett.time_name)
    times=netcdftime.num2date(times,t_units)
  else:
    times=netcdf.nctime(ncTime,sett.time_name)

  if inds.has_key(sett.tdim):
    try: tind=dts.parse_date(inds[sett.tdim])
    except: tind=inds[sett.tdim] # is an integer, for instance

    if isinstance(tind,datetime.datetime):
      tind,=np.where(times==tind)
      if tind.size:
        tind=tind[0]
        inds[sett.tdim]=tind # update inds to extract other variables
      else:
        Msg='date not found'
        msg+='\n'+Msg
        return res,msg+' ERROR'

    date=times[tind]
    if not quiet: print '    tind, date= %d %s' % (tind,date.isoformat(' '))

  elif times.size==1:
    date=times[0]
    if not quiet: print '    date= %s' % date.isoformat(' ')
  else: # must provide tind as input!!
    Msg='several dates in file... provice tind!'
    msg+='\n'+Msg
    return res,msg+' ERROR'

  res['date'] = date

  empty3d=np.zeros([res['NZ'],res['NY'],res['NX']])
  empty2d=np.zeros([res['NY'],res['NX']])

  if 'temp' in f.keys():
    if not quiet: print '  loading temp...'
    if sett.temp_name in ncTemp.varnames: res['temp'] = netcdf.use(ncTemp,sett.temp_name,**inds)
    else:
      Msg='var %s not found' % 'temp'
      msg+='\n'+Msg
      if not quiet: print Msg
      res['temp']=empty3d

  if 'salt' in f.keys():
    if not quiet: print '  loading salt...'
    if sett.salt_name in ncSalt.varnames: res['salt'] = netcdf.use(ncSalt,sett.salt_name,**inds)
    else:
      Msg='var %s not found' % 'salt'
      msg+='\n'+Msg
      if not quiet: print Msg
      res['salt']=empty3d

  if 'u' in f.keys():
    if not quiet: print '  loading u...'
    if sett.u_name in ncU.varnames: res['u']    = netcdf.use(ncU,sett.u_name,**inds)
    else:
      Msg='var %s not found' % 'u'
      msg+='\n'+Msg
      if not quiet: print Msg
      res['u']=empty3d

  if 'v' in f.keys():
    if not quiet: print '  loading v...'
    if sett.v_name in ncV.varnames: res['v']    = netcdf.use(ncV,sett.v_name,**inds)
    else:
      Msg='var %s not found' % 'v'
      msg+='\n'+Msg
      if not quiet: print Msg
      res['v']=empty3d

  if 'ssh' in f.keys():
    if not quiet: print '  loading ssh...'
    if sett.ssh_name in ncSsh.varnames: res['ssh']  = netcdf.use(ncSsh,sett.ssh_name,**inds)
    else:
      Msg='var %s not found' % 'ssh'
      msg+='\n'+Msg
      if not quiet: print Msg
      res['ssh']=empty2d

  for nc in ncUsed:
    try:  nc.close()
    except: pass

  return res, msg
Esempio n. 28
0
    def update_wind(self, data, keepOld=True, quiet=0):
        # store old at first iteration

        nc = netcdf.Pync(self.filename, 'w')
        time = netcdf.nctime(self.filename, 'time')
        tind, = np.where(time == data['date'])

        if tind.size: tind = tind[0]
        else:
            if not quiet:
                print('cannot find time=%s' % data['date'].isoformat(' '))
            return

        if 'Uwind' in nc.varnames:  # roms
            names = ('Uwind', 'uwnd'), ('Vwind',
                                        'vwnd'), 'sustr', 'svstr', 'wspd'
        else:  # roms-agrif
            names = 'uwnd', 'vwnd', 'sustr', 'svstr', 'wspd'

        # store old wind data:
        if False and tind == 0:  # not using for now.... too slow!
            # TODO: remove keepOld form argument !?
            if 'x_wind' in data.keys():
                if not quiet: print('adding x_wind, y_wind')
                nc.add_dim('x_wind_original', data['x_wind'].shape[1])
                nc.add_dim('y_wind_original', data['x_wind'].shape[0])

                nc.add_var('x_wind_original', data['x_wind'].dtype,
                           ('y_wind_original', 'x_wind_original'))
                nc.add_var('y_wind_original', data['y_wind'].dtype,
                           ('y_wind_original', 'x_wind_original'))

                nc.vars['x_wind_original'][...] = data['x_wind']
                nc.vars['y_wind_original'][...] = data['y_wind']

            for i in names:
                if isinstance(i, basestring): filev, datav = i, i
                else: filev, datav = i

                newName = filev + '_old'
                newType = nc.vars[filev].dtype()
                newDims = nc.vars[filev].dims.keys()

                if not quiet: print('  creating var %s' % newName)
                nc.add_var(newName, newType, newDims)

                if not quiet: print('    filling var %s' % newName)
                nc.vars[newName][...] = nc.vars[filev][...]

                # also store old original data, if present:
                orig = datav + '_original'
                if orig in nc.varnames:
                    newName = orig + '_old'
                    newType = nc.vars[orig].dtype()
                    newDims = nc.vars[orig].dims.keys()

                    if not quiet: print('  creating var %s' % newName)
                    nc.add_var(newName, newType, newDims)

                    if not quiet: print('    filling var %s' % newName)
                    nc.vars[newName][...] = nc.vars[orig][...]

        # store new wind data:
        for i in names:
            if isinstance(i, basestring): filev, datav = i, i
            else: filev, datav = i

            if not quiet:
                print('  %s (%s) min=%8.3f max=%8.3f' %
                      (filev.ljust(7), datav.ljust(7), data[datav].min(),
                       data[datav].max()))
            nc.vars[filev][tind, ...] = data[datav]

            # also store new wind original data, if present:
            orig = datav + '_original'
            if not orig in data.keys(): continue
            if not quiet:
                print('  %s  min=%8.3f max=%8.3f' %
                      (orig.ljust(7 + 9), data[orig].min(), data[orig].max()))
            nc.vars[orig][tind, ...] = data[datav]

        # adding global atts:
        if 'attr' in data.keys():
            for i in data['attr'].keys():
                nc.add_att(i, data['attr'][i])

        nc.close()
Esempio n. 29
0
def cfsr_file_data(files,quiet=False):
  '''
  Returns bulk data from one CFRS files
  '''



  def load_time(f):
    time=np.array((),datetime.datetime)
    ff=glob.glob(f)
    ff.sort()
    for f in ff: time=np.append(time,netcdf.nctime(f,'time'))
    return time


  def load_time_main(f):
    time=load_time(f)
    # I want 0,6,12,... after 2006 results may be 3,9,15, ...
    if time[0].hour in [3,9,15,21]: time=time+datetime.timedelta(hours=3)
    # for 2011 1st time is not 0!
    if time[0].hour==6: time=np.hstack((time[0].replace(hour=0),time))
    return time


  def fix_time(t,var,t0,t1):
    # convert 1h, 7h, ... to 0h, 6h, ...
    if t[0].hour in [1,7,13,19]: # not all! sp analysis starts at 0, 6,...!
      print('     1,7,... to 0,6,...')
      var=(var[1:]*5+var[:-1]*1)/6.
      t=t[1:]-datetime.timedelta(hours=1)
    elif t[0].hour in [3,9,15,21]:
      print('     3,9,... to 0,6,...')
      var=(var[1:]*3+var[:-1]*3)/6.
      t=t[1:]-datetime.timedelta(hours=3)
  
    cond=(t>=t0)&(t<=t1)
    t=t[cond]
    var=var[cond]

    if t[0]>t0:
      dt=t[0]-t0
      dt=dt.days*24+dt.seconds/3600. # hours
      print('missing data at start: %.2d h missing --> repeating 1st data'%dt)
      v=np.zeros((var.shape[0]+1,)+var.shape[1:],var.dtype)
      v[1:]=var
      v[0]=var[0]
      var=v
      t_=np.zeros((t.shape[0]+1,)+t.shape[1:],t.dtype)
      t_[1:]=t
      t_[0]=t0
      t=t_
      

    if t[-1]<t1:
      dt=t1-t[-1]
      dt=dt.days*24+dt.seconds/3600. # hours
      print('missing data at end: %.2d h missing --> repeating last data'%dt)
      v=np.zeros((var.shape[0]+1,)+var.shape[1:],var.dtype)
      v[:-1]=var
      v[-1]=var[-1]
      var=v
      t_=np.zeros((t.shape[0]+1,)+t.shape[1:],t.dtype)
      t_[:-1]=t
      t_[-1]=t1
      t=t_

    return var,t


  out={}

  # time:
  if 0:
    time=netcdf.nctime(files['cc'],'time')
    # files have diff units !! so, cannot load all times at once!
    # these result will use only units of 1st file!!
  else:
    time=load_time_main(files['cc'])


  out['time']=time

  # T air [K->C]
  if not quiet: print(' --> T air')
  f=files['st']
  tair=netcdf.use(f,'TMP_L103')
  tair=tair-273.15
  x=netcdf.use(f,'lon'); x[x>180]=x[x>180]-360
  y=netcdf.use(f,'lat')
  x,y=np.meshgrid(x,y)
  # check time:
  ttmp=load_time(f)
  if ttmp.size==time.size and np.all(ttmp==time): print('    time ok')
  else:
    print('   time differs !!!!',)
    tair,tfix=fix_time(ttmp,tair,time[0],time[-1])
    if tfix.size==time.size and np.all(tfix==time):
      print(' ...fixed!')
    else:
      print('time is NOT OK. Please check !!')
      return
  out['tair']=Data(x,y,tair,'C')


  # R humidity [%-->0--1]
  if not quiet: print(' --> R humidity')
  f=files['rh']
  rhum=netcdf.use(f,'R_H_L103')
  rhum=rhum/100.
  x=netcdf.use(f,'lon'); x[x>180]=x[x>180]-360
  y=netcdf.use(f,'lat')
  x,y=np.meshgrid(x,y)
  # check time:
  ttmp=load_time(f)
  if ttmp.size==time.size and np.all(ttmp==time): print('    time ok')
  else:
    print('   time differs !!!!'), # should use end=' ' for python3 print continuation
    rhum,tfix=fix_time(ttmp,rhum,time[0],time[-1])
    if tfix.size==time.size and np.all(tfix==time): 
      print(' ...fixed!')
    else:
      print('time is NOT OK. Please check !!')
      return
  out['rhum']=Data(x,y,rhum,'0--1')


  # surface pressure [Pa]
  if not quiet: print(' --> Surface pressure')
  f=files['sp']
  pres=netcdf.use(f,'PRES_L1')
  x=netcdf.use(f,'lon'); x[x>180]=x[x>180]-360
  y=netcdf.use(f,'lat')
  x,y=np.meshgrid(x,y)
  # check time:
  ttmp=load_time(f)
  if ttmp.size==time.size and np.all(ttmp==time): print('    time ok')
  else:
    print('   time differs !!!!'),
    pres,tfix=fix_time(ttmp,pres,time[0],time[-1])
    if tfix.size==time.size and np.all(tfix==time):
      print(' ...fixed!')
    else:
      print('time is NOT OK. Please check !!')
      return
  out['pres']=Data(x,y,pres,'Pa')


  # P rate [kg m-2 s-1 -> cm/d]
  if not quiet: print(' --> P rate')
  f=files['pr']
  if 'PRATE_L1' in netcdf.varnames(f):
    prate=netcdf.use(f,'PRATE_L1')
  else:
    prate=netcdf.use(f,'PRATE_L1_Avg_1')
  x=netcdf.use(f,'lon'); x[x>180]=x[x>180]-360
  y=netcdf.use(f,'lat')
  x,y=np.meshgrid(x,y)
  # Conversion kg m^-2 s^-1  to cm/day
  prate=prate*86400*100/1000.
  prate=np.where(abs(prate)<1.e-4,0,prate)
  # check time:
  ttmp=load_time(f)
  if ttmp.size==time.size and np.all(ttmp==time): print('    time ok')
  else:
    print('   time differs !!!!'),
    prate,tfix=fix_time(ttmp,prate,time[0],time[-1])
    if tfix.size==time.size and np.all(tfix==time):
      print(' ...fixed!')
    else:
      print('time is NOT OK. Please check !!')
      return
  out['prate']=Data(x,y,prate,'cm/d')


  # Net shortwave flux  [W/m^2]
  if not quiet: print(' --> Net shortwave flux')
  if not quiet: print('       SW down')
  f=files['rad']
  sw_down=netcdf.use(f,'DSWRF_L1_Avg_1')
  x=netcdf.use(f,'lon'); x[x>180]=x[x>180]-360
  y=netcdf.use(f,'lat')
  x,y=np.meshgrid(x,y)
  if not quiet: print('       SW up')
  sw_up=netcdf.use(f,'USWRF_L1_Avg_1')
  sw_net=sw_down-sw_up
  sw_net=np.where(sw_net<1.e-10,0,sw_net)
  # check time:
  ttmp=load_time(f)
  if ttmp.size==time.size and np.all(ttmp==time): print('    time ok')
  else:
    print('   time differs !!!!'),
    sw_net,tfix=fix_time(ttmp,sw_net,time[0],time[-1])
    if tfix.size==time.size and np.all(tfix==time):
      print(' ...fixed!')
    else:
      print('time is NOT OK. Please check !!')
      return
  out['radsw']=Data(x,y,sw_net,'W m-2',info='positive downward')


  # Net longwave flux  [W/m^2]
  if not quiet: print(' --> Net longwave flux')
  if not quiet: print('       LW down')
  f=files['rad']
  lw_down=netcdf.use(f,'DLWRF_L1_Avg_1')
  x=netcdf.use(f,'lon'); x[x>180]=x[x>180]-360
  y=netcdf.use(f,'lat')
  x,y=np.meshgrid(x,y)
  if not quiet: print('       LW up')
  lw_up=netcdf.use(f,'ULWRF_L1_Avg_1')
  lw_net=lw_down-lw_up
  lw_net=np.where(np.abs(lw_net)<1.e-10,0,lw_net)
  # check time:
  ttmp=load_time(f)
  if ttmp.size==time.size and np.all(ttmp==time): print('    time ok')
  else:
    print('   time differs !!!!'),
    lw_net,tfix1=fix_time(ttmp,lw_net,time[0],time[-1])
    lw_down,tfix2=fix_time(ttmp,lw_down,time[0],time[-1])
    if  tfix1.size==tfix2.size==time.size and np.all((tfix1==time)&(tfix2==time)):
      print(' ...fixed!')
    else:
      print('time is NOT OK. Please check !!')
      return
  # ROMS (agrif, used to be!) convention: positive upward
  out['radlw']=Data(x,y,-lw_net,'W m-2',info='positive upward')
  # downward lw:
  out['dlwrf']=Data(x,y,-lw_down,'W m-2',info='negative... downward')
  # signs convention is better explained in wrf.py


  # U and V wind speed 10m
  if not quiet: print(' --> U and V wind')
  f=files['uv']
  uwnd=netcdf.use(f,'U_GRD_L103')
  vwnd=netcdf.use(f,'V_GRD_L103')
  x=netcdf.use(f,'lon'); x[x>180]=x[x>180]-360
  y=netcdf.use(f,'lat')
  x,y=np.meshgrid(x,y)
  # check time:
  ttmp=load_time(f)
  if ttmp.size==time.size and np.all(ttmp==time): print('    time ok')
  else:
    print('   time differs !!!!'),
    uwnd,tfix1=fix_time(ttmp,uwnd,time[0],time[-1])
    vwnd,tfix2=fix_time(ttmp,vwnd,time[0],time[-1])
    if  tfix1.size==tfix2.size==time.size and np.all((tfix1==time)&(tfix2==time)):
      print(' ...fixed!')
    else:
      print('time is NOT OK. Please check !!')
      return
  #
  if not quiet: print(' --> calc wind speed and stress')
  speed = np.sqrt(uwnd**2+vwnd**2)
  taux,tauy=air_sea.wind_stress(uwnd,vwnd)

  out['wspd']=Data(x,y,speed,'m s-1')
  out['uwnd']=Data(x,y,uwnd,'m s-1')
  out['vwnd']=Data(x,y,vwnd,'m s-1')
  out['sustr']=Data(x,y,taux,'Pa')
  out['svstr']=Data(x,y,tauy,'Pa')


  # Cloud cover [0--100 --> 0--1]:
  if not quiet: print(' --> Cloud cover')
  f=files['cc']
  if 'T_CDC_L200' in netcdf.varnames(f):
    clouds=netcdf.use(f,'T_CDC_L200')
  else:
    clouds=netcdf.use(f,'T_CDC_L200_Avg_1')
  x=netcdf.use(f,'lon'); x[x>180]=x[x>180]-360
  y=netcdf.use(f,'lat')
  x,y=np.meshgrid(x,y)
  clouds=clouds/100.
  # check time:
  ttmp=load_time(f)
  if ttmp.size==time.size and np.all(ttmp==time): print('    time ok')
  else:
    print('   time differs !!!!'),
    clouds,tfix=fix_time(ttmp,clouds,time[0],time[-1])
    if tfix.size==time.size and np.all(tfix==time):
      print(' ...fixed!')
    else:
      print('time is NOT OK. Please check !!')
      return
  out['cloud']=Data(x,y,clouds,'fraction (0--1)')

  # rhum has different resolution (0.5, just like dew point!)
  # so, i can edit surface.py or just interpolate here rhum to
  # other vars resolution:
  if out['rhum'].data.shape!=out['uwnd'].data.shape:
    from okean import calc
    print('rhum shape differs!! --> interp:')
    nt,ny,nx=out['uwnd'].data.shape
    x,y=out['uwnd'].x,out['uwnd'].y
    rhum=np.zeros((nt,ny,nx), out['rhum'].data.dtype)
    for it in range(nt):
      if it%100==0: print('  %d of %d'%(it,nt))
      rhum[it]=calc.griddata(out['rhum'].x,out['rhum'].y,out['rhum'].data[it],x,y)

    out['rhum']=Data(x,y,rhum,'0--1')


  return out
Esempio n. 30
0
 def load_time(f):
   time=np.array((),datetime.datetime)
   ff=glob.glob(f)
   ff.sort()
   for f in ff: time=np.append(time,netcdf.nctime(f,'time'))
   return time
Esempio n. 31
0
def update_wind(fname, data, new_wind_info, **kargs):
    '''
  new_wind_info will be added to fname as global attribute
  (ex: 'new wind from database xxx')

  '''
    quiet = False
    Margin = 4  # for griddata and for original data to keep
    grd = False
    keepOriginal = 2

    for k in kargs.keys():
        if k == 'quiet': quiet = kargs[k]
        elif k == 'margin': Margin = kargs[k]
        elif k == 'grid': grd = kargs[k]
        elif k.lower().startswith('keepor'): keepOriginal = kargs[k]

    if not grd: grd = netcdf.fatt(fname, 'grd_file')
    g = roms.Grid(grd)

    x0 = data['x']
    y0 = data['y']
    if x0.ndim == 1: x0, y0 = np.meshgrid(x0, y0)
    dates = data.keys()[:]
    dates.remove('x')
    dates.remove('y')
    dates = np.array(dates)

    # interp in time:
    time = netcdf.nctime(fname, 'time')
    cond = False
    tind = -1
    fob = gennc.GenBlk(fname, grd)
    for t in time:
        newWind = {}
        tind += 1

        I, = np.where(dates == t)
        if I.size:
            I = I[0]
            uv = data[dates[I]]
            if not quiet: print(t, dates[I])
        else:
            i1, = np.where(dates > t)
            i0, = np.where(dates < t)
            if i0.size and i1.size:
                i1 = i1[0]
                i0 = i0[-1]
                d0 = t - dates[i0]
                d1 = dates[i1] - t
                d0 = d0.days + d0.seconds / 86400.
                d1 = d1.days + d1.seconds / 86400.
                uv = (data[dates[i0]] * d1 + data[dates[i1]] * d0) / (d0 + d1)
                if not quiet: print(t, dates[i0], dates[i1], d0, d1)
            elif not i1.size:
                uv = data[dates[-1]]
                if not quiet: print(t, dates[-1])
            elif not i0.size:
                uv = data[dates[0]]
                if not quiet: print(t, dates[0])

        # interp to grid:
        if cond is False:
            cond, inds = rt.grid_vicinity(grd,
                                          x0,
                                          y0,
                                          margin=Margin,
                                          rect=True,
                                          retinds=True)
            i1, i2, j1, j2 = inds

        if not quiet: print(' --> inter uv %s' % t.isoformat(' '))
        u = calc.griddata(x0[cond],
                          y0[cond],
                          uv.real[cond],
                          g.lon,
                          g.lat,
                          extrap=True)
        v = calc.griddata(x0[cond],
                          y0[cond],
                          uv.imag[cond],
                          g.lon,
                          g.lat,
                          extrap=True)

        # rotate wind, calc stress:
        if not quiet: print(' --> rot U,V wind and U,V wind stress')
        wspd = np.sqrt(u**2 + v**2)
        sustr, svstr = air_sea.wind_stress(u, v)
        angle = g.use('angle')
        uwnd, vwnd = calc.rot2d(u, v, angle)
        sustr, svstr = calc.rot2d(sustr, svstr, angle)
        sustr = rt.rho2uvp(sustr, 'u')
        svstr = rt.rho2uvp(svstr, 'v')

        # update wind data:
        newWind['date'] = t
        newWind['uwnd'] = uwnd
        newWind['vwnd'] = vwnd
        newWind['sustr'] = sustr
        newWind['svstr'] = svstr
        newWind['wspd'] = wspd
        # original xy:
        if tind == 0:
            newWind['attr'] = {'new_wind_info': new_wind_info}
            if not quiet: print(' --> original xy')
            if keepOriginal == 1:
                newWind['x_wind'] = x0
                newWind['y_wind'] = y0
            elif keepOriginal == 2:
                newWind['x_wind'] = x0[j1:j2, i1:i2]
                newWind['y_wind'] = y0[j1:j2, i1:i2]

        # add to file:
        if not quiet: print(' --> adding to file')
        fob.update_wind(newWind, quiet=quiet)
        if not quiet: print('')
Esempio n. 32
0
def update_wind_blended2(fname, datapaths, **kargs):
    '''
  In days without blended data will try to use quikscat data
  '''
    from okean.datasets import quikscat
    from okean.datasets import blended_wind
    a = blended_wind.WINDData(datapaths[0])
    b = quikscat.WINDData(datapaths[1])

    time = netcdf.nctime(fname, 'time')
    date0 = dts.next_date(time[0], -1)
    date1 = dts.next_date(time[-1], +2)

    data = a.data(date0, date1)

    # limit are... otherwise, quikscat interp will be very slow!
    grd = netcdf.fatt(fname, 'grd_file')
    import os
    if not os.path.isfile(grd): grd = kargs['grd']
    cond, inds = rt.grid_vicinity(grd,
                                  data['x'],
                                  data['y'],
                                  margin=5,
                                  rect=True,
                                  retinds=True)
    i1, i2, j1, j2 = inds
    for d in data.keys():
        if d == 'x': data[d] = data[d][i1:i2]
        elif d == 'y': data[d] = data[d][j1:j2]
        else: data[d] = data[d][j1:j2, i1:i2]

    # check for missing days:
    time0 = data.keys()
    x0 = data['x']
    y0 = data['y']
    x0, y0 = np.meshgrid(x0, y0)
    time0.remove('x')
    time0.remove('y')

    out = OrderedDict()
    out['x'] = x0
    out['y'] = y0
    info = ''
    qs_ij_limits_done = False
    for d in dts.drange(date0, date1):
        found = 0
        for t in time0:
            if (t.year, t.month, t.day) == (d.year, d.month, d.day):
                print('==> blended : ', t)
                out[t] = data[t]
                found = 1

        if not found:  # use quikscat:
            print('==> quikscat : ', d.strftime('%Y-%m-%d'))
            tmp = b.data(d, dts.next_date(d))
            if not tmp.has_key('x'): continue
            x, y = tmp['x'], tmp['y']
            x, y = np.meshgrid(x, y)

            # reduce qs data:
            if not qs_ij_limits_done:
                i1, i2, j1, j2 = calc.ij_limits(x, y,
                                                [x0.min(), x0.max()],
                                                [y0.min(), y0.max()])
                qs_ij_limits_done = True

            x = x[j1:j2, i1:i2]
            y = y[j1:j2, i1:i2]
            tmp[tmp.keys()[0]] = tmp[tmp.keys()[0]][j1:j2, i1:i2]

            print('  griddata u')
            u = calc.griddata(x, y, tmp[tmp.keys()[0]].real, x0, y0)
            print('  griddata v')
            v = calc.griddata(x, y, tmp[tmp.keys()[0]].imag, x0, y0)
            out[tmp.keys()[0]] = u + 1.j * v
            info += '#' + d.strftime('%Y%m%d')

    new_wind_info = 'blended+quikscat at days: ' + info
    update_wind(fname, out, new_wind_info, **kargs)
Esempio n. 33
0
File: gnome.py Progetto: jcmt/okean
def his2gnome(fname,his,grd=False,nomask=False,gshhsMask=True,xylim=False,dates=False,ij=(1,1)):
  '''
  Creates GNOME wind file
  Ex:
    his2gnome(out,his,grd,dates=dates,ij=(2,2))

  if gshhsMask, the high res mask file mask_gshhs.npy will be created at 1st usage.
  Mask is based on high (h) resolution gshhs data which must be available (env variable
  GSHHS_MASK must be set). 
  '''

  if not grd: grd=his
  deta,dxi=ij

  dims=netcdf.fdim(his)
  xi,eta=dims['xi_rho'],dims['eta_rho']
  xi0,eta0=xi,eta

  nc0=netcdf.ncopen(his)
  time=netcdf.nctime(nc0,'ocean_time')
  # for roms agrif:
  #t=netcdf.use(nc0,'scrum_time')
  #time=netcdf.num2date(t,'seconds since %d-01-01' % year0)

  x0=netcdf.use(grd,'lon_rho')
  y0=netcdf.use(grd,'lat_rho')
  ang=netcdf.use(grd,'angle')

  if not xylim is False:
    xlim=xylim[:2]
    ylim=xylim[2:]
    i1,i2,j1,j2=calc.ij_limits(x0,y0,xlim,ylim)
    print i1,i2,j1,j2
    xi=i2-i1
    eta=j2-j1
  else:
    i1,i2=0,xi
    j1,j2=0,eta

  XI  ='%d:%d:%d' %(i1,i2,dxi)
  ETA ='%d:%d:%d' %(j1,j2,deta)

  xi=len(range(i1,i2,dxi))
  eta=len(range(j1,j2,deta))
  # create file:
  create_uv(fname,xi,eta)

  nc=netcdf.ncopen(fname,'a')
  for v0,v in ('lon_rho','lon'),('lat_rho','lat'),('mask_rho','mask'),('h','depth'):
    print 'filling %s with %s' % (v,v0)
    nc.vars[v][:]=netcdf.use(grd,v0,xi_rho=XI,eta_rho=ETA)

  if nomask:
    print 'NO MASK !!!'
    nc.vars['mask'][:]=1

  if gshhsMask:
    try:
     mask=np.load('mask_gshhs.npy')
    except:
      mask=1+0*netcdf.use(nc0,'mask_rho',xi_rho=XI,eta_rho=ETA)
      mask=mask.astype('bool')
      x=netcdf.use(grd,'lon_rho',xi_rho=XI,eta_rho=ETA)
      y=netcdf.use(grd,'lat_rho',xi_rho=XI,eta_rho=ETA)

      from okean import gshhs
      axis=x.min(),x.max(),y.min(),y.max()
      g=gshhs.gshhs(axis, resolution='h',area_thresh=0., max_level=2,clip=True)
      for lon, lat, level in zip(g.lon, g.lat, g.level):
        if level == 1: # land
          print 'mask ',lon.shape
          i=calc.inpolygon(x,y,lon,lat)
          mask=mask & ~i

      mask.dump('mask_gshhs.npy')


    nc.vars['mask'][:]=mask


  x=x0[j1:j2:deta,i1:i2:dxi]
  y=y0[j1:j2:deta,i1:i2:dxi]
  ang=ang[j1:j2:deta,i1:i2:dxi]

  n=-1
  for it in range(len(time)):
    if not dates is False:
      d0,d1=dates
      if time[it]<d0 or time[it]>=d1: continue

    n+=1
    U=np.zeros((eta0,xi0),'f')
    V=np.zeros((eta0,xi0),'f')

    nc.vars['time'][n]=netcdf.date2num(time[it],tunits)

    # for roms agrif:
    #u=netcdf.use(nc0,'u',time=it,s_rho=-1)
    #v=netcdf.use(nc0,'v',time=it,s_rho=-1)
    u=netcdf.use(nc0,'u',ocean_time=it,s_rho=-1)
    v=netcdf.use(nc0,'v',ocean_time=it,s_rho=-1)

    # mask extrap:
    print 'mask extrap...'

    u=calc.mask_extrap(x0,y0,np.ma.masked_where(u==0,u))
    v=calc.mask_extrap(x0,y0,np.ma.masked_where(v==0,v))

    U[:,1:-1]=0.5*(u[:,:-1]+u[:,1:])
    U[:,0]=u[:,0]
    U[:,-1]=u[:,-1]

    V[1:-1,:]=0.5*(v[:-1.:]+v[1:,:])
    V[0,:]=v[0,:]
    V[-1,:]=v[-1,:]

    U=U[j1:j2,i1:i2]
    V=V[j1:j2,i1:i2]
  
    U=U[j1:j2:deta,i1:i2:dxi]
    V=V[j1:j2:deta,i1:i2:dxi]

    # rotate uv:
    print 'rotating ...'
    U,V=calc.rot2d(U,V,-ang)

    print 'filling uv', n, time[it]
    nc.vars['u'][n,...]=U
    nc.vars['v'][n,...]=V

  nc.close()
  nc0.close()
Esempio n. 34
0
def interim_file_data(files,quiet=False):
  '''
  ECMWF ERA INTERIM data for ROMS

  To be used with data obtained from the new server:
  http://apps.ecmwf.int/datasets/

  and not the old one (http://data-portal.ecmwf.int/data/d/interim_daily/)
  To deal with data from old server use module interim_past

  => forecast vars:
  time=00h, 12h
  step=3,6,9,12 --> n forec steps=4

      needed (suggestion):
      - Surface net solar radiation (ssr)
      - Surface thermal radiation (str)
      - Total precipitation (tp)
      others:
      - Surface thermal radiation downwards (strd)
      - Evaporation (e)
      - ...

  =>analysis+forec vars: (interim analysis starts every 6h; forecast starts every 12h !!)
  time=00h,6h,12h,18h
  step=0,3,9 (3 and 9 are for the forecast 00h and 12h)

      needed (suggestion):
      - Surface pressure (sp)
      - Total cloud cover    (tcc)
      - 10 metre U wind component (v10u or u10)
      - 10 metre V wind component  (v10v or v10)
      - 2 metre temperature (v2t or t2m)
      - 2 metre dewpoint temperature (v2d or d2m)

  Accumulated vars (rad SW, LW and precipitation are converted to averages
  by acum2avg
  '''

  # some variables may have different names! 
  Vars={}
  Vars['v10u']='v10u','u10'
  Vars['v10v']='v10v','v10'
  Vars['v2t']='v2t','t2m'
  Vars['v2d']='v2d','d2m'

  def find_v(name):
    if name in Vars.keys():
      for v in Vars[name]:
        if varfile(v): return v
    else: return name


  def varfile(var):
    for f in files:
      if var in netcdf.varnames(f): return f


  def check_var_type(var):
    # new interim dataserver provides forec+analysis vars with extra dim
    # 'type', 0 or 1
    if var.ndim==4:
      if not quiet: print('      dealing with var type... '),
      v=np.zeros(var.shape[1:],var.dtype)
      v[::2]=var[0,::2,...]
      v[1::2]=var[1,1::2,...]
      var=v
      if not quiet: print('done.')

    return var


  out={}

  # time:
  # all times from analysis file, except last ind which will be
  # the last time of forecast file
  aFile=varfile(find_v('v2t')) # air temp, for instance
  fFile=varfile(find_v('ssr')) # sw rad, for instance
  if not quiet: print(' reading "analysis" time from file %s' % aFile)
  aTime=netcdf.nctime(aFile,'time')
  aTime.sort() # analysis+forecast files may not have time sorted!!
  if not quiet: print(' reading "forecast" time from file %s' % fFile)
  fTime=netcdf.nctime(fFile,'time')
  fTime.sort() # this one should be sorted...
  time=np.append(aTime,fTime[-1])
  out['time']=time

  # calc number of forecast steps stored,nforec (used by accum2avg)
  if [fTime[i].hour for i in range(8)]==range(3,22,3)+[0]: nforec=4
  elif [fTime[i].hour for i in range(4)]==range(6,19,6)+[0]: nforec=2
  else:
    if not quiet: print('INTERIM WRONG TIME: cannot n forec steps')
    return

  if not quiet: print(' ==> n forecast steps = %d' % nforec)

  # x,y:
  if not quiet: print(' reading x,y from file %s' % files[0])
  x=netcdf.use(files[0],'longitude')
  y=netcdf.use(files[0],'latitude')
  x[x>180]=x[x>180]-360
  if x.ndim==1 and y.ndim==1:
    x,y=np.meshgrid(x,y)


  # tair [K-->C]
  if not quiet: print(' --> T air')
  vname=find_v('v2t')
  f=varfile(vname)
  # time may not be monotonically increasing !!
  # when using mix of analysis and forecast variables and steps
  sortInds=np.argsort(netcdf.use(f,'time'))
  tair=netcdf.use(f,vname,time=sortInds)-273.15
  tair=check_var_type(tair)
  if not quiet and np.any(sortInds!=range(len(sortInds))): print('      sort DONE')
  if not quiet: print('      fill_tend...')
  tair=fill_tend(tair)
  out['tair']=Data(x,y,tair,'Celsius')

  # R humidity [0--1]
  if not quiet: print(' --> R humidity (from T dew)')
  vname=find_v('v2d')
  f=varfile(vname)
  sortInds=np.argsort(netcdf.use(f,'time'))
  Td=netcdf.use(f,vname,time=sortInds)-273.15
  Td=check_var_type(Td)
  if not quiet and np.any(sortInds!=range(len(sortInds))): print('      sort DONE')
  if not quiet: print('      fill_tend... (T dew)')
  Td=fill_tend(Td)
  T=tair
  rhum=air_sea.relative_humidity(T,Td)
  ##  rhum=((112-0.1*T+Td)/(112+0.9*T))**8
  rhum[rhum>1]=1
  out['rhum']=Data(x,y,rhum,'0--1')

  # surface pressure [Pa]
  if not quiet: print(' --> Surface pressure')
  vname=find_v('sp')
  f=varfile(vname)
  sortInds=np.argsort(netcdf.use(f,'time'))
  pres=netcdf.use(f,vname,time=sortInds)
  pres=check_var_type(pres)
  if not quiet and np.any(sortInds!=range(len(sortInds))): print('      sort DONE')
  if not quiet: print('      fill_tend...')
  pres=fill_tend(pres)
  out['pres']=Data(x,y,pres,'Pa')

  # P rate [m --> cm day-1]
  if not quiet: print(' --> P rate')
  vname=find_v('tp')
  f=varfile(vname)
  sortInds=np.argsort(netcdf.use(f,'time'))
  prate=netcdf.use(f,vname,time=sortInds)
  prate=check_var_type(prate)
  if not quiet and np.any(sortInds!=range(len(sortInds))): print('      sort DONE')
  if not quiet: print('      accum2avg...')
  prate=accum2avg(prate,nforec)
  conv= 100*86400       # from m s-1      --> cm day-1
  #conv= 100*86400/1000. # from kg m-2 s-1 --> cm day-1
  prate=prate*conv # cm day-1
  if not quiet: print('      fill_t0...')
  prate=fill_t0(prate)
  prate[prate<0]=0
  out['prate']=Data(x,y,prate,'cm day-1')

  # Net shortwave flux  [W m-2 s+1 --> W m-2]
  if not quiet: print(' --> Net shortwave flux')
  vname=find_v('ssr')
  f=varfile(vname)
  sortInds=np.argsort(netcdf.use(f,'time'))
  sw_net=netcdf.use(f,vname,time=sortInds)
  sw_net=check_var_type(sw_net)
  if not quiet and np.any(sortInds!=range(len(sortInds))): print('      sort DONE')
  if not quiet: print('      accum2avg...')
  sw_net=accum2avg(sw_net,nforec)
  if not quiet: print('      fill_t0...')
  sw_net=fill_t0(sw_net)
  out['radsw']=Data(x,y,sw_net,'W m-2',info='positive downward')


  # Net longwave flux  [W m-2 s+1 --> W m-2]
  if not quiet: print(' --> Net longwave flux')
  vname=find_v('str')
  f=varfile(vname)
  sortInds=np.argsort(netcdf.use(f,'time'))
  lw_net=netcdf.use(f,vname,time=sortInds)*-1 # let us consider positive upward (*-1)
  lw_net=check_var_type(lw_net)
  if not quiet and np.any(sortInds!=range(len(sortInds))): print('      sort DONE')
  if not quiet: print('      accum2avg...')
  lw_net=accum2avg(lw_net,nforec)
  if not quiet: print('      fill_t0...')
  lw_net=fill_t0(lw_net)
  out['radlw']=Data(x,y,lw_net,'W m-2',info='positive upward')

  # longwave down:
  # can be obtained from clouds!!
  if not quiet: print(' --> Down longwave flux')
  vname=find_v('strd')
  f=varfile(vname)
  if f:
    sortInds=np.argsort(netcdf.use(f,'time'))
    lw_down=netcdf.use(f,vname,time=sortInds)*-1 # let us consider positive upward (*-1)
    lw_down=check_var_type(lw_down)
    if not quiet and np.any(sortInds!=range(len(sortInds))): print('      sort DONE')
    if not quiet: print('      accum2avg...')
    lw_down=accum2avg(lw_down,nforec)
    if not quiet: print('      fill_t0...')
    lw_down=fill_t0(lw_down)
    out['dlwrf']=Data(x,y,lw_down,'W m-2',info='negative... downward')
  else:  print('down long wave CANNOT BE USED')

  # U and V wind speed 10m
  if not quiet: print(' --> U and V wind')
  vname=find_v('v10u')
  f=varfile(vname)
  sortInds=np.argsort(netcdf.use(f,'time'))
  uwnd=netcdf.use(f,vname,time=sortInds)
  uwnd=check_var_type(uwnd)
  if not quiet and np.any(sortInds!=range(len(sortInds))): print('      sort DONE')
  if not quiet: print('      fill_tend...')
  uwnd=fill_tend(uwnd)
  vname=find_v('v10v')
  f=varfile(vname)
  sortInds=np.argsort(netcdf.use(f,'time'))
  vwnd=netcdf.use(f,vname,time=sortInds)
  vwnd=check_var_type(vwnd)
  if not quiet and np.any(sortInds!=range(len(sortInds))): print('      sort DONE')
  if not quiet: print('      fill_tend...')
  vwnd=fill_tend(vwnd)

  if not quiet: print(' --> calc wind speed and stress')
  speed = np.sqrt(uwnd**2+vwnd**2)
  taux,tauy=air_sea.wind_stress(uwnd,vwnd)

  out['wspd']=Data(x,y,speed,'m s-1')
  out['uwnd']=Data(x,y,uwnd,'m s-1')
  out['vwnd']=Data(x,y,vwnd,'m s-1')
  out['sustr']=Data(x,y,taux,'Pa')
  out['svstr']=Data(x,y,tauy,'Pa')

  # Cloud cover [0--1]:
  if not quiet: print(' --> Cloud cover')
  vname=find_v('tcc')
  f=varfile(vname)
  sortInds=np.argsort(netcdf.use(f,'time'))
  clouds=netcdf.use(f,vname,time=sortInds)
  clouds=check_var_type(clouds)
  if not quiet and np.any(sortInds!=range(len(sortInds))): print('      sort DONE')
  if not quiet: print('      fill_tend...')
  clouds=fill_tend(clouds)
  out['cloud']=Data(x,y,clouds,'fraction (0--1)')

  return out
Esempio n. 35
0
def plt_hslice(conf,plconf,date,FA='a',nest=0,**kargs):
  err=''
  fig=False
  info={}

  type     = 'avg'
  var      = 'temp'
  slice    = 'z'
  ind      = -10
  time     = -1
  currents = False
  dcurr    = (3,3)
  scurr    = 3
  lcurr    = 0.2
  ifig     = 0
# closefig = True
  clim     = False
  quiet    = False
  outStoragePath=False
  cmap     = None
  norm     = None
  useBar   = True # currents are barotropic for 2D vars (like zeta)

  keys=kargs.keys()
  if 'type'     in keys: type     = kargs['type']
  if 'var'      in keys: var      = kargs['var']
  if 'slice'    in keys: slice    = kargs['slice']
  if 'ind'      in keys: ind      = kargs['ind']
  if 'time'     in keys: time     = kargs['time']
  if 'currents' in keys: currents = kargs['currents']
  if 'dcurr'    in keys: dcurr    = kargs['dcurr']
  if 'scurr'    in keys: scurr    = kargs['scurr']
  if 'lcurr'    in keys: lcurr    = kargs['lcurr']
  if 'ifig'     in keys: ifig     = kargs['ifig']
  if 'closefig' in keys: closefig = kargs['closefig']
  if 'clim'     in keys: clim     = kargs['clim']
  if 'quiet'    in keys: quiet    = kargs['quiet']
  if 'ostorage' in keys: outStoragePath = kargs['ostorage']
  if 'cmap'     in keys: cmap     = kargs['cmap']
  if 'usebar'   in keys: useBar   = kargs['usebar']
  if 'norm'     in keys: norm     = kargs['norm']

  date=dateu.parse_date(date)

  # find input files:
  args={'cf':conf,'date':date,'FA':FA,'nest':nest,'ostorage':outStoragePath}
  his = opt.nameof('out',type,**args)
  clm = opt.nameof('in','clm',**args)
  grd = opt.nameof('in','grd',**args)
  if not os.path.isfile(his):
    err='Main file not found (%s)' % his
    return err,fig,info
  if not os.path.isfile(grd):
    err='Grid file not found (%s)' % grd
    return err,fig,info
  r=roms.His(his,grd)

  # plot grid:
  proj,fig, ax = plt_grid(plconf,grd,ifig)

  def add_colorbar(handle,**args):
    ax=pl.gca()
    Data,err = opt.get_plconf(plconf,'AXES')
    cbpos    = Data['cbpos'][ifig]
    cbbgpos  = Data['cbbgpos'][ifig]
    cbbgc    = Data['cbbgcolor'][ifig]
    cbbga    = Data['cbbgalpha'][ifig]
    cblab    = Data['cblabel'][ifig]

    # colorbar bg axes:
    if cbbgpos:
      rec=pl.axes((cbpos[0]-cbpos[2]*cbbgpos[0],cbpos[1]-cbbgpos[2]*cbpos[3],
                      cbpos[2]*(1+cbbgpos[0]+cbbgpos[1]),cbpos[3]*(1+cbbgpos[2]+cbbgpos[3])),
                      axisbg=cbbgc,frameon=1)

      rec.patch.set_alpha(cbbga)
      rec.set_xticks([])
      rec.set_yticks([])
      for k in rec.axes.spines.keys():
        rec.axes.spines[k].set_color(cbbgc)
        rec.axes.spines[k].set_alpha(cbbga)


    # colorbar:
    if cbpos:
      cbax=fig.add_axes(cbpos)
      if cbpos[2]>cbpos[3]: orient='horizontal'
      else: orient='vertical'
      cb=pl.colorbar(handle,cax=cbax,orientation=orient,drawedges=0,**args)
      pl.axes(ax)

    # colorbar label:
    if cblab:
      Data,err = opt.get_plconf(plconf,'HSLICES')
      varnames=Data['varnames'][ifig].split(',')
      vnames=Data['vnames'][ifig].split(',')
      lab=''
      for i in range(len(varnames)):
        if varnames[i].strip()==var:
          lab=vnames[i].strip()
          break

      if lab:
        if r.hasz(var):
          if slice=='k':
            if ind==0: lab = 'Bottom '+lab
            elif ind in (-1,'surface'): lab = 'Surface '+lab
          elif slice=='z':
            lab=lab+' '+str(ind)+'m'

        cb.set_label(lab)


  def add_currkey(handle):
    Data,err = opt.get_plconf(plconf,'HSLICES')
    pos=Data['kcurrpos'][ifig]
    if pos:
      pl.quiverkey(handle, pos[0], pos[1], lcurr, '%s m/s' % str(lcurr),labelpos='S',
                                              coordinates='axes')

  # hslice:
  if var:
    if   slice=='k': metodo=r.slicek
    elif slice=='z': metodo=r.slicez

    x,y,z,v=metodo(var,ind,time,plot=False)
    x,y=proj(x,y)

    # cmap:
    if isinstance(cmap,basestring):
      try:cmap=pl.cm.cmap_d[cmap]
      except:
        try:
          from okean import pl_tools
          cmap=pl_tools.cm.cmap_d[cmap]
        except: cmap=pl.cm.jet

    # original data from clm
    if slice=='k' and ind in (-1,) and var+'_original' in netcdf.varnames(clm):
      tcurr= r.datetime[time]
      x_o=netcdf.use(clm,'x_original')
      y_o=netcdf.use(clm,'y_original')
      x_o,y_o=proj(x_o,y_o)
      v_o=netcdf.use(clm,'y_original')
      t_o=netcdf.nctime(clm,'clim_time')

      # average to current time:
      i0,=np.where(t_o<=tcurr)[-1]
      i1,=np.where(t_o>tcurr)[0]
      v_o0=netcdf.use(clm,var+'_original',time=i0)
      v_o1=netcdf.use(clm,var+'_original',time=i1)
      # avg:
      a=tcurr-t_o[i0]
      b=t_o[i1]-tcurr

      a=a.days*86400+a.seconds
      b=b.days*86400+b.seconds

      if a==0: v_o=v_o0
      elif b==0: v_o=v_o1
      else: v_o=(v_o0*b+v_o1*a)/(a+b)

      pch=pl.pcolormesh(x_o,y_o,v_o,shading='flat',cmap=cmap)
      if clim: pl.clim(clim[0],clim[1])

    if norm=='log':
      from matplotlib.colors import LogNorm
      Norm=LogNorm(vmin=clim[0],vmax=clim[1])
    else: Norm=None

    # change hypoxia colorbar/cmap
    if var=='dye_01':
      HypoxiaLim=135
      from okean import pl_tools
      cmap=pl_tools.ucmaps().gen_oxygen(v=(0,HypoxiaLim,300.)) # default is 0,135,300 !!

    pch=pl.pcolormesh(x,y,v,shading='flat',cmap=cmap, norm=Norm)
    if clim: pl.clim(clim[0],clim[1])

    # hypoxia:
    if var=='dye_01' and ind==0 and ifig==0:
      cond=v<135.
      cond=v<HypoxiaLim
      cond=(v<HypoxiaLim)&(r.grid.h>5)

      pm=r.grid.use('pm')
      pn=r.grid.use('pn')
      A=(1/pm[cond]*1/pn[cond]/1e6).sum()

      x_,y_=proj(-98,29.5)
      pl.text(x_,y_,'Hypoxia area = %.0f km$^2$' % A,color='r',
                       fontweight='bold',fontname='monospace',
                       bbox=dict(edgecolor='none',facecolor='white', alpha=0.8))
    # hypoxia.

    # colorbar:
    if norm=='log':
      tks=10**np.linspace(np.log10(clim[0]),np.log10(clim[1]),4)
      opts={'ticks':tks,'format':'%.2f'}
    else: opts={'ticks':None}
    add_colorbar(pch,**opts)

  if currents:
    if (var and r.hasz(var)) or not useBar:  uvind=ind
    else: uvind='bar'

    x,y,z,u,v=r.sliceuv(uvind,time)
    xm, ym = proj(x,y)
    mm=np.zeros(x.shape,'bool')
    mm[::dcurr[0],::dcurr[1]]=True


    Data,err = opt.get_plconf(plconf,'HSLICES')
    wcurr=Data['wcurr'][ifig]
    acurr=Data['acurr'][ifig]

    qvopts={'units':'x','scale':scurr,'width':wcurr,'alpha':acurr}
    if var:
      q=pl.quiver(xm[mm],ym[mm],u[mm],v[mm],**qvopts)
    else:
      s=np.sqrt(u**2+v**2)
      q=pl.quiver(xm[mm],ym[mm],u[mm],v[mm],s[mm],**qvopts)
      if clim: pl.clim(clim[0],clim[1])
      add_colorbar(q)

    add_currkey(q)

  # store some info that may be required later
  info['hasz']=False
  if var and r.hasz(var): info['hasz']=True


  # logo:
  if ifig==0:
    im=os.path.join(os.path.dirname(__file__),'logo_INOCAR.png')
    i=pl.imread(im)
    h,w=i.shape[:2]
    rx=.12
    W=(proj.xmax- proj.xmin)*rx
    H=W*h/w
    l=proj.xmax
    #pl.fill([proj.xmax-W, proj.xmax, proj.xmax,     proj.xmax-W],
    #           [proj.ymin,   proj.ymin, proj.ymin+2.8*H, proj.ymin+2.8*H],
    #           '#500000',alpha=0.25,ec='none')

    ax.imshow(i,extent=(proj.xmax*.98-W,proj.xmax*.98, proj.ymin+H*.1, proj.ymin+H*1.1),zorder=1e3)
    #pl.text(proj.xmax-W/2., proj.ymin+2.2*H,'OOF',
    #           fontdict={'size':14,'family':'serif'},
    #           color='#500000',ha='center',weight='bold')

    pl.text(proj.xmax*.8, proj.ymax*(-.1),r.datetime[time].strftime("%d %b %Y"),
               fontdict={'size':11,'family':'monospace'},ha='center')

    if FA=='f':
      s='Pronostico desde %s' % r.datetime[0].strftime("%d %b %Y")
      pl.text(proj.xmax*.8, proj.ymax*(-.15),s,
      #pl.text(proj.xmax-W/2., proj.ymin+1.1*H,s,
                 fontdict={'fontsize':10},ha='center')
  # logo.

  # lims change in some mpl versions !!
  pl.gca().axis([proj.xmin, proj.xmax, proj.ymin, proj.ymax])

  return err, fig, info
Esempio n. 36
0
def his2gnome(fname,
              his,
              grd=False,
              nomask=False,
              gshhsMask=True,
              xylim=False,
              dates=False,
              ij=(1, 1)):
    '''
  Creates GNOME wind file
  Ex:
    his2gnome(out,his,grd,dates=dates,ij=(2,2))

  if gshhsMask, the high res mask file mask_gshhs.npy will be created at 1st usage.
  Mask is based on high (h) resolution gshhs data which must be available (env variable
  GSHHS_MASK must be set). 
  '''

    if not grd: grd = his
    deta, dxi = ij

    dims = netcdf.fdim(his)
    xi, eta = dims['xi_rho'], dims['eta_rho']
    xi0, eta0 = xi, eta

    nc0 = netcdf.ncopen(his)
    time = netcdf.nctime(nc0, 'ocean_time')
    # for roms agrif:
    #t=netcdf.use(nc0,'scrum_time')
    #time=netcdf.num2date(t,'seconds since %d-01-01' % year0)

    x0 = netcdf.use(grd, 'lon_rho')
    y0 = netcdf.use(grd, 'lat_rho')
    ang = netcdf.use(grd, 'angle')

    if not xylim is False:
        xlim = xylim[:2]
        ylim = xylim[2:]
        i1, i2, j1, j2 = calc.ij_limits(x0, y0, xlim, ylim)
        print(i1, i2, j1, j2)
        xi = i2 - i1
        eta = j2 - j1
    else:
        i1, i2 = 0, xi
        j1, j2 = 0, eta

    XI = '%d:%d:%d' % (i1, i2, dxi)
    ETA = '%d:%d:%d' % (j1, j2, deta)

    xi = len(range(i1, i2, dxi))
    eta = len(range(j1, j2, deta))
    # create file:
    create_uv(fname, xi, eta)

    nc = netcdf.ncopen(fname, 'a')
    for v0, v in ('lon_rho', 'lon'), ('lat_rho', 'lat'), ('mask_rho',
                                                          'mask'), ('h',
                                                                    'depth'):
        print('filling %s with %s' % (v, v0))
        nc.vars[v][:] = netcdf.use(grd, v0, xi_rho=XI, eta_rho=ETA)

    if nomask:
        print('NO MASK !!!')
        nc.vars['mask'][:] = 1

    if gshhsMask:
        try:
            mask = np.load('mask_gshhs.npy')
        except:
            mask = 1 + 0 * netcdf.use(nc0, 'mask_rho', xi_rho=XI, eta_rho=ETA)
            mask = mask.astype('bool')
            x = netcdf.use(grd, 'lon_rho', xi_rho=XI, eta_rho=ETA)
            y = netcdf.use(grd, 'lat_rho', xi_rho=XI, eta_rho=ETA)

            from okean import gshhs
            axis = x.min(), x.max(), y.min(), y.max()
            g = gshhs.gshhs(axis,
                            resolution='h',
                            area_thresh=0.,
                            max_level=2,
                            clip=True)
            for lon, lat, level in zip(g.lon, g.lat, g.level):
                if level == 1:  # land
                    print('mask ', lon.shape)
                    i = calc.inpolygon(x, y, lon, lat)
                    mask = mask & ~i

            mask.dump('mask_gshhs.npy')

        nc.vars['mask'][:] = mask

    x = x0[j1:j2:deta, i1:i2:dxi]
    y = y0[j1:j2:deta, i1:i2:dxi]
    ang = ang[j1:j2:deta, i1:i2:dxi]

    n = -1
    for it in range(len(time)):
        if not dates is False:
            d0, d1 = dates
            if time[it] < d0 or time[it] >= d1: continue

        n += 1
        U = np.zeros((eta0, xi0), 'f')
        V = np.zeros((eta0, xi0), 'f')

        nc.vars['time'][n] = netcdf.date2num(time[it], tunits)

        # for roms agrif:
        #u=netcdf.use(nc0,'u',time=it,s_rho=-1)
        #v=netcdf.use(nc0,'v',time=it,s_rho=-1)
        u = netcdf.use(nc0, 'u', ocean_time=it, s_rho=-1)
        v = netcdf.use(nc0, 'v', ocean_time=it, s_rho=-1)

        # mask extrap:
        print('mask extrap...')

        u = calc.mask_extrap(x0, y0, np.ma.masked_where(u == 0, u))
        v = calc.mask_extrap(x0, y0, np.ma.masked_where(v == 0, v))

        U[:, 1:-1] = 0.5 * (u[:, :-1] + u[:, 1:])
        U[:, 0] = u[:, 0]
        U[:, -1] = u[:, -1]

        V[1:-1, :] = 0.5 * (v[:-1.:] + v[1:, :])
        V[0, :] = v[0, :]
        V[-1, :] = v[-1, :]

        U = U[j1:j2, i1:i2]
        V = V[j1:j2, i1:i2]

        U = U[j1:j2:deta, i1:i2:dxi]
        V = V[j1:j2:deta, i1:i2:dxi]

        # rotate uv:
        print('rotating ...')
        U, V = calc.rot2d(U, V, -ang)

        print('filling uv', n, time[it])
        nc.vars['u'][n, ...] = U
        nc.vars['v'][n, ...] = V

    nc.close()
    nc0.close()
Esempio n. 37
0
def plt_wind(conf,plconf,date,FA='a',nest=0,**kargs):
  err  = ''
  fig  = False
  info = ''

  ifig  = kargs.get('ifig',0)
  day   = kargs.get('day',0)
  quiet = kargs.get('quiet',0)

  time=day
  date=dateu.parse_date(date)

  # find input files:
  args={'cf':conf,'date':date,'FA':FA,'nest':nest}
  atm = opt.nameof('in','blk',**args)
  grd = opt.nameof('in','grd',**args)
  if not os.path.isfile(atm):
    err='ATM file not found (%s)' % atm
    return err,fig,info
  if not os.path.isfile(grd):
    err='Grid file not found (%s)' % grd
    return err,fig,info

  Data,err = opt.get_plconf(plconf,'WIND')
  dcurr=Data['dcurr'][ifig]
  lcurr=Data['lcurr'][ifig]
  scurr=Data['scurr'][ifig]
  clim =Data['clim'][ifig]
  tind = Data['time'][ifig]

  x=netcdf.use(grd,'lon_rho')
  y=netcdf.use(grd,'lat_rho')
  wtime=netcdf.nctime(atm,'time')
  cnd=(wtime>=date+datetime.timedelta(days=day))&(date<date+datetime.timedelta(days=day+1))
  u=netcdf.use(atm,'Uwind',time=cnd)
  v=netcdf.use(atm,'Uwind',time=cnd)
  if tind=='dailyMean':
    u=u.mean(0)
    v=v.mean(0)
    sdate=wtime[cnd][0] # for title... 1st day 00h is expected to be 1st date,
                        # or model should not run!
  else: # tind of some day, ex: tind 0 from forec day 3
    u=u[tind]
    v=v[tind]
    sdate=wtime[cnd][tind]


  if day>len(u)-1:
    err='Invalid day %d (max=%d)' % (day,len(u)-1)
    return err,fig,info

  # plot grid:
  proj,fig,ax= plt_grid(plconf,grd,ifig)


  # no mask on land:
  mask=np.zeros(u.shape,'bool')
  mask[::dcurr[0],::dcurr[1]]=True
  xm, ym = proj(x,y)

  s=np.sqrt(u**2+v**2)
  q=pl.quiver(xm[mask],ym[mask],u[mask],v[mask],s[mask],scale=scurr,zorder=100)

  pl.clim(clim[0],clim[1])


  def add_colorbar(handle,**args):
    ax=pl.gca()
    Data,err = opt.get_plconf(plconf,'AXES')
    cbpos    = Data['cbpos'][ifig]
    cbbgpos  = Data['cbbgpos'][ifig]
    cbbgc    = Data['cbbgcolor'][ifig]
    cbbga    = Data['cbbgalpha'][ifig]
    cblab    = Data['cblabel'][ifig]

    # colorbar bg axes:
    if cbbgpos:
      rec=pl.axes((cbpos[0]-cbpos[2]*cbbgpos[0],cbpos[1]-cbbgpos[2]*cbpos[3],
                      cbpos[2]*(1+cbbgpos[0]+cbbgpos[1]),cbpos[3]*(1+cbbgpos[2]+cbbgpos[3])),
                      axisbg=cbbgc,frameon=1)

      rec.patch.set_alpha(cbbga)
      rec.set_xticks([])
      rec.set_yticks([])
      for k in rec.axes.spines.keys():
        rec.axes.spines[k].set_color(cbbgc)
        rec.axes.spines[k].set_alpha(cbbga)


    # colorbar:
    if cbpos:
      cbax=fig.add_axes(cbpos)
      if cbpos[2]>cbpos[3]: orient='horizontal'
      else: orient='vertical'
      cb=pl.colorbar(handle,cax=cbax,orientation=orient,drawedges=0,**args)
      pl.axes(ax)

      # colorbar label:
      cb.set_label(r'Wind Speed [m s$^{\rm{-1}}$]')

  def add_currkey(handle):
    pos=Data['kcurrpos'][ifig]
    if pos:
      pl.quiverkey(handle, pos[0], pos[1], lcurr, '%s m/s' % str(lcurr),labelpos='S',
                                                coordinates='axes')


  add_colorbar(q)
  add_currkey(q)

  # tilte:
  Title,err=opt.get_plconf(plconf,'AXES','title')
  if Title[ifig]:
    simpleTitle=1

    rdate=date.strftime('%d-%m-%Y')
    title='wind %s %s %d' % (rdate,FA,day)


    if simpleTitle: # simpler version of title:
      if FA=='f': # forecast date:
        rdate=dateu.next_date(date,day);
        rdate=rdate.strftime('%d-%m-%Y')

      title='wind %s' % (rdate)
      if FA=='f':
        title=title+' (forec)'

    pl.title(title)


  # logo:
  if ifig==0:
    im=os.path.join(os.path.dirname(__file__),'logo_INOCAR.png')
    i=pl.imread(im)
    h,w=i.shape[:2]
    rx=.12
    W=(proj.xmax- proj.xmin)*rx
    H=W*h/w
    l=proj.xmax
    #pl.fill([proj.xmax-W, proj.xmax, proj.xmax,     proj.xmax-W],
    #           [proj.ymin,   proj.ymin, proj.ymin+2.8*H, proj.ymin+2.8*H],
    #           '#500000',alpha=0.25,ec='none')

    ax.imshow(i,extent=(proj.xmax*.98-W,proj.xmax*.98, proj.ymin+H*.1, proj.ymin+H*1.1),zorder=1e3)
    #pl.text(proj.xmax-W/2., proj.ymin+2.2*H,'OOF',
    #           fontdict={'size':14,'family':'serif'},
    #           color='#500000',ha='center',weight='bold')

    pl.text(proj.xmax*.8, proj.ymax*(-.1),sdate.strftime("%d %b %Y"),
    #pl.text(proj.xmax*.62, proj.ymax*.93,sdate.strftime("%d %b %Y"),
               fontdict={'size':13,'family':'monospace'},ha='center')
    # change date format if tind is not daily mean, ie, add hour, etc

    if FA=='f':
      s='Pronostico desde %s' % date.strftime("%d %b %Y")
      pl.text(proj.xmax*.8, proj.ymax*(-.15),s, ##this is outside
      #pl.text(proj.xmax-W/2., proj.ymin+1.1*H,s, ##this is in the proj (inside)
                 fontdict={'fontsize':10},ha='center')
  # logo.


  # lims change in some mpl versions !!
  pl.gca().axis([proj.xmin, proj.xmax, proj.ymin, proj.ymax])

  return err,fig,info
Esempio n. 38
0
def roms2swan_wind(frc, date0, date1, fname='swan_wind.dat', **kargs):
    tname = 'wind_time'
    uname = 'Uwind'
    vname = 'Vwind'
    grd = False  # needed if wind is 1d
    dt = 1  # hours
    path = ''
    if 'tname' in kargs.keys(): tname = kargs['tname']
    if 'uname' in kargs.keys(): uname = kargs['uname']
    if 'vname' in kargs.keys(): vname = kargs['vname']
    if 'grd' in kargs.keys(): grd = kargs['grd']
    if 'dt' in kargs.keys(): dt = kargs['dt']
    if 'path' in kargs.keys(): path = kargs['path']

    print 'wind: loading time ...'

    time = netcdf.nctime(frc, tname)
    #time=np.load('tfile')
    #cond=(time>=date0)&(time<=date1)
    cond = (time >= date0) & (
        time <= date1 + datetime.timedelta(days=1)
    )  # add one day at the end, just to avoid the "repeating last"
    time = time[cond]
    d = np.diff(pl.date2num(time))
    print 'current max and min dt = %6.2f %6.2f hrs = %6.2f %6.2f mins' % (
        d.max() * 24, d.min() * 24, d.max() * 24 * 60, d.min() * 24 * 60)
    #  time=time[::dt]
    #  d=np.diff(pl.date2num(time))
    #  print ' final  max and min dt = %6.2f %6.2f hrs = %6.2f %6.2f mins'%(d.max()*24, d.min()*24, d.max()*24*60, d.min()*24*60)

    print 'wind: loading u ...'
    nc = netcdf.ncopen(frc)
    u = netcdf.var(nc, uname)
    print 'wind: loading v ...'
    v = netcdf.var(nc, uname)
    #  u=u[cond,...][::dt,...]
    #  v=v[cond,...][::dt,...]
    u = u[cond, ...]
    v = v[cond, ...]
    nc.close()

    if u.ndim == 1:
        if not grd:
            print 'must provide grd karg!'
            return

        nt = u.size
        eta = netcdf.fdim(grd)['eta_rho']
        xi = netcdf.fdim(grd)['xi_rho']
    else:
        nt, eta, xi = u.shape


# array may be too big, so do this later (for each it)
#
#    u=np.tile(u[:,np.newaxis,np.newaxis],(1,eta,xi))
#    v=np.tile(v[:,np.newaxis,np.newaxis],(1,eta,xi))

    i = open(fname, 'w')

    times = []
    time0 = time[0] - datetime.timedelta(hours=dt)
    ITs = []
    for it in range(nt):
        time0 = time0 + datetime.timedelta(hours=dt)
        if time0 > date1: break

        if time0 > time[-1]:
            print 'Warning : repeating last ...', it

        times += [time0]
        d = np.abs(time - time0)
        it = np.where(d == d.min())[0][0]
        ITs += [it]

        if it % 100 == 0:
            print 'saving u %s %s' % (fname, time[it].isoformat(' '))
        if u[it, ...].ndim == 0:
            U = np.tile(u[it, ...], (eta, xi)).flatten()
        else:
            U = u[it, ...].flatten()

        [i.write('%8.4f\n' % uu) for uu in U]

    for it in ITs:
        if it % 100 == 0:
            print 'saving v %s %s' % (fname, time[it].isoformat(' '))
        if v[it, ...].ndim == 0:
            V = np.tile(v[it, ...], (eta, xi)).flatten()
        else:
            V = v[it, ...].flatten()

        [i.write('%8.4f\n' % vv) for vv in V]

    times = np.asarray(times)
    t0iso = times[0].strftime('%Y%m%d.%H%M%S')
    t1iso = times[-1].strftime('%Y%m%d.%H%M%S')
    dt = times[1] - times[0]
    dth = dt.days * 24. + dt.seconds / 60.**2

    print ' -- created swan wind file %s\n' % fname

    # add to swan INPUT:
    print '\n'
    print 'INPGRID WIND CURVILINEAR 0 0 %d %d EXC 9.999000e+003 &' % (xi - 1,
                                                                      eta - 1)
    print '       NONSTATIONARY %s %.2f HR %s' % (t0iso, dth, t1iso)
    print 'READINP WIND 1 \'%s\' 4 0 FREE ' % (os.path.join(path, fname))
    print '\n'
Esempio n. 39
0
def cfsr_file_data(files, quiet=False):
    '''
  Returns bulk data from one CFRS files
  '''
    def load_time(f):
        time = np.array((), datetime.datetime)
        ff = glob.glob(f)
        ff.sort()
        for f in ff:
            time = np.append(time, netcdf.nctime(f, 'time'))
        return time

    def load_time_main(f):
        time = load_time(f)
        # I want 0,6,12,... after 2006 results may be 3,9,15, ...
        if time[0].hour in [3, 9, 15, 21]:
            time = time + datetime.timedelta(hours=3)
        # for 2011 1st time is not 0!
        if time[0].hour == 6: time = np.hstack((time[0].replace(hour=0), time))
        return time

    def fix_time(t, var, t0, t1):
        # convert 1h, 7h, ... to 0h, 6h, ...
        if t[0].hour in [1, 7, 13,
                         19]:  # not all! sp analysis starts at 0, 6,...!
            print('     1,7,... to 0,6,...')
            var = (var[1:] * 5 + var[:-1] * 1) / 6.
            t = t[1:] - datetime.timedelta(hours=1)
        elif t[0].hour in [3, 9, 15, 21]:
            print('     3,9,... to 0,6,...')
            var = (var[1:] * 3 + var[:-1] * 3) / 6.
            t = t[1:] - datetime.timedelta(hours=3)

        cond = (t >= t0) & (t <= t1)
        t = t[cond]
        var = var[cond]

        if t[0] > t0:
            dt = t[0] - t0
            dt = dt.days * 24 + dt.seconds / 3600.  # hours
            print(
                'missing data at start: %.2d h missing --> repeating 1st data'
                % dt)
            v = np.zeros((var.shape[0] + 1, ) + var.shape[1:], var.dtype)
            v[1:] = var
            v[0] = var[0]
            var = v
            t_ = np.zeros((t.shape[0] + 1, ) + t.shape[1:], t.dtype)
            t_[1:] = t
            t_[0] = t0
            t = t_

        if t[-1] < t1:
            dt = t1 - t[-1]
            dt = dt.days * 24 + dt.seconds / 3600.  # hours
            print(
                'missing data at end: %.2d h missing --> repeating last data' %
                dt)
            v = np.zeros((var.shape[0] + 1, ) + var.shape[1:], var.dtype)
            v[:-1] = var
            v[-1] = var[-1]
            var = v
            t_ = np.zeros((t.shape[0] + 1, ) + t.shape[1:], t.dtype)
            t_[:-1] = t
            t_[-1] = t1
            t = t_

        return var, t

    out = {}

    # time:
    if 0:
        time = netcdf.nctime(files['cc'], 'time')
        # files have diff units !! so, cannot load all times at once!
        # these result will use only units of 1st file!!
    else:
        time = load_time_main(files['cc'])

    out['time'] = time

    # T air [K->C]
    if not quiet: print(' --> T air')
    f = files['st']
    tair = netcdf.use(f, 'TMP_L103')
    tair = tair - 273.15
    x = netcdf.use(f, 'lon')
    x[x > 180] = x[x > 180] - 360
    y = netcdf.use(f, 'lat')
    x, y = np.meshgrid(x, y)
    # check time:
    ttmp = load_time(f)
    if ttmp.size == time.size and np.all(ttmp == time): print('    time ok')
    else:
        print('   time differs !!!!', )
        tair, tfix = fix_time(ttmp, tair, time[0], time[-1])
        if tfix.size == time.size and np.all(tfix == time):
            print(' ...fixed!')
        else:
            print('time is NOT OK. Please check !!')
            return
    out['tair'] = Data(x, y, tair, 'C')

    # R humidity [%-->0--1]
    if not quiet: print(' --> R humidity')
    f = files['rh']
    rhum = netcdf.use(f, 'R_H_L103')
    rhum = rhum / 100.
    x = netcdf.use(f, 'lon')
    x[x > 180] = x[x > 180] - 360
    y = netcdf.use(f, 'lat')
    x, y = np.meshgrid(x, y)
    # check time:
    ttmp = load_time(f)
    if ttmp.size == time.size and np.all(ttmp == time): print('    time ok')
    else:
        print('   time differs !!!!'
              ),  # should use end=' ' for python3 print continuation
        rhum, tfix = fix_time(ttmp, rhum, time[0], time[-1])
        if tfix.size == time.size and np.all(tfix == time):
            print(' ...fixed!')
        else:
            print('time is NOT OK. Please check !!')
            return
    out['rhum'] = Data(x, y, rhum, '0--1')

    # surface pressure [Pa]
    if not quiet: print(' --> Surface pressure')
    f = files['sp']
    pres = netcdf.use(f, 'PRES_L1')
    x = netcdf.use(f, 'lon')
    x[x > 180] = x[x > 180] - 360
    y = netcdf.use(f, 'lat')
    x, y = np.meshgrid(x, y)
    # check time:
    ttmp = load_time(f)
    if ttmp.size == time.size and np.all(ttmp == time): print('    time ok')
    else:
        print('   time differs !!!!'),
        pres, tfix = fix_time(ttmp, pres, time[0], time[-1])
        if tfix.size == time.size and np.all(tfix == time):
            print(' ...fixed!')
        else:
            print('time is NOT OK. Please check !!')
            return
    out['pres'] = Data(x, y, pres, 'Pa')

    # P rate [kg m-2 s-1 -> cm/d]
    if not quiet: print(' --> P rate')
    f = files['pr']
    if 'PRATE_L1' in netcdf.varnames(f):
        prate = netcdf.use(f, 'PRATE_L1')
    else:
        prate = netcdf.use(f, 'PRATE_L1_Avg_1')
    x = netcdf.use(f, 'lon')
    x[x > 180] = x[x > 180] - 360
    y = netcdf.use(f, 'lat')
    x, y = np.meshgrid(x, y)
    # Conversion kg m^-2 s^-1  to cm/day
    prate = prate * 86400 * 100 / 1000.
    prate = np.where(abs(prate) < 1.e-4, 0, prate)
    # check time:
    ttmp = load_time(f)
    if ttmp.size == time.size and np.all(ttmp == time): print('    time ok')
    else:
        print('   time differs !!!!'),
        prate, tfix = fix_time(ttmp, prate, time[0], time[-1])
        if tfix.size == time.size and np.all(tfix == time):
            print(' ...fixed!')
        else:
            print('time is NOT OK. Please check !!')
            return
    out['prate'] = Data(x, y, prate, 'cm/d')

    # Net shortwave flux  [W/m^2]
    if not quiet: print(' --> Net shortwave flux')
    if not quiet: print('       SW down')
    f = files['rad']
    sw_down = netcdf.use(f, 'DSWRF_L1_Avg_1')
    x = netcdf.use(f, 'lon')
    x[x > 180] = x[x > 180] - 360
    y = netcdf.use(f, 'lat')
    x, y = np.meshgrid(x, y)
    if not quiet: print('       SW up')
    sw_up = netcdf.use(f, 'USWRF_L1_Avg_1')
    sw_net = sw_down - sw_up
    sw_net = np.where(sw_net < 1.e-10, 0, sw_net)
    # check time:
    ttmp = load_time(f)
    if ttmp.size == time.size and np.all(ttmp == time): print('    time ok')
    else:
        print('   time differs !!!!'),
        sw_net, tfix = fix_time(ttmp, sw_net, time[0], time[-1])
        if tfix.size == time.size and np.all(tfix == time):
            print(' ...fixed!')
        else:
            print('time is NOT OK. Please check !!')
            return
    out['radsw'] = Data(x, y, sw_net, 'W m-2', info='positive downward')

    # Net longwave flux  [W/m^2]
    if not quiet: print(' --> Net longwave flux')
    if not quiet: print('       LW down')
    f = files['rad']
    lw_down = netcdf.use(f, 'DLWRF_L1_Avg_1')
    x = netcdf.use(f, 'lon')
    x[x > 180] = x[x > 180] - 360
    y = netcdf.use(f, 'lat')
    x, y = np.meshgrid(x, y)
    if not quiet: print('       LW up')
    lw_up = netcdf.use(f, 'ULWRF_L1_Avg_1')
    lw_net = lw_down - lw_up
    lw_net = np.where(np.abs(lw_net) < 1.e-10, 0, lw_net)
    # check time:
    ttmp = load_time(f)
    if ttmp.size == time.size and np.all(ttmp == time): print('    time ok')
    else:
        print('   time differs !!!!'),
        lw_net, tfix1 = fix_time(ttmp, lw_net, time[0], time[-1])
        lw_down, tfix2 = fix_time(ttmp, lw_down, time[0], time[-1])
        if tfix1.size == tfix2.size == time.size and np.all((tfix1 == time)
                                                            & (tfix2 == time)):
            print(' ...fixed!')
        else:
            print('time is NOT OK. Please check !!')
            return
    # ROMS (agrif, used to be!) convention: positive upward
    out['radlw'] = Data(x, y, -lw_net, 'W m-2', info='positive upward')
    # downward lw:
    out['dlwrf'] = Data(x, y, -lw_down, 'W m-2', info='negative... downward')
    # signs convention is better explained in wrf.py

    # U and V wind speed 10m
    if not quiet: print(' --> U and V wind')
    f = files['uv']
    uwnd = netcdf.use(f, 'U_GRD_L103')
    vwnd = netcdf.use(f, 'V_GRD_L103')
    x = netcdf.use(f, 'lon')
    x[x > 180] = x[x > 180] - 360
    y = netcdf.use(f, 'lat')
    x, y = np.meshgrid(x, y)
    # check time:
    ttmp = load_time(f)
    if ttmp.size == time.size and np.all(ttmp == time): print('    time ok')
    else:
        print('   time differs !!!!'),
        uwnd, tfix1 = fix_time(ttmp, uwnd, time[0], time[-1])
        vwnd, tfix2 = fix_time(ttmp, vwnd, time[0], time[-1])
        if tfix1.size == tfix2.size == time.size and np.all((tfix1 == time)
                                                            & (tfix2 == time)):
            print(' ...fixed!')
        else:
            print('time is NOT OK. Please check !!')
            return
    #
    if not quiet: print(' --> calc wind speed and stress')
    speed = np.sqrt(uwnd**2 + vwnd**2)
    taux, tauy = air_sea.wind_stress(uwnd, vwnd)

    out['wspd'] = Data(x, y, speed, 'm s-1')
    out['uwnd'] = Data(x, y, uwnd, 'm s-1')
    out['vwnd'] = Data(x, y, vwnd, 'm s-1')
    out['sustr'] = Data(x, y, taux, 'Pa')
    out['svstr'] = Data(x, y, tauy, 'Pa')

    # Cloud cover [0--100 --> 0--1]:
    if not quiet: print(' --> Cloud cover')
    f = files['cc']
    if 'T_CDC_L200' in netcdf.varnames(f):
        clouds = netcdf.use(f, 'T_CDC_L200')
    else:
        clouds = netcdf.use(f, 'T_CDC_L200_Avg_1')
    x = netcdf.use(f, 'lon')
    x[x > 180] = x[x > 180] - 360
    y = netcdf.use(f, 'lat')
    x, y = np.meshgrid(x, y)
    clouds = clouds / 100.
    # check time:
    ttmp = load_time(f)
    if ttmp.size == time.size and np.all(ttmp == time): print('    time ok')
    else:
        print('   time differs !!!!'),
        clouds, tfix = fix_time(ttmp, clouds, time[0], time[-1])
        if tfix.size == time.size and np.all(tfix == time):
            print(' ...fixed!')
        else:
            print('time is NOT OK. Please check !!')
            return
    out['cloud'] = Data(x, y, clouds, 'fraction (0--1)')

    # rhum has different resolution (0.5, just like dew point!)
    # so, i can edit surface.py or just interpolate here rhum to
    # other vars resolution:
    if out['rhum'].data.shape != out['uwnd'].data.shape:
        from okean import calc
        print('rhum shape differs!! --> interp:')
        nt, ny, nx = out['uwnd'].data.shape
        x, y = out['uwnd'].x, out['uwnd'].y
        rhum = np.zeros((nt, ny, nx), out['rhum'].data.dtype)
        for it in range(nt):
            if it % 100 == 0: print('  %d of %d' % (it, nt))
            rhum[it] = calc.griddata(out['rhum'].x, out['rhum'].y,
                                     out['rhum'].data[it], x, y)

        out['rhum'] = Data(x, y, rhum, '0--1')

    return out
Esempio n. 40
0
def update_wind_blended2(fname,datapaths,**kargs):
  '''
  In days without blended data will try to use quikscat data
  '''
  from okean.datasets import quikscat
  from okean.datasets import blended_wind
  a=blended_wind.WINDData(datapaths[0])
  b=quikscat.WINDData(datapaths[1])

  time=netcdf.nctime(fname,'time')
  date0=dts.next_date(time[0],-1)
  date1=dts.next_date(time[-1],+2)

  data=a.data(date0,date1)

  # limit are... otherwise, quikscat interp will be very slow!
  grd=netcdf.fatt(fname,'grd_file')
  import os
  if not os.path.isfile(grd): grd=kargs['grd']
  cond,inds=rt.grid_vicinity(grd,data['x'],data['y'],margin=5,rect=True,retinds=True)
  i1,i2,j1,j2=inds
  for d in data.keys():
    if   d == 'x': data[d]=data[d][i1:i2]
    elif d == 'y': data[d]=data[d][j1:j2]
    else: data[d]=data[d][j1:j2,i1:i2]


  # check for missing days:
  time0=data.keys()
  x0=data['x']
  y0=data['y']
  x0,y0=np.meshgrid(x0,y0)
  time0.remove('x')
  time0.remove('y')

  out=OrderedDict()
  out['x']=x0
  out['y']=y0
  info=''
  qs_ij_limits_done=False
  for d in dts.drange(date0,date1):
    found=0
    for t in time0:
      if (t.year,t.month,t.day)==(d.year,d.month,d.day):
        print('==> blended : ',t)
        out[t]=data[t]
        found=1

    if not found: # use quikscat:
      print('==> quikscat : ',d.strftime('%Y-%m-%d'))
      tmp= b.data(d,dts.next_date(d))
      if not tmp.has_key('x'): continue
      x,y=tmp['x'],tmp['y']
      x,y=np.meshgrid(x,y)

      # reduce qs data:
      if not qs_ij_limits_done:
        i1,i2,j1,j2=calc.ij_limits(x,y,[x0.min(),x0.max()],[y0.min(),y0.max()])
        qs_ij_limits_done=True

      x=x[j1:j2,i1:i2]
      y=y[j1:j2,i1:i2]
      tmp[tmp.keys()[0]]=tmp[tmp.keys()[0]][j1:j2,i1:i2]


      print('  griddata u')
      u=calc.griddata(x,y,tmp[tmp.keys()[0]].real,x0,y0)
      print('  griddata v')
      v=calc.griddata(x,y,tmp[tmp.keys()[0]].imag,x0,y0)
      out[tmp.keys()[0]]=u+1.j*v
      info+='#'+d.strftime('%Y%m%d')


  new_wind_info='blended+quikscat at days: '+info
  update_wind(fname,out,new_wind_info,**kargs)
Esempio n. 41
0
  def update_wind(self,data,keepOld=True,quiet=0):
    # store old at first iteration


    nc=netcdf.Pync(self.filename,'w')
    time=netcdf.nctime(self.filename,'time')
    tind,=np.where(time==data['date'])

    if tind.size: tind=tind[0]
    else:
      if not quiet: print('cannot find time=%s' % data['date'].isoformat(' '))
      return


    if 'Uwind' in nc.varnames: # roms
      names=('Uwind','uwnd'),('Vwind','vwnd'),'sustr','svstr','wspd'
    else: # roms-agrif
      names='uwnd','vwnd','sustr','svstr','wspd'

    # store old wind data:
    if False and tind==0: # not using for now.... too slow!
                          # TODO: remove keepOld form argument !?
      if 'x_wind' in data.keys():
        if not quiet: print('adding x_wind, y_wind')
        nc.add_dim('x_wind_original',data['x_wind'].shape[1])
        nc.add_dim('y_wind_original',data['x_wind'].shape[0])

        nc.add_var('x_wind_original',data['x_wind'].dtype,
                   ('y_wind_original','x_wind_original'))
        nc.add_var('y_wind_original',data['y_wind'].dtype,
                   ('y_wind_original','x_wind_original'))

        nc.vars['x_wind_original'][...]=data['x_wind']
        nc.vars['y_wind_original'][...]=data['y_wind']


      for i in names:
        if isinstance(i,basestring): filev,datav=i,i
        else:  filev,datav=i

        newName = filev+'_old'
        newType = nc.vars[filev].dtype()
        newDims = nc.vars[filev].dims.keys()

        if  not quiet: print('  creating var %s' % newName)
        nc.add_var(newName,newType,newDims)

        if  not quiet: print('    filling var %s' % newName)
        nc.vars[newName][...]=nc.vars[filev][...]

        # also store old original data, if present:
        orig=datav+'_original'
        if orig in nc.varnames:
          newName = orig+'_old'
          newType = nc.vars[orig].dtype()
          newDims = nc.vars[orig].dims.keys()

          if  not quiet: print('  creating var %s' % newName)
          nc.add_var(newName,newType,newDims)

          if  not quiet: print('    filling var %s' % newName)
          nc.vars[newName][...]=nc.vars[orig][...]


    # store new wind data:
    for i in names:
      if isinstance(i,basestring): filev,datav=i,i 
      else:  filev,datav=i

      if not quiet: print('  %s (%s) min=%8.3f max=%8.3f' % (filev.ljust(7),datav.ljust(7),
                                                               data[datav].min(),data[datav].max()))
      nc.vars[filev][tind,...]=data[datav]

      # also store new wind original data, if present:
      orig=datav+'_original'
      if not orig in data.keys(): continue
      if not quiet: print('  %s  min=%8.3f max=%8.3f' % (orig.ljust(7+9),
                                                        data[orig].min(),data[orig].max()))
      nc.vars[orig][tind,...]=data[datav]


    # adding global atts:
    if 'attr' in data.keys():
      for i in data['attr'].keys(): nc.add_att(i,data['attr'][i])


    nc.close()
Esempio n. 42
0
def interim_file_data(files, quiet=False):
    '''
  ECMWF ERA INTERIM data for ROMS

  To be used with data obtained from the new server:
  http://apps.ecmwf.int/datasets/

  and not the old one (http://data-portal.ecmwf.int/data/d/interim_daily/)
  To deal with data from old server use module interim_past

  => forecast vars:
  time=00h, 12h
  step=3,6,9,12 --> n forec steps=4

      needed (suggestion):
      - Surface net solar radiation (ssr)
      - Surface thermal radiation (str)
      - Total precipitation (tp)
      others:
      - Surface thermal radiation downwards (strd)
      - Evaporation (e)
      - ...

  =>analysis+forec vars: (interim analysis starts every 6h; forecast starts every 12h !!)
  time=00h,6h,12h,18h
  step=0,3,9 (3 and 9 are for the forecast 00h and 12h)

      needed (suggestion):
      - Surface pressure (sp)
      - Total cloud cover    (tcc)
      - 10 metre U wind component (v10u or u10)
      - 10 metre V wind component  (v10v or v10)
      - 2 metre temperature (v2t or t2m)
      - 2 metre dewpoint temperature (v2d or d2m)

  Accumulated vars (rad SW, LW and precipitation are converted to averages
  by acum2avg
  '''

    # some variables may have different names!
    Vars = {}
    Vars['v10u'] = 'v10u', 'u10'
    Vars['v10v'] = 'v10v', 'v10'
    Vars['v2t'] = 'v2t', 't2m'
    Vars['v2d'] = 'v2d', 'd2m'

    def find_v(name):
        if name in Vars.keys():
            for v in Vars[name]:
                if varfile(v): return v
        else: return name

    def varfile(var):
        for f in files:
            if var in netcdf.varnames(f): return f

    def check_var_type(var):
        # new interim dataserver provides forec+analysis vars with extra dim
        # 'type', 0 or 1
        if var.ndim == 4:
            if not quiet: print('      dealing with var type... '),
            v = np.zeros(var.shape[1:], var.dtype)
            v[::2] = var[0, ::2, ...]
            v[1::2] = var[1, 1::2, ...]
            var = v
            if not quiet: print('done.')

        return var

    out = {}

    # time:
    # all times from analysis file, except last ind which will be
    # the last time of forecast file
    aFile = varfile(find_v('v2t'))  # air temp, for instance
    fFile = varfile(find_v('ssr'))  # sw rad, for instance
    if not quiet: print(' reading "analysis" time from file %s' % aFile)
    aTime = netcdf.nctime(aFile, 'time')
    aTime.sort()  # analysis+forecast files may not have time sorted!!
    if not quiet: print(' reading "forecast" time from file %s' % fFile)
    fTime = netcdf.nctime(fFile, 'time')
    fTime.sort()  # this one should be sorted...
    time = np.append(aTime, fTime[-1])
    out['time'] = time

    # calc number of forecast steps stored,nforec (used by accum2avg)
    if [fTime[i].hour for i in range(8)] == range(3, 22, 3) + [0]: nforec = 4
    elif [fTime[i].hour for i in range(4)] == range(6, 19, 6) + [0]: nforec = 2
    else:
        if not quiet: print('INTERIM WRONG TIME: cannot n forec steps')
        return

    if not quiet: print(' ==> n forecast steps = %d' % nforec)

    # x,y:
    if not quiet: print(' reading x,y from file %s' % files[0])
    x = netcdf.use(files[0], 'longitude')
    y = netcdf.use(files[0], 'latitude')
    x[x > 180] = x[x > 180] - 360
    if x.ndim == 1 and y.ndim == 1:
        x, y = np.meshgrid(x, y)

    # tair [K-->C]
    if not quiet: print(' --> T air')
    vname = find_v('v2t')
    f = varfile(vname)
    # time may not be monotonically increasing !!
    # when using mix of analysis and forecast variables and steps
    sortInds = np.argsort(netcdf.use(f, 'time'))
    tair = netcdf.use(f, vname, time=sortInds) - 273.15
    tair = check_var_type(tair)
    if not quiet and np.any(sortInds != range(len(sortInds))):
        print('      sort DONE')
    if not quiet: print('      fill_tend...')
    tair = fill_tend(tair)
    out['tair'] = Data(x, y, tair, 'Celsius')

    # R humidity [0--1]
    if not quiet: print(' --> R humidity (from T dew)')
    vname = find_v('v2d')
    f = varfile(vname)
    sortInds = np.argsort(netcdf.use(f, 'time'))
    Td = netcdf.use(f, vname, time=sortInds) - 273.15
    Td = check_var_type(Td)
    if not quiet and np.any(sortInds != range(len(sortInds))):
        print('      sort DONE')
    if not quiet: print('      fill_tend... (T dew)')
    Td = fill_tend(Td)
    T = tair
    rhum = relative_humidity(T, Td)
    ##  rhum=((112-0.1*T+Td)/(112+0.9*T))**8
    rhum[rhum > 1] = 1
    out['rhum'] = Data(x, y, rhum, '0--1')

    # surface pressure [Pa]
    if not quiet: print(' --> Surface pressure')
    vname = find_v('sp')
    f = varfile(vname)
    sortInds = np.argsort(netcdf.use(f, 'time'))
    pres = netcdf.use(f, vname, time=sortInds)
    pres = check_var_type(pres)
    if not quiet and np.any(sortInds != range(len(sortInds))):
        print('      sort DONE')
    if not quiet: print('      fill_tend...')
    pres = fill_tend(pres)
    out['pres'] = Data(x, y, pres, 'Pa')

    # P rate [m --> cm day-1]
    if not quiet: print(' --> P rate')
    vname = find_v('tp')
    f = varfile(vname)
    sortInds = np.argsort(netcdf.use(f, 'time'))
    prate = netcdf.use(f, vname, time=sortInds)
    prate = check_var_type(prate)
    if not quiet and np.any(sortInds != range(len(sortInds))):
        print('      sort DONE')
    if not quiet: print('      accum2avg...')
    prate = accum2avg(prate, nforec)
    conv = 100 * 86400  # from m s-1      --> cm day-1
    #conv= 100*86400/1000. # from kg m-2 s-1 --> cm day-1
    prate = prate * conv  # cm day-1
    if not quiet: print('      fill_t0...')
    prate = fill_t0(prate)
    prate[prate < 0] = 0
    out['prate'] = Data(x, y, prate, 'cm day-1')

    # Net shortwave flux  [W m-2 s+1 --> W m-2]
    if not quiet: print(' --> Net shortwave flux')
    vname = find_v('ssr')
    f = varfile(vname)
    sortInds = np.argsort(netcdf.use(f, 'time'))
    sw_net = netcdf.use(f, vname, time=sortInds)
    sw_net = check_var_type(sw_net)
    if not quiet and np.any(sortInds != range(len(sortInds))):
        print('      sort DONE')
    if not quiet: print('      accum2avg...')
    sw_net = accum2avg(sw_net, nforec)
    if not quiet: print('      fill_t0...')
    sw_net = fill_t0(sw_net)
    out['radsw'] = Data(x, y, sw_net, 'W m-2', info='positive downward')

    # Net longwave flux  [W m-2 s+1 --> W m-2]
    if not quiet: print(' --> Net longwave flux')
    vname = find_v('str')
    f = varfile(vname)
    sortInds = np.argsort(netcdf.use(f, 'time'))
    lw_net = netcdf.use(
        f, vname, time=sortInds) * -1  # let us consider positive upward (*-1)
    lw_net = check_var_type(lw_net)
    if not quiet and np.any(sortInds != range(len(sortInds))):
        print('      sort DONE')
    if not quiet: print('      accum2avg...')
    lw_net = accum2avg(lw_net, nforec)
    if not quiet: print('      fill_t0...')
    lw_net = fill_t0(lw_net)
    out['radlw'] = Data(x, y, lw_net, 'W m-2', info='positive upward')

    # longwave down:
    # can be obtained from clouds!!
    if not quiet: print(' --> Down longwave flux')
    vname = find_v('strd')
    f = varfile(vname)
    if f:
        sortInds = np.argsort(netcdf.use(f, 'time'))
        lw_down = netcdf.use(
            f, vname,
            time=sortInds) * -1  # let us consider positive upward (*-1)
        lw_down = check_var_type(lw_down)
        if not quiet and np.any(sortInds != range(len(sortInds))):
            print('      sort DONE')
        if not quiet: print('      accum2avg...')
        lw_down = accum2avg(lw_down, nforec)
        if not quiet: print('      fill_t0...')
        lw_down = fill_t0(lw_down)
        out['dlwrf'] = Data(x,
                            y,
                            lw_down,
                            'W m-2',
                            info='negative... downward')
    else:
        print('down long wave CANNOT BE USED')

    # U and V wind speed 10m
    if not quiet: print(' --> U and V wind')
    vname = find_v('v10u')
    f = varfile(vname)
    sortInds = np.argsort(netcdf.use(f, 'time'))
    uwnd = netcdf.use(f, vname, time=sortInds)
    uwnd = check_var_type(uwnd)
    if not quiet and np.any(sortInds != range(len(sortInds))):
        print('      sort DONE')
    if not quiet: print('      fill_tend...')
    uwnd = fill_tend(uwnd)
    vname = find_v('v10v')
    f = varfile(vname)
    sortInds = np.argsort(netcdf.use(f, 'time'))
    vwnd = netcdf.use(f, vname, time=sortInds)
    vwnd = check_var_type(vwnd)
    if not quiet and np.any(sortInds != range(len(sortInds))):
        print('      sort DONE')
    if not quiet: print('      fill_tend...')
    vwnd = fill_tend(vwnd)

    if not quiet: print(' --> calc wind speed and stress')
    speed = np.sqrt(uwnd**2 + vwnd**2)
    taux, tauy = air_sea.wind_stress(uwnd, vwnd)

    out['wspd'] = Data(x, y, speed, 'm s-1')
    out['uwnd'] = Data(x, y, uwnd, 'm s-1')
    out['vwnd'] = Data(x, y, vwnd, 'm s-1')
    out['sustr'] = Data(x, y, taux, 'Pa')
    out['svstr'] = Data(x, y, tauy, 'Pa')

    # Cloud cover [0--1]:
    if not quiet: print(' --> Cloud cover')
    vname = find_v('tcc')
    f = varfile(vname)
    sortInds = np.argsort(netcdf.use(f, 'time'))
    clouds = netcdf.use(f, vname, time=sortInds)
    clouds = check_var_type(clouds)
    if not quiet and np.any(sortInds != range(len(sortInds))):
        print('      sort DONE')
    if not quiet: print('      fill_tend...')
    clouds = fill_tend(clouds)
    out['cloud'] = Data(x, y, clouds, 'fraction (0--1)')

    return out
Esempio n. 43
0
def cordex_file_data(f,lims=False,quiet=False):
  '''
  CORDEX data for ROMS

  No accumulated variables are considered
  '''

  out={}

  # time, x, y:
  if not quiet: print(' reading time,x,y')
  out['time']=netcdf.nctime(f,'time')
  x=netcdf.use(f,'lon')
  y=netcdf.use(f,'lat')
  x[x>180]=x[x>180]-360
  if x.ndim==1 and y.ndim==1:
    x,y=np.meshgrid(x,y)

  if np.ma.isMA(x): x=x.data
  if np.ma.isMA(y): y=y.data

  if lims:
    from okean import calc
    xlim,ylim=lims
    i1,i2,j1,j2=calc.ij_limits(x,y,xlim,ylim,margin=3)
  else:
    i0=0
    j0=0
    j1,i1=x.shape

  I=range(i1,i2)
  J=range(j1,j2)
  x=x[j1:j2,i1:i2]
  y=y[j1:j2,i1:i2]

  # tair [K-->C]
  if not quiet: print(' --> T air')
  vname='tair'
  tair=netcdf.use(f,vname,lon=I,lat=J)-273.15
  out['tair']=Data(x,y,tair,'Celsius')

  # R humidity [0--1]
  if not quiet: print(' --> R humidity (from specific humidity)')
  vname='humid'
  q=netcdf.use(f,vname,lon=I,lat=J) # specific humidity
  rhum=q/air_sea.qsat(tair)
  rhum[rhum>1]=1
  out['rhum']=Data(x,y,rhum,'0--1')

  # surface pressure [Pa]
  if not quiet: print(' --> Surface pressure')
  vname='press'
  pres=netcdf.use(f,vname,lon=I,lat=J)
  out['pres']=Data(x,y,pres,'Pa')

  # P rate [kg m-2 s-1 -> cm/d]
  if not quiet: print(' --> P rate')
  vname='rain'
  prate=netcdf.use(f,vname,lon=I,lat=J)
  prate=prate*86400*100/1000.
  prate[prate<0]=0
  out['prate']=Data(x,y,prate,'cm/d')

  # Net shortwave flux  [W m-2]
  if not quiet: print(' --> Net shortwave flux')
  if not quiet: print('       SW down')
  sw_down=netcdf.use(f,'sw_down',lon=I,lat=J)
  if not quiet: print('       SW up')
  sw_up=netcdf.use(f,'sw_up',lon=I,lat=J)
  sw_net=sw_down-sw_up
  out['radsw']=Data(x,y,sw_net,'W m-2',info='positive downward')

  # Net longwave flux  [W m-2]
  if not quiet: print(' --> Net longwave flux')
  if not quiet: print('       LW down')
  lw_down=netcdf.use(f,'lw_down',lon=I,lat=J)
  if not quiet: print('       LW up')
  lw_up=netcdf.use(f,'lw_up',lon=I,lat=J)
  lw_net=lw_down-lw_up
  out['radlw']=Data(x,y,-lw_net,'W m-2',info='positive upward')
  # downward lw:
  out['dlwrf']=Data(x,y,-lw_down,'W m-2',info='negative... downward')
  # signs convention is better explained in wrf.py

  # U and V wind speed 10m
  if not quiet: print(' --> U and V wind')
  uwnd=netcdf.use(f,'u',lon=I,lat=J)
  vwnd=netcdf.use(f,'v',lon=I,lat=J)
  if not quiet: print(' --> calc wind speed and stress')
  speed = np.sqrt(uwnd**2+vwnd**2)
  taux,tauy=air_sea.wind_stress(uwnd,vwnd)

  out['wspd']=Data(x,y,speed,'m s-1')
  out['uwnd']=Data(x,y,uwnd,'m s-1')
  out['vwnd']=Data(x,y,vwnd,'m s-1')
  out['sustr']=Data(x,y,taux,'Pa')
  out['svstr']=Data(x,y,tauy,'Pa')

  # Cloud cover [0--100 --> 0--1]:
  if not quiet: print(' --> Cloud cover')
  if 'clouds' in netcdf.varnames(f):
    clouds=netcdf.use(f,'clouds',lon=I,lat=J)/100.
    out['cloud']=Data(x,y,clouds,'fraction (0--1)')
  else:
    print('==> clouds not present!')

  return fill_extremes(out,quiet)
Esempio n. 44
0
def load_data(f, quiet=0, **kargs):
    '''
  Loads prognostic variables (temp,salt,u,v,ubar,vbar,zeta) from
  netcdf file or opendap server. Also loads lon,lat, depth, and time.

  If f is a file, it must include the 1d variables lon,lat and depth;
  the 2d variable ssh (zeta) and the 3d variables temp, salt, u and v;
  ie, each file must contain data for a simgle time. The file must also
  contain the variable time.

  If f is a opendap address, it must contain also all these variables
  or the ones defined in the input karg settings (DataAccess object)

  To deal with the case of variables in different files/opendap addresses,
  f can also be a dictionary with keys the variables and values the files
  or opendap addresses. In this case, the keys must be:
    - temp
    - salt
    - u
    - v
    - ssh
    - misc, for lon, lat, depth, time and dimensions
      or xy for lon,lat and x,ydim; z for depth and zdim, time for time

  The output data (dict) is suitable to be used by data2roms, which
  interpolates the data to ROMS 3d grid.
  Also outputs an error/status string.

  kargs:
    inds, dict with dimension names/values (where time dim can be integer
          or datetime)
    settings, DataAccess object
    extra, extra misc vars to load [(outKey0,fileVar0),...]
    t_units, units of variable time, by default the att  units is used
  '''

    sett = DataAccess()
    inds = {}
    extra = []
    t_units = []
    if 'settings' in kargs.keys(): sett = kargs['settings']
    if 'inds' in kargs.keys(): inds = kargs['inds']
    if 'extra' in kargs.keys(): extra = kargs['extra']
    if 't_units' in kargs.keys(): t_units = kargs['t_units']

    res = {}
    msg = ''

    if not isinstance(f, dict) and not f.startswith('http') and not isfile(f):
        msg = 'file not found %s' % f
        if not quiet: print msg
        return res, msg

    # load nc files:
    if not isinstance(f, dict):
        f = {'temp': f, 'salt': f, 'u': f, 'v': f, 'ssh': f, 'misc': f}

    if not f.has_key('xy'): f['xy'] = f['misc']
    if not f.has_key('z'): f['z'] = f['misc']
    if not f.has_key('time'): f['time'] = f['misc']

    filesUsed = []
    ncUsed = []
    for i in f.keys():
        if not quiet: print '(%s) loading from %s' % (i.ljust(5), f[i])

        if i == 'temp':
            if f[i] in filesUsed: ncTemp = ncUsed[filesUsed.index(f[i])]
            else:
                ncTemp = netcdf.ncopen(f[i])
                filesUsed += [f[i]]
                ncUsed += [ncTemp]

        elif i == 'salt':
            if f[i] in filesUsed: ncSalt = ncUsed[filesUsed.index(f[i])]
            else:
                ncSalt = netcdf.ncopen(f[i])
                filesUsed += [f[i]]
                ncUsed += [ncSalt]

        elif i == 'u':
            if f[i] in filesUsed: ncU = ncUsed[filesUsed.index(f[i])]
            else:
                ncU = netcdf.ncopen(f[i])
                filesUsed += [f[i]]
                ncUsed += [ncU]

        elif i == 'v':
            if f[i] in filesUsed: ncV = ncUsed[filesUsed.index(f[i])]
            else:
                ncV = netcdf.ncopen(f[i])
                filesUsed += [f[i]]
                ncUsed += [ncV]

        elif i == 'ssh':
            if f[i] in filesUsed: ncSsh = ncUsed[filesUsed.index(f[i])]
            else:
                ncSsh = netcdf.ncopen(f[i])
                filesUsed += [f[i]]
                ncUsed += [ncSsh]

        elif i == 'xy':
            if f[i] in filesUsed: ncXy = ncUsed[filesUsed.index(f[i])]
            else:
                ncXy = netcdf.ncopen(f[i])
                filesUsed += [f[i]]
                ncUsed += [ncXy]

        elif i == 'z':
            if f[i] in filesUsed: ncZ = ncUsed[filesUsed.index(f[i])]
            else:
                ncZ = netcdf.ncopen(f[i])
                filesUsed += [f[i]]
                ncUsed += [ncZ]

        elif i == 'time':
            if f[i] in filesUsed: ncTime = ncUsed[filesUsed.index(f[i])]
            else:
                ncTime = netcdf.ncopen(f[i])
                filesUsed += [f[i]]
                ncUsed += [ncTime]

        elif i == 'misc':
            if f[i] in filesUsed: ncMisc = ncUsed[filesUsed.index(f[i])]
            else:
                ncMisc = netcdf.ncopen(f[i])
                filesUsed += [f[i]]
                ncUsed += [ncMisc]

    # load dims:
    if not quiet: print '  loading dims...'
    dimsXy = netcdf.fdim(ncXy)
    dimsZ = netcdf.fdim(ncZ)

    res['NX'] = dimsXy[sett.xdim]
    res['NY'] = dimsXy[sett.ydim]
    ###if sett.z_name:
    if sett.zdim:
        res['NZ'] = dimsZ[sett.zdim]
    else:
        res['NZ'] = 1

    # about horizontal inds:
    if inds.has_key(
            sett.xdim) and len(inds[sett.xdim]) == 2 and not isinstance(
                inds[sett.xdim], basestring):
        if not quiet: print '  calc horizontal inds...'
        xlim = inds[sett.xdim]
        ylim = inds[sett.ydim]

        inds.pop(sett.xdim)
        inds.pop(sett.ydim)

        lon = netcdf.use(ncXy, sett.x_name, **inds)
        if np.any(lon > 360): lon = np.mod(lon, 360.)
        lat = netcdf.use(ncXy, sett.y_name, **inds)
        i0, i1, j0, j1 = calc.ij_limits(lon, lat, xlim, ylim, margin=3)
        inds[sett.xdim] = '%d:%d' % (i0, i1)
        inds[sett.ydim] = '%d:%d' % (j0, j1)

    if not quiet: print '  loading lon, lat, depth...'
    res['lon'] = netcdf.use(ncXy, sett.x_name, **inds)
    if np.any(res['lon'] > 360): res['lon'] = np.mod(res['lon'], 360.)
    res['lat'] = netcdf.use(ncXy, sett.y_name, **inds)
    if sett.z_name:
        res['depth'] = -netcdf.use(ncZ, sett.z_name, **inds)
    else:
        res['depth'] = False

    if res['lon'].size != res['lat'].size:
        res['lon'], res['lat'] = np.meshgrid(res['lon'], res['lat'])
        # needed for griddata, later

    # update nx,ny:
    if inds.has_key(sett.xdim):
        res['NY'], res['NX'] = res['lon'].shape

    # extra misc vars:
    if len(extra):
        for outKey, fileVar in extra:
            if not quiet:
                print '  loading extra misc... %s %s' % (outKey, fileVar)
            res[outKey] = netcdf.use(ncMisc, fileVar, **inds)

    # time:
    # file may have one or several times. If several, time dim must be given
    # with kargs inds!
    # but file may also have no time dim or time name !
    if sett.time_name:
        if not quiet: print '  loading time...'
        if t_units:
            times = netcdf.use(ncTime, sett.time_name)
            times = netcdf.num2date(times, t_units)
        else:
            times = netcdf.nctime(ncTime, sett.time_name)

        if inds.has_key(sett.tdim):
            try:
                tind = dts.parse_date(inds[sett.tdim])
            except:
                tind = inds[sett.tdim]  # is an integer, for instance

            if isinstance(tind, datetime.datetime):
                tind, = np.where(times == tind)
                if tind.size:
                    tind = tind[0]
                    inds[sett.
                         tdim] = tind  # update inds to extract other variables
                else:
                    Msg = 'date not found'
                    msg += '\n' + Msg
                    return res, msg + ' ERROR'

            date = times[tind]
            try:
                len(date)
                ndates = True
            except:
                ndates = False

            if ndates:
                if not quiet:
                    print '    tind, date= len=%d: %d to %d, %s to %s' % (
                        len(date), tind[0], tind[-1], date[0].isoformat(' '),
                        date[-1].isoformat(' '))
            else:
                if not quiet:
                    print '    tind, date= %d %s' % (tind, date.isoformat(' '))

        elif times.size == 1:
            date = times[0]
            if not quiet: print '    date= %s' % date.isoformat(' ')
        else:  # must provide tind as input!!
            Msg = 'several dates in file... provice tind!'
            msg += '\n' + Msg
            return res, msg + ' ERROR'

        res['date'] = date
    else:
        if not quiet: print '    warning: not using time !!'
        res['date'] = 0

    empty3d = np.zeros([res['NZ'], res['NY'], res['NX']])
    empty2d = np.zeros([res['NY'], res['NX']])

    if 'temp' in f.keys():
        if not quiet: print '  loading temp...'
        if sett.temp_name in ncTemp.varnames:
            res['temp'] = netcdf.use(ncTemp, sett.temp_name, **inds)
        else:
            Msg = 'var %s not found' % 'temp'
            msg += '\n' + Msg
            if not quiet: print Msg
            res['temp'] = empty3d

    if 'salt' in f.keys():
        if not quiet: print '  loading salt...'
        if sett.salt_name in ncSalt.varnames:
            res['salt'] = netcdf.use(ncSalt, sett.salt_name, **inds)
        else:
            Msg = 'var %s not found' % 'salt'
            msg += '\n' + Msg
            if not quiet: print Msg
            res['salt'] = empty3d

    if 'u' in f.keys():
        if not quiet: print '  loading u...'
        if sett.u_name in ncU.varnames:
            res['u'] = netcdf.use(ncU, sett.u_name, **inds)
        else:
            Msg = 'var %s not found' % 'u'
            msg += '\n' + Msg
            if not quiet: print Msg
            res['u'] = empty3d

    if 'v' in f.keys():
        if not quiet: print '  loading v...'
        if sett.v_name in ncV.varnames:
            res['v'] = netcdf.use(ncV, sett.v_name, **inds)
        else:
            Msg = 'var %s not found' % 'v'
            msg += '\n' + Msg
            if not quiet: print Msg
            res['v'] = empty3d

    if 'ssh' in f.keys():
        if not quiet: print '  loading ssh...'
        if sett.ssh_name in ncSsh.varnames:
            res['ssh'] = netcdf.use(ncSsh, sett.ssh_name, **inds)
        else:
            Msg = 'var %s not found' % 'ssh'
            msg += '\n' + Msg
            if not quiet: print Msg
            res['ssh'] = empty2d

    for nc in ncUsed:
        try:
            nc.close()
        except:
            pass

    return res, msg
Esempio n. 45
0
def update_wind(fname, data, new_wind_info, **kargs):
    """
  new_wind_info will be added to fname as global attribute
  (ex: 'new wind from database xxx')

  """
    quiet = False
    Margin = 4  # for griddata and for original data to keep
    grd = False
    keepOriginal = 2

    for k in kargs.keys():
        if k == "quiet":
            quiet = kargs[k]
        elif k == "margin":
            Margin = kargs[k]
        elif k == "grid":
            grd = kargs[k]
        elif k.lower().startswith("keepor"):
            keepOriginal = kargs[k]

    if not grd:
        grd = netcdf.fatt(fname, "grd_file")
    g = roms.Grid(grd)

    x0 = data["x"]
    y0 = data["y"]
    if x0.ndim == 1:
        x0, y0 = np.meshgrid(x0, y0)
    dates = data.keys()[:]
    dates.remove("x")
    dates.remove("y")
    dates = np.array(dates)

    # interp in time:
    time = netcdf.nctime(fname, "time")
    cond = False
    tind = -1
    fob = gennc.GenBlk(fname, grd)
    for t in time:
        newWind = {}
        tind += 1

        I, = np.where(dates == t)
        if I.size:
            I = I[0]
            uv = data[dates[I]]
            if not quiet:
                print t, dates[I]
        else:
            i1, = np.where(dates > t)
            i0, = np.where(dates < t)
            if i0.size and i1.size:
                i1 = i1[0]
                i0 = i0[-1]
                d0 = t - dates[i0]
                d1 = dates[i1] - t
                d0 = d0.days + d0.seconds / 86400.0
                d1 = d1.days + d1.seconds / 86400.0
                uv = (data[dates[i0]] * d1 + data[dates[i1]] * d0) / (d0 + d1)
                if not quiet:
                    print t, dates[i0], dates[i1], d0, d1
            elif not i1.size:
                uv = data[dates[-1]]
                if not quiet:
                    print t, dates[-1]
            elif not i0.size:
                uv = data[dates[0]]
                if not quiet:
                    print t, dates[0]

        # interp to grid:
        if cond is False:
            cond, inds = rt.grid_vicinity(grd, x0, y0, margin=Margin, rect=True, retinds=True)
            i1, i2, j1, j2 = inds

        if not quiet:
            print " --> inter uv %s" % t.isoformat(" ")
        u = calc.griddata(x0[cond], y0[cond], uv.real[cond], g.lon, g.lat, extrap=True)
        v = calc.griddata(x0[cond], y0[cond], uv.imag[cond], g.lon, g.lat, extrap=True)

        # rotate wind, calc stress:
        if not quiet:
            print " --> rot U,V wind and U,V wind stress"
        wspd = np.sqrt(u ** 2 + v ** 2)
        sustr, svstr = air_sea.wind_stress(u, v)
        angle = g.use("angle")
        uwnd, vwnd = calc.rot2d(u, v, angle)
        sustr, svstr = calc.rot2d(sustr, svstr, angle)
        sustr = rt.rho2uvp(sustr, "u")
        svstr = rt.rho2uvp(svstr, "v")

        # update wind data:
        newWind["date"] = t
        newWind["uwnd"] = uwnd
        newWind["vwnd"] = vwnd
        newWind["sustr"] = sustr
        newWind["svstr"] = svstr
        newWind["wspd"] = wspd
        # original xy:
        if tind == 0:
            newWind["attr"] = {"new_wind_info": new_wind_info}
            if not quiet:
                print " --> original xy"
            if keepOriginal == 1:
                newWind["x_wind"] = x0
                newWind["y_wind"] = y0
            elif keepOriginal == 2:
                newWind["x_wind"] = x0[j1:j2, i1:i2]
                newWind["y_wind"] = y0[j1:j2, i1:i2]

        # add to file:
        if not quiet:
            print " --> adding to file"
        fob.update_wind(newWind, quiet=quiet)
        if not quiet:
            print ""
Esempio n. 46
0
def era5_file_data(files, quiet=False):
    '''
  ECMWF ERA5 data for ROMS

  variables:
    # radiation:
      msdwlwrf  -  mean_surface_downward_long_wave_radiation_flux
      #msdwswrf -  mean_surface_downward_short_wave_radiation_flux -- not needed
      msnlwrf   -  mean_surface_net_long_wave_radiation_flux
      msnswrf   -  mean_surface_net_short_wave_radiation_flux
    # rain:
      mtpr      - mean_total_precipitation_rate
    # wind:
      u10       - 10m_u_component_of_wind
      v10       - 10m_v_component_of_wind
    # temp:
      t2m       - 2m_temperature
      d2m       - 2m_dewpoint_temperature (for relative humidity)
    # pres:
      sp        - surface_pressure
    # clouds:
      tcc       - 'total_cloud_cover
  '''

    ###  # some variables may have different names!
    ###  Vars={}
    ###  Vars['v10u']='v10u','u10'
    ###  Vars['v10v']='v10v','v10'
    ###  Vars['v2t']='v2t','t2m'
    ###  Vars['v2d']='v2d','d2m'
    ###
    ####  def find_v(name):
    ###    if name in Vars.keys():
    ###      for v in Vars[name]:
    ###        if varfile(v): return v
    ###    else: return name

    def varfile(var):
        for f in files:
            if var in netcdf.varnames(f): return f


##3  def check_var_type(var):
###    # new interim dataserver provides forec+analysis vars with extra dim
###    # 'type', 0 or 1
###    if var.ndim==4:
###      if not quiet: print('      dealing with var type... '),
###      v=np.zeros(var.shape[1:],var.dtype)
###      v[::2]=var[0,::2,...]
###      v[1::2]=var[1,1::2,...]
###      var=v
###      if not quiet: print('done.')
###
###    return var

    out = {}

    # time:
    File = varfile('t2m')  # air temp, for instance
    if not quiet: print(' reading  time from file %s' % File)
    time = netcdf.nctime(File, 'time')
    # check if last time at 00h:
    if time[-1].hour != 0:
        dateEnd = datetime.datetime(time[-1].year, time[-1].month,
                                    time[-1].day) + datetime.timedelta(days=1)
        time = np.append(time, dateEnd)
    else:
        dateEnd = 0
    out['time'] = time

    ###  # all times from analysis file, except last ind which will be
    ######  # the last time of forecast file
    ###  aFile=varfile(find_v('v2t')) # air temp, for instance
    ######  fFile=varfile(find_v('ssr')) # sw rad, for instance
    ###  if not quiet: print(' reading "analysis" time from file %s' % aFile)
    ###  aTime=netcdf.nctime(aFile,'time')
    ###  aTime.sort() # analysis+forecast files may not have time sorted!!
    ###  if not quiet: print(' reading "forecast" time from file %s' % fFile)
    ###  fTime=netcdf.nctime(fFile,'time')
    ###  fTime.sort() # this one should be sorted...
    ###  time=np.append(aTime,fTime[-1])
    ###  out['time']=time
    ##
    #  # calc number of forecast steps stored,nforec (used by accum2avg)
    #  if [fTime[i].hour for i in range(8)]==range(3,22,3)+[0]: nforec=4
    #  elif [fTime[i].hour for i in range(4)]==range(6,19,6)+[0]: nforec=2
    #  else:
    #    if not quiet: print('INTERIM WRONG TIME: cannot n forec steps')
    #    return
    #
    ###  if not quiet: print(' ==> n forecast steps = %d' % nforec)

    # x,y:
    if not quiet: print(' reading x,y from file %s' % File)
    x = netcdf.use(File, 'longitude')
    y = netcdf.use(File, 'latitude')
    x[x > 180] = x[x > 180] - 360
    if x.ndim == 1 and y.ndim == 1:
        x, y = np.meshgrid(x, y)

    # tair [K-->C]
    if not quiet: print(' --> T air')
    vname = 't2m'
    f = varfile(vname)
    tair = netcdf.use(f, vname) - 273.15
    if dateEnd:
        if not quiet: print('      fill_tend...')
        tair = fill_tend(tair)

    out['tair'] = Data(x, y, tair, 'Celsius')

    # R humidity [0--1]
    if not quiet: print(' --> R humidity (from T dew)')
    vname = 'd2m'
    f = varfile(vname)
    Td = netcdf.use(f, vname) - 273.15
    if dateEnd:
        if not quiet: print('      fill_tend... (T dew)')
        Td = fill_tend(Td)

    T = tair
    rhum = air_sea.relative_humidity(T, Td)
    rhum[rhum > 1] = 1
    out['rhum'] = Data(x, y, rhum, '0--1')

    # surface pressure [Pa]
    if not quiet: print(' --> Surface pressure')
    vname = 'sp'
    f = varfile(vname)
    pres = netcdf.use(f, vname)
    if dateEnd:
        if not quiet: print('      fill_tend...')
        pres = fill_tend(pres)

    out['pres'] = Data(x, y, pres, 'Pa')

    def avg_fix_time(v, DT):
        '''Fix data to right time in avg rate fields (ie, prev half hour to now)
       See:
       https://confluence.ecmwf.int/display/CKB/ERA5+data+documentation#ERA5datadocumentation-Meanratesandaccumulations
    '''
        DTstep = 1
        a = DTstep / 2.
        b = DT - a
        u = np.zeros_like(v)
        u[:-1] = (v[:-1] * b + v[1:] * a) / (a + b)
        # last one lost, use prev value (from 30 min before)
        u[-1] = v[-1]
        return u

    DT = (time[1] - time[0]).total_seconds() / 3600.  # hours

    # P rate [kg m-2 s-1 --> cm day-1]
    if not quiet: print(' --> P rate')
    vname = 'mtpr'
    f = varfile(vname)
    prate = netcdf.use(f, vname)
    if not quiet: print('      avg_fix_time - DTstep=1h - DT=%.2f h' % DT)
    prate = avg_fix_time(prate, DT)
    if dateEnd:
        if not quiet: print('      fill_tend...')
        prate = fill_tend(prate)

    conv = 100 * 86400 / 1000.  # from kg m-2 s-1 --> cm day-1
    prate = prate * conv  # cm day-1
    prate[prate < 0] = 0
    out['prate'] = Data(x, y, prate, 'cm day-1')

    #  dt=(TIMe[1]-time[0]).total_seconds()/3600.
    #  if not quiet: print('      accum to avg at correct time - DTstep=1h - DT=%.2f h'%DT)
    #  prate2=accum2avg(prate,DT)
    #  prate2=prate2*1000
    #  return prate,prate2
    #  prate=check_var_type(prate)
    #  if not quiet and np.any(sortInds!=range(len(sortInds))): print('      sort DONE')
    #  if not quiet: print('      accum2avg...')
    #  prate=accum2avg(prate,nforec)
    #  conv= 100*86400       # from m s-1      --> cm day-1
    #  #conv= 100*86400/1000. # from kg m-2 s-1 --> cm day-1
    #  prate=prate*conv # cm day-1
    #  if not quiet: print('      fill_t0...')
    #  prate=fill_t0(prate)
    #  prate[prate<0]=0
    #  out['prate']=Data(x,y,prate,'cm day-1')
    #
    #  return out

    # Net shortwave flux  [W m-2 --> W m-2]
    if not quiet: print(' --> Net shortwave flux')
    vname = 'msnswrf'
    f = varfile(vname)
    sw_net = netcdf.use(f, vname)
    if not quiet: print('      avg_fix_time - DTstep=1h - DT=%.2f h' % DT)
    sw_net = avg_fix_time(sw_net, DT)
    if dateEnd:
        if not quiet: print('      fill_tend...')
        sw_net = fill_tend(sw_net)

    out['radsw'] = Data(x, y, sw_net, 'W m-2', info='positive downward')

    # Net longwave flux  [W m-2 --> W m-2]
    if not quiet: print(' --> Net longwave flux')
    vname = 'msnlwrf'
    f = varfile(vname)
    lw_net = netcdf.use(f, vname) * -1  # positive upward (*-1)
    # here vars have roms-agrif signs --> radlw is positive upward!
    # conversion to ROMS is done in surface.py
    if not quiet: print('      avg_fix_time - DTstep=1h - DT=%.2f h' % DT)
    lw_net = avg_fix_time(lw_net, DT)
    if dateEnd:
        if not quiet: print('      fill_tend...')
        lw_net = fill_tend(lw_net)

    out['radlw'] = Data(x, y, lw_net, 'W m-2', info='positive upward')

    # longwave down:
    if not quiet: print(' --> Down longwave flux')
    vname = 'msdwlwrf'
    f = varfile(vname)
    lw_down = netcdf.use(f, vname) * -1  # positive upward (*-1)
    if not quiet: print('      avg_fix_time - DTstep=1h - DT=%.2f h' % DT)
    lw_down = avg_fix_time(lw_down, DT)
    if dateEnd:
        if not quiet: print('      fill_tend...')
        lw_down = fill_tend(lw_down)

    out['dlwrf'] = Data(x, y, lw_down, 'W m-2', info='positive upward')

    # U and V wind speed 10m
    if not quiet: print(' --> U and V wind')
    vname = 'u10'
    f = varfile(vname)
    uwnd = netcdf.use(f, vname)
    vname = 'v10'
    f = varfile(vname)
    vwnd = netcdf.use(f, vname)
    if dateEnd:
        if not quiet: print('      fill_tend...')
        uwnd = fill_tend(uwnd)
        vwnd = fill_tend(vwnd)

    out['uwnd'] = Data(x, y, uwnd, 'm s-1')
    out['vwnd'] = Data(x, y, vwnd, 'm s-1')
    # speed and stress:
    if 0:
        if not quiet: print(' --> calc wind speed and stress')
        speed = np.sqrt(uwnd**2 + vwnd**2)
        taux, tauy = air_sea.wind_stress(uwnd, vwnd)
        out['wspd'] = Data(x, y, speed, 'm s-1')
        out['sustr'] = Data(x, y, taux, 'Pa')
        out['svstr'] = Data(x, y, tauy, 'Pa')

    # Cloud cover [0--1]:
    if not quiet: print(' --> Cloud cover')
    vname = 'tcc'
    f = varfile(vname)
    clouds = netcdf.use(f, vname)
    if dateEnd:
        if not quiet: print('      fill_tend...')
        clouds = fill_tend(clouds)

    out['cloud'] = Data(x, y, clouds, 'fraction (0--1)')

    return out
Esempio n. 47
0
def cfsr_file_data(files, quiet=False):
    '''
  Returns bulk data from one CFRS files
  '''
    def load_time(f):
        time = np.array((), datetime.datetime)
        ff = glob.glob(f)
        ff.sort()
        for f in ff:
            time = np.append(time, netcdf.nctime(f, 'time'))
        return time

    def load_time_main(f):
        time = load_time(f)
        # I want 0,6,12,... after 2006 results may be 3,9,15, ...
        if time[0].hour in [3, 9, 15, 21]:
            time = time + datetime.timedelta(hours=3)
        # for 2011 1st time is not 0!
        if time[0].hour == 6: time = np.hstack((time[0].replace(hour=0), time))
        return time

    def fix_time(t, var, t0, t1):
        # convert 1h, 7h, ... to 0h, 6h, ...
        if t[0].hour in [1, 7, 13,
                         19]:  # not all! sp analysis starts at 0, 6,...!
            print '     1,7,... to 0,6,...'
            var = (var[1:] * 5 + var[:-1] * 1) / 6.
            t = t[1:] - datetime.timedelta(hours=1)
        elif t[0].hour in [3, 9, 15, 21]:
            print '     3,9,... to 0,6,...'
            var = (var[1:] * 3 + var[:-1] * 3) / 6.
            t = t[1:] - datetime.timedelta(hours=3)

        cond = (t >= t0) & (t <= t1)
        t = t[cond]
        var = var[cond]

        if t[0] > t0:
            dt = t[0] - t0
            dt = dt.days * 24 + dt.seconds / 3600.  # hours
            print 'missind data at start: %.2d h missing --> repeating 1st data' % dt
            v = np.zeros((var.shape[0] + 1, ) + var.shape[1:], var.dtype)
            v[1:] = var
            v[0] = var[0]
            var = v
            t_ = np.zeros((t.shape[0] + 1, ) + t.shape[1:], t.dtype)
            t_[1:] = t
            t_[0] = t0
            t = t_

        if t[-1] < t1:
            dt = t1 - t[-1]
            dt = dt.days * 24 + dt.seconds / 3600.  # hours
            print 'missind data at end: %.2d h missing --> repeating last data' % dt
            v = np.zeros((var.shape[0] + 1, ) + var.shape[1:], var.dtype)
            v[:-1] = var
            v[-1] = var[-1]
            var = v
            t_ = np.zeros((t.shape[0] + 1, ) + t.shape[1:], t.dtype)
            t_[:-1] = t
            t_[-1] = t1
            t = t_

        return var, t

    out = {}

    # time:
    if 0:
        time = netcdf.nctime(files['cc'], 'time')
        # files have diff units !! so, cannot load all times at once!
        # these result will use only units of 1st file!!
    else:
        time = load_time_main(files['cc'])

    out['time'] = time

    # T air [K->C]
    if not quiet: print ' --> T air'
    f = files['st']
    tair = netcdf.use(f, 'TMP_L103')
    tair = tair - 273.15
    x = netcdf.use(f, 'lon')
    x[x > 180] = x[x > 180] - 360
    y = netcdf.use(f, 'lat')
    x, y = np.meshgrid(x, y)
    # check time:
    ttmp = load_time(f)
    if ttmp.size == time.size and np.all(ttmp == time): print '    time ok'
    else:
Esempio n. 48
0
def cfsr_file_data(files,quiet=False):
  '''
  Returns bulk data from one CFRS files
  '''


  def load_time(f):
    time=np.array((),datetime.datetime)
    ff=glob.glob(f)
    ff.sort()
    for f in ff: time=np.append(time,netcdf.nctime(f,'time'))
    return time


  def fix_time(t,var,t0,t1):
    # convert 1h, 7h, ... to 0h, 6h, ...
    if t[0].hour in [1,7,13,19]: # not all! sp analysis starts at 0, 6,...!
      print '     1,7,... to 0,6,...'
      var=(var[1:]*5+var[:-1]*1)/6.
      t=t[1:]-datetime.timedelta(hours=1)

    cond=(t>=t0)&(t<=t1)
    t=t[cond]
    var=var[cond]

    if t[0]>t0:
      dt=t[0]-t0
      dt=dt.days*24+dt.seconds/3600. # hours
      print 'missind data at start: %.2d h missing --> repeating 1st data'%dt
      v=np.zeros((var.shape[0]+1,)+var.shape[1:],var.dtype)
      v[1:]=var
      v[0]=var[0]
      var=v

    if t[-1]<t1:
      dt=t1-t[-1]
      dt=dt.days*24+dt.seconds/3600. # hours
      print 'missind data at end: %.2d h missing --> repeating last data'%dt
      v=np.zeros((var.shape[0]+1,)+var.shape[1:],var.dtype)
      v[:-1]=var
      v[-1]=var[-1]
      var=v

    return var


  out={}

  # time:
  if 0:
    time=netcdf.nctime(files['cc'],'time')
    # files have diff units !! so, cannot load all times at once!
    # thse result will use only units of 1st file!!
  else:
    time=load_time(files['cc'])


  out['time']=time

  # T air [K->C]
  if not quiet: print ' --> T air'
  f=files['st']
  tair=netcdf.use(f,'TMP_L103')
  tair=tair-273.15
  x=netcdf.use(f,'lon'); x[x>180]=x[x>180]-360
  y=netcdf.use(f,'lat')
  x,y=np.meshgrid(x,y)
  # check time:
  ttmp=load_time(f)
  if ttmp.size==time.size and np.all(ttmp==time): print '    time ok'
  else:
Esempio n. 49
0
def plt_hslice(conf, plconf, date, FA='a', nest=0, **kargs):
    err = ''
    fig = False
    info = {}

    type = 'avg'
    var = 'temp'
    slice = 'z'
    ind = -10
    time = -1
    currents = False
    dcurr = (3, 3)
    scurr = 3
    lcurr = 0.2
    ifig = 0
    # closefig = True
    clim = False
    quiet = False
    outStoragePath = False
    cmap = None
    norm = None
    useBar = True  # currents are barotropic for 2D vars (like zeta)

    keys = kargs.keys()
    if 'type' in keys: type = kargs['type']
    if 'var' in keys: var = kargs['var']
    if 'slice' in keys: slice = kargs['slice']
    if 'ind' in keys: ind = kargs['ind']
    if 'time' in keys: time = kargs['time']
    if 'currents' in keys: currents = kargs['currents']
    if 'dcurr' in keys: dcurr = kargs['dcurr']
    if 'scurr' in keys: scurr = kargs['scurr']
    if 'lcurr' in keys: lcurr = kargs['lcurr']
    if 'ifig' in keys: ifig = kargs['ifig']
    if 'closefig' in keys: closefig = kargs['closefig']
    if 'clim' in keys: clim = kargs['clim']
    if 'quiet' in keys: quiet = kargs['quiet']
    if 'ostorage' in keys: outStoragePath = kargs['ostorage']
    if 'cmap' in keys: cmap = kargs['cmap']
    if 'usebar' in keys: useBar = kargs['usebar']
    if 'norm' in keys: norm = kargs['norm']

    date = dateu.parse_date(date)

    # find input files:
    args = {
        'cf': conf,
        'date': date,
        'FA': FA,
        'nest': nest,
        'ostorage': outStoragePath
    }
    his = opt.nameof('out', type, **args)
    clm = opt.nameof('in', 'clm', **args)
    grd = opt.nameof('in', 'grd', **args)
    if not os.path.isfile(his):
        err = 'Main file not found (%s)' % his
        return err, fig, info
    if not os.path.isfile(grd):
        err = 'Grid file not found (%s)' % grd
        return err, fig, info
    r = roms.His(his, grd)

    # plot grid:
    proj, fig, ax = plt_grid(plconf, grd, ifig)

    def add_colorbar(handle, **args):
        ax = pl.gca()
        Data, err = opt.get_plconf(plconf, 'AXES')
        cbpos = Data['cbpos'][ifig]
        cbbgpos = Data['cbbgpos'][ifig]
        cbbgc = Data['cbbgcolor'][ifig]
        cbbga = Data['cbbgalpha'][ifig]
        cblab = Data['cblabel'][ifig]

        # colorbar bg axes:
        if cbbgpos:
            rec = pl.axes((cbpos[0] - cbpos[2] * cbbgpos[0],
                           cbpos[1] - cbbgpos[2] * cbpos[3], cbpos[2] *
                           (1 + cbbgpos[0] + cbbgpos[1]), cbpos[3] *
                           (1 + cbbgpos[2] + cbbgpos[3])),
                          axisbg=cbbgc,
                          frameon=1)

            rec.patch.set_alpha(cbbga)
            rec.set_xticks([])
            rec.set_yticks([])
            for k in rec.axes.spines.keys():
                rec.axes.spines[k].set_color(cbbgc)
                rec.axes.spines[k].set_alpha(cbbga)

        # colorbar:
        if cbpos:
            cbax = fig.add_axes(cbpos)
            if cbpos[2] > cbpos[3]: orient = 'horizontal'
            else: orient = 'vertical'
            cb = pl.colorbar(handle,
                             cax=cbax,
                             orientation=orient,
                             drawedges=0,
                             **args)
            pl.axes(ax)

        # colorbar label:
        if cblab:
            Data, err = opt.get_plconf(plconf, 'HSLICES')
            varnames = Data['varnames'][ifig].split(',')
            vnames = Data['vnames'][ifig].split(',')
            lab = ''
            for i in range(len(varnames)):
                if varnames[i].strip() == var:
                    lab = vnames[i].strip()
                    break

            if lab:
                if r.hasz(var):
                    if slice == 'k':
                        if ind == 0: lab = 'Bottom ' + lab
                        elif ind in (-1, 'surface'): lab = 'Surface ' + lab
                    elif slice == 'z':
                        lab = lab + ' ' + str(ind) + 'm'

                cb.set_label(lab)

    def add_currkey(handle):
        Data, err = opt.get_plconf(plconf, 'HSLICES')
        pos = Data['kcurrpos'][ifig]
        if pos:
            pl.quiverkey(handle,
                         pos[0],
                         pos[1],
                         lcurr,
                         '%s m/s' % str(lcurr),
                         labelpos='S',
                         coordinates='axes')

    # hslice:
    if var:
        if slice == 'k': metodo = r.slicek
        elif slice == 'z': metodo = r.slicez

        x, y, z, v = metodo(var, ind, time, plot=False)
        x, y = proj(x, y)

        # cmap:
        if isinstance(cmap, basestring):
            try:
                cmap = pl.cm.cmap_d[cmap]
            except:
                try:
                    from okean import pl_tools
                    cmap = pl_tools.cm.cmap_d[cmap]
                except:
                    cmap = pl.cm.jet

        # original data from clm
        if slice == 'k' and ind in (
                -1, ) and var + '_original' in netcdf.varnames(clm):
            tcurr = r.datetime[time]
            x_o = netcdf.use(clm, 'x_original')
            y_o = netcdf.use(clm, 'y_original')
            x_o, y_o = proj(x_o, y_o)
            v_o = netcdf.use(clm, 'y_original')
            t_o = netcdf.nctime(clm, 'clim_time')

            # average to current time:
            i0, = np.where(t_o <= tcurr)[-1]
            i1, = np.where(t_o > tcurr)[0]
            v_o0 = netcdf.use(clm, var + '_original', time=i0)
            v_o1 = netcdf.use(clm, var + '_original', time=i1)
            # avg:
            a = tcurr - t_o[i0]
            b = t_o[i1] - tcurr

            a = a.days * 86400 + a.seconds
            b = b.days * 86400 + b.seconds

            if a == 0: v_o = v_o0
            elif b == 0: v_o = v_o1
            else: v_o = (v_o0 * b + v_o1 * a) / (a + b)

            pch = pl.pcolormesh(x_o, y_o, v_o, shading='flat', cmap=cmap)
            if clim: pl.clim(clim[0], clim[1])

        if norm == 'log':
            from matplotlib.colors import LogNorm
            Norm = LogNorm(vmin=clim[0], vmax=clim[1])
        else:
            Norm = None

        # change hypoxia colorbar/cmap
        if var == 'dye_01':
            HypoxiaLim = 135
            from okean import pl_tools
            cmap = pl_tools.ucmaps().gen_oxygen(
                v=(0, HypoxiaLim, 300.))  # default is 0,135,300 !!

        pch = pl.pcolormesh(x, y, v, shading='flat', cmap=cmap, norm=Norm)
        if clim: pl.clim(clim[0], clim[1])

        # hypoxia:
        if var == 'dye_01' and ind == 0 and ifig == 0:
            cond = v < 135.
            cond = v < HypoxiaLim
            cond = (v < HypoxiaLim) & (r.grid.h > 5)

            pm = r.grid.use('pm')
            pn = r.grid.use('pn')
            A = (1 / pm[cond] * 1 / pn[cond] / 1e6).sum()

            x_, y_ = proj(-98, 29.5)
            pl.text(x_,
                    y_,
                    'Hypoxia area = %.0f km$^2$' % A,
                    color='r',
                    fontweight='bold',
                    fontname='monospace',
                    bbox=dict(edgecolor='none', facecolor='white', alpha=0.8))
        # hypoxia.

        # colorbar:
        if norm == 'log':
            tks = 10**np.linspace(np.log10(clim[0]), np.log10(clim[1]), 4)
            opts = {'ticks': tks, 'format': '%.2f'}
        else:
            opts = {'ticks': None}
        add_colorbar(pch, **opts)

    if currents:
        if (var and r.hasz(var)) or not useBar: uvind = ind
        else: uvind = 'bar'

        x, y, z, u, v = r.sliceuv(uvind, time)
        xm, ym = proj(x, y)
        mm = np.zeros(x.shape, 'bool')
        mm[::dcurr[0], ::dcurr[1]] = True

        Data, err = opt.get_plconf(plconf, 'HSLICES')
        wcurr = Data['wcurr'][ifig]
        acurr = Data['acurr'][ifig]

        qvopts = {'units': 'x', 'scale': scurr, 'width': wcurr, 'alpha': acurr}
        if var:
            q = pl.quiver(xm[mm], ym[mm], u[mm], v[mm], **qvopts)
        else:
            s = np.sqrt(u**2 + v**2)
            q = pl.quiver(xm[mm], ym[mm], u[mm], v[mm], s[mm], **qvopts)
            if clim: pl.clim(clim[0], clim[1])
            add_colorbar(q)

        add_currkey(q)

    # store some info that may be required later
    info['hasz'] = False
    if var and r.hasz(var): info['hasz'] = True

    # logo:
    if ifig == 0:
        im = os.path.join(os.path.dirname(__file__), 'logo_INOCAR.png')
        i = pl.imread(im)
        h, w = i.shape[:2]
        rx = .12
        W = (proj.xmax - proj.xmin) * rx
        H = W * h / w
        l = proj.xmax
        #pl.fill([proj.xmax-W, proj.xmax, proj.xmax,     proj.xmax-W],
        #           [proj.ymin,   proj.ymin, proj.ymin+2.8*H, proj.ymin+2.8*H],
        #           '#500000',alpha=0.25,ec='none')

        ax.imshow(i,
                  extent=(proj.xmax * .98 - W, proj.xmax * .98,
                          proj.ymin + H * .1, proj.ymin + H * 1.1),
                  zorder=1e3)
        #pl.text(proj.xmax-W/2., proj.ymin+2.2*H,'OOF',
        #           fontdict={'size':14,'family':'serif'},
        #           color='#500000',ha='center',weight='bold')

        pl.text(proj.xmax * .8,
                proj.ymax * (-.1),
                r.datetime[time].strftime("%d %b %Y"),
                fontdict={
                    'size': 11,
                    'family': 'monospace'
                },
                ha='center')

        if FA == 'f':
            s = 'Pronostico desde %s' % r.datetime[0].strftime("%d %b %Y")
            pl.text(
                proj.xmax * .8,
                proj.ymax * (-.15),
                s,
                #pl.text(proj.xmax-W/2., proj.ymin+1.1*H,s,
                fontdict={'fontsize': 10},
                ha='center')
    # logo.

    # lims change in some mpl versions !!
    pl.gca().axis([proj.xmin, proj.xmax, proj.ymin, proj.ymax])

    return err, fig, info