Esempio n. 1
0
 def test_redcal(self):
     #check that logcal give 0 chi2 for all 20 testinfos
     for index in xrange(20):
         arrayinfopath = os.path.dirname(
             os.path.realpath(__file__)) + '/testinfo/test' + str(
                 index + 1) + '_array_info.txt'
         c = Oc.RedundantCalibrator(56)
         c.compute_redundantinfo(arrayinfopath, tol=.1)
         info = c.Info
         npz = np.load(testdata % index)
         bls = [tuple(bl) for bl in npz['bls']]
         dd = dict(zip(bls, npz['vis']))
         m, g, v = Oc.redcal(dd,
                             info,
                             removedegen=True,
                             maxiter=50,
                             stepsize=.2,
                             computeUBLFit=True,
                             conv=1e-5,
                             uselogcal=True)
         calparpath = os.path.dirname(os.path.realpath(
             __file__)) + '/testinfo/test' + str(index + 1) + '_calpar.txt'
         with open(calparpath) as f:
             rawinfo = [[float(x) for x in line.split()] for line in f]
         temp = np.array(rawinfo[:-1])
         correctcalpar = (np.array(temp[:, 0]) +
                          1.0j * np.array(temp[:, 1]))
         i = g.keys()[0]
         scalar = correctcalpar[i].real / g[i].real
         for i in xrange(56):
             if not g.has_key(i): continue
             self.assertAlmostEqual(
                 np.abs(correctcalpar[i] - g[i] * scalar), 0, 4)
Esempio n. 2
0
 def test_large_info_IO(self):
     calibrator = Oc.RedundantCalibrator(150)
     calibrator.compute_redundantinfo()
     calibrator.write_redundantinfo(infotestpath, verbose=VERBOSE)
     info2 = Oi.RedundantInfo(filename=infotestpath)
     self.assertEqual(calibrator.Info.nAntenna, info2.nAntenna)
     self.assertEqual(calibrator.Info.nBaseline, info2.nBaseline)
     self.assertEqual(calibrator.Info.get_reds(), info2.get_reds())
     os.remove(infotestpath)
Esempio n. 3
0
    def test_logcal(self):
        #check that logcal give 0 chi2 for all 20 testinfos
        diff = np.zeros(20)
        for index in range(20):
            arrayinfopath = os.path.dirname(
                os.path.realpath(__file__)) + '/testinfo/test' + str(
                    index + 1) + '_array_info.txt'
            calibrator = Oc.RedundantCalibrator(56)
            calibrator.compute_redundantinfo(arrayinfopath, tol=.1)
            if False:  # XXX this was to migrate files so they include bl order w/ data
                _info = calibrator.Info  # XXX needs to have been initialized the old way (w/o reds)
                datapath = os.path.dirname(
                    os.path.realpath(__file__)) + '/testinfo/test' + str(
                        index + 1) + '_data.txt'
                with open(datapath) as f:
                    rawinfo = [[float(x) for x in line.split()] for line in f]
                data = np.array([i[0] + 1.0j * i[1] for i in rawinfo[:-1]],
                                dtype='complex64')  #last element is empty
                data = data.reshape((1, 1, len(data)))
                dd = _info.make_dd(data)
                np.savez('calib_test_data_%02d.npz' % index,
                         bls=np.array(dd.keys()),
                         vis=np.array(dd.values()))
            info = calibrator.Info
            npz = np.load(testdata % index)
            bls = [tuple(bl) for bl in npz['bls']]
            dd = dict(zip(bls, npz['vis']))
            data = info.order_data(dd)
            ####do calibration################
            calibrator.removeDegeneracy = True
            calibrator.removeAdditive = False
            calibrator.keepData = True
            calibrator.keepCalpar = True
            calibrator.convergePercent = 1e-5
            calibrator.maxIteration = 50
            calibrator.stepSize = .2
            calibrator.computeUBLFit = True

            calibrator.logcal(data, np.zeros_like(data), verbose=VERBOSE)
            log = np.copy(calibrator.rawCalpar)
            ampcal = log[0, 0, 3:info['nAntenna'] + 3]
            phasecal = log[0, 0, info['nAntenna'] + 3:info['nAntenna'] * 2 + 3]
            calpar = 10**(ampcal) * np.exp(1.0j * phasecal)
            ublfit = log[0, 0, 3 + 2 * info['nAntenna']::2] + 1.0j * log[
                0, 0, 3 + 2 * info['nAntenna'] + 1::2]
            ####import real calibration parameter
            calparpath = os.path.dirname(os.path.realpath(
                __file__)) + '/testinfo/test' + str(index + 1) + '_calpar.txt'
            with open(calparpath) as f:
                rawinfo = [[float(x) for x in line.split()] for line in f]
            temp = np.array(rawinfo[:-1])
            correctcalpar = (np.array(temp[:, 0]) +
                             1.0j * np.array(temp[:, 1]))[info['subsetant']]
            ###compare calpar with correct calpar
            overallfactor = np.real(np.mean(ublfit))**0.5
            diffnorm = la.norm(calpar * overallfactor - correctcalpar)
            self.assertAlmostEqual(diffnorm, 0, 4)
Esempio n. 4
0
    def test_lincal(self):
        fileindex = 3  #use the 3rd file to do the test, can also change this to any number from 1 to 20
        length = 100
        loglist = np.zeros(length)
        linlist = np.zeros(length)

        ####import arrayinfo################
        arrayinfopath = os.path.dirname(os.path.realpath(
            __file__)) + '/testinfo/test' + str(fileindex) + '_array_info.txt'
        nant = 56
        calibrator = Oc.RedundantCalibrator(nant)
        calibrator.compute_redundantinfo(arrayinfopath)
        info = calibrator.Info
        npz = np.load(testdata % (fileindex - 1))
        bls = [tuple(bl) for bl in npz['bls']]
        dd = dict(zip(bls, npz['vis']))
        data = info.order_data(dd)

        ####Config parameters###################################
        needrawcal = True  #if true, (generally true for raw data) you need to take care of having raw calibration parameters in float32 binary format freq x nant
        std = 0.1

        ####do calibration################
        calibrator.removeDegeneracy = True
        calibrator.removeAdditive = False
        calibrator.keepData = True
        calibrator.keepCalpar = True
        calibrator.convergePercent = 1e-5
        calibrator.maxIteration = 50
        calibrator.stepSize = .2
        calibrator.computeUBLFit = True

        for i in range(length):
            noise = (np.random.normal(scale=std, size=data.shape) +
                     1.0j * np.random.normal(scale=std, size=data.shape)
                     ).astype('complex64')
            ndata = data + noise
            calibrator.logcal(ndata, np.zeros_like(ndata), verbose=VERBOSE)
            calibrator.lincal(ndata, np.zeros_like(ndata), verbose=VERBOSE)

            linchi2 = (calibrator.rawCalpar[0, 0, 2] /
                       (info['At'].shape[1] - info['At'].shape[0]) /
                       (2 * std**2))**0.5
            logchi2 = (calibrator.rawCalpar[0, 0, 1] /
                       (info['At'].shape[1] - info['At'].shape[0]) /
                       (2 * std**2))**0.5
            linlist[i] = linchi2
            loglist[i] = logchi2
        self.assertTrue(abs(np.mean(linlist) - 1.0) <
                        0.01)  #check that chi2 of lincal is close enough to 1
        self.assertTrue(
            np.mean(linlist) < np.mean(loglist)
        )  #chick that chi2 of lincal is smaller than chi2 of logcal
Esempio n. 5
0
    def test_lincal(self):
        fileindex = 3  #use the 3rd file to do the test, can also change this to any number from 1 to 20
        length = 100
        loglist = np.zeros(length)
        linlist = np.zeros(length)

        ####import arrayinfo################
        arrayinfopath = os.path.dirname(os.path.realpath(
            __file__)) + '/testinfo/test' + str(fileindex) + '_array_info.txt'
        nant = 56
        calibrator = Oc.RedundantCalibrator(nant)
        calibrator.compute_redundantinfo(arrayinfopath)
        info = calibrator.Info
        npz = np.load(testdata % (fileindex - 1))
        bls = [tuple(bl) for bl in npz['bls']]
        dd = dict(zip(bls, npz['vis']))
        data = np.array([
            dd[bl] if bl in dd else dd[bl[::-1]].conj()
            for bl in info.bl_order()
        ]).transpose((1, 2, 0))
        #data = info.order_data(dd)

        ####Config parameters###################################
        needrawcal = True  #if true, (generally true for raw data) you need to take care of having raw calibration parameters in float32 binary format freq x nant
        std = 0.1

        ####do calibration################
        calibrator.removeDegeneracy = True
        calibrator.removeAdditive = False
        calibrator.keepData = True
        calibrator.keepCalpar = True
        calibrator.convergePercent = 1e-5
        calibrator.maxIteration = 50
        calibrator.stepSize = .2
        calibrator.computeUBLFit = True

        for i in range(length):
            noise = (np.random.normal(scale=std, size=data.shape) +
                     1.0j * np.random.normal(scale=std, size=data.shape)
                     ).astype('complex64')
            ndata = data + noise
            calibrator.logcal(ndata, np.zeros_like(ndata), verbose=VERBOSE)
            calibrator.lincal(ndata, np.zeros_like(ndata), verbose=VERBOSE)

            linchi2 = (calibrator.rawCalpar[0, 0, 2] /
                       (calibrator.Info['At'].shape[1] -
                        calibrator.Info['At'].shape[0]) / (2 * std**2))**0.5
            logchi2 = (calibrator.rawCalpar[0, 0, 1] /
                       (calibrator.Info['At'].shape[1] -
                        calibrator.Info['At'].shape[0]) / (2 * std**2))**0.5
            linlist[i] = linchi2
            loglist[i] = logchi2

            # The sum of the chi^2's for all antennas should be twice the
            # calibration chi^2. Omnical uses single precision floats in C, so
            # the ratio of that sum to chi^2 must be equal to 2 to 5 decimal
            # places. That should hold in all cases.
            chi2all = calibrator.rawCalpar[0, 0, 2]
            chi2ant = calibrator.rawCalpar[
                0, 0, 3 + 2 * (info.nAntenna + len(info.ublcount)):]
            np.testing.assert_almost_equal(np.sum(chi2ant) / chi2all - 2, 0, 5)

        self.assertTrue(abs(np.mean(linlist) - 1.0) <
                        0.01)  #check that chi2 of lincal is close enough to 1
        self.assertTrue(
            np.mean(linlist) < np.mean(loglist)
        )  #chick that chi2 of lincal is smaller than chi2 of logcal