Esempio n. 1
0
    def __init__(self, filename, coordinates):
        r = self.r = adcirc_grid_reader(filename, coordinates)
        r.read_grid()

        # r.p contains the lines of node definitions, strip last column
        self.x = r.p[:, 0]
        self.y = r.p[:, 1]

        # r.t contains the connectivity of nodes to form triangles, strip fist column
        self.triangles = r.t[:, 1:] - 1
Esempio n. 2
0
    def read_grid(self, grid_file):
        gr = adcirc_grid_reader(grid_file, coordinates="spherical")
        gr.read_grid()
        nodes, elements, elev_boundaries, flow_boundaries = gr.get_sets()

        elements.n1 = elements.nodes[:, 0]
        elements.n2 = elements.nodes[:, 1]
        elements.n3 = elements.nodes[:, 2]

        i = 0
        for e in elev_boundaries + flow_boundaries:
            i += 1
            nodes[e.nodes].vmark = i

        self.nodes = nodes
        self.elements = elements
        self._elev_boundaries = elev_boundaries
        self._flow_boundaries = flow_boundaries
        self._neta = gr.parameters["NETA"]
    def read_adcirc_grid(self, grid_file):
        gr=adcirc_grid_reader(grid_file,coordinates="spherical")
        gr.read_grid()
        nodes,elements,elev_boundaries,flow_boundaries=gr.get_sets()
        
        if self.boundary_forcing=="flow":
          # change elevation to flow boundary
          for b in elev_boundaries:
            b.type=22
          flow_boundaries=elev_boundaries+flow_boundaries
          elev_boundaries=[]
          
        
        elements.n1=elements.nodes[:,0]
        elements.n2=elements.nodes[:,1]
        elements.n3=elements.nodes[:,2]
        
        i=0
        for e in elev_boundaries+flow_boundaries:
          i+=1
          nodes[e.nodes].vmark=i 
          
        # put maximum on depth to simulate top layer  
        nodes.depth=numpy.minimum(nodes.depth ,self.layer_depth  )

        # fix south east corner of bathymetry to prevent step right on edge
        # this is actually counterproductive... 
        #~ lon=nodes.lon
        #~ lat=nodes.lat
        #~ a=numpy.where( (lat<11.5 |units.deg)*(lon>-61. | units.deg))[0]
        #~ nodes[a].depth=numpy.minimum(nodes[a].depth, 100. | units.m) 
        # maybe increasing depth??

        self.nodes=nodes
        self.elements=elements
        self._elev_boundaries=elev_boundaries
        self._flow_boundaries=flow_boundaries
        self._neta=gr.parameters["NETA"]
        self._nflux=gr.parameters["NFLUX"]
Esempio n. 4
0
    def __init__(self, filename, coordinates):

        from omuse.community.adcirc.read_grid import adcirc_grid_reader

        r = adcirc_grid_reader(filename, coordinates)
        r.read_grid()
        self.num_elems = num_elems = r.parameters['NE']
        self.num_nodes = num_nodes = r.parameters['NP']

        self.size = num_elems
        self.corners = num_corners = 3  #assuming only triangles are used for now

        # r.p contains the lines of node definitions, strip last column
        self.lon = lon = r.p[:, 0]
        self.lat = lat = r.p[:, 1]

        # r.t contains the connectivity of nodes to form triangles, strip fist column
        self.triangles = triangles = r.t[:,
                                         1:] - 1  #minus one to offset Fortran indexes starting at 1

        self.grid_center_lat = grid_center_lat = numpy.zeros(
            num_elems, dtype=numpy.double)
        self.grid_center_lon = grid_center_lon = numpy.zeros(
            num_elems, dtype=numpy.double)

        self.grid_corner_lat = grid_corner_lat = numpy.zeros(
            num_elems * num_corners, dtype=numpy.double)
        self.grid_corner_lon = grid_corner_lon = numpy.zeros(
            num_elems * num_corners, dtype=numpy.double)

        self.inverse_mapping = inverse_mapping = [[] for i in range(num_nodes)]

        self.elem_area = elem_area = numpy.zeros(num_elems, dtype=numpy.double)
        self.elem_area_spherical = elem_area_spherical = numpy.zeros(
            num_elems, dtype=numpy.double)

        i = 0
        for triangle in triangles:
            n1, n2, n3 = triangle
            lat1 = lat[n1]
            lat2 = lat[n2]
            lat3 = lat[n3]
            lon1 = lon[n1]
            lon2 = lon[n2]
            lon3 = lon[n3]

            #add element i as neighbors of nodes n1, n2, and n3
            inverse_mapping[n1].append(i)
            inverse_mapping[n2].append(i)
            inverse_mapping[n3].append(i)

            grid_center_lat[i] = (lat1 + lat2 + lat3) / 3.0
            grid_center_lon[i] = (lon1 + lon2 + lon3) / 3.0

            grid_corner_lat[i * 3 + 0] = lat1
            grid_corner_lat[i * 3 + 1] = lat2
            grid_corner_lat[i * 3 + 2] = lat3

            grid_corner_lon[i * 3 + 0] = lon1
            grid_corner_lon[i * 3 + 1] = lon2
            grid_corner_lon[i * 3 + 2] = lon3

            #triangle area, uses counter-clockwise sorting of nodes in trangle
            #assumes 2D euclidian geometry, not entirely accurate for lat-lon
            elem_area[i] = (((lon2 - lon1) * (lat3 - lat1)) -
                            ((lon3 - lon1) * (lat2 - lat1))) / 2.0

            #compute triangle area using spherical geometry
            a = distance(lat1, lon1, lat2, lon2)
            b = distance(lat2, lon2, lat3, lon3)
            c = distance(lat3, lon3, lat1, lon1)
            elem_area_spherical[i] = triangle_area(a, b, c)

            i += 1

        self.adjacency_list = adjacency_list = []
        self.boundary_node = boundary_node = [False for i in range(num_nodes)]

        for node in range(num_nodes):

            #create a list for each cell center connected to this corner
            cell_neighbors = [[] for i in inverse_mapping[node]]
            #use celli as index into cell_neighbors array
            celli = 0

            #for each neighboring cell/triangle
            for cell in inverse_mapping[node]:

                corners = triangles[cell][:]  #copy corner list
                corner_list = list(corners)
                corner_list.remove(
                    node)  #remove the shared corner, look for another one
                for i in inverse_mapping[node]:
                    matches = 0
                    for c in triangles[i]:
                        if c in corner_list:
                            matches += 1
                    if matches == 1:  #matches should be one, if it's 2 then it is the cell itself
                        cell_neighbors[celli].append(i)

                #if there is a cell with less than two neighboring cells for this corner, then
                #this corner must be on a boundary
                if len(cell_neighbors[celli]) < 2:
                    boundary_node[node] = True

                #print "node=", node, "cell=", cell, "neighbors=", cell_neighbors[celli]
                celli += 1

            adjacency_list.append(cell_neighbors)
def run(tend=5. | units.day, state=None):

    param=adcirc_parameter_reader("data/test/2d/fort.15")
    param.read_parameters(NETA=9)
    param.parameters['NBFR']=-1

    gr=adcirc_grid_reader("data/test/2d/fort.14")
    gr.read_grid()
    nodes,elements,elev_boundary,flow_boundary=gr.get_sets()

    code=Adcirc()

    code._parameters=param.parameters        
    code.assign_grid_and_boundary(nodes,elements,elev_boundary, flow_boundary)

    code.parameters.use_interface_elevation_boundary=True
    code.parameters.use_interface_parameters=True
    code.parameters.use_interface_grid=True
    code.parameters.A_H=param.parameters["ESLM"] | units.m**2/units.s
    code.parameters.timestep=abs(param.parameters["DTDP"]) | units.s
    code.parameters.bottom_friction_law=["linear","quadratic","hybrid"][param.parameters["NOLIBF"]]
    try:
      code.parameters.linear_bottom_friction_coeff=param.parameters["TAU"]| units.s**-1
    except:
      pass
    try:
      code.parameters.quadratic_bottom_friction_coeff=param.parameters["CF"]
    except:
      pass
    code.parameters.use_predictor_corrector=param.parameters["DTDP"]<0
    code.parameters.use_interface_met_forcing=False

    if state:
      nodes,elements=state

    if state:
      code.parameters.begin_time=nodes.collection_attributes.time

    if state:
      channel=nodes.new_channel_to(code.nodes)
      channel.copy_attributes(["eta","deta_dt","status","vx","vy"])
      channel=elements.new_channel_to(code.elements)
      channel.copy_attributes(["status"])

    tnow=code.model_time
    dt=code.parameters.timestep

    elev_boundaries= list(code.elevation_boundaries())

    eta61=[]
    time=[]
    forcing=[]

    while tnow<tend-dt/2:
        elev_boundaries[0].eta=tidal_force_function(tnow+dt/2)
        code.evolve_model(tnow+dt)
        tnow=code.get_model_time()

        eta=code.nodes[60].eta.number
        time.append(tnow.number)
        eta61.append(eta)  
        forcing.append(elev_boundaries[0].eta[0].number)
  
    state=code.nodes.copy(),code.elements.copy()
    state[0].collection_attributes.time=code.model_time
    print("done at:", code.model_time.in_(units.day))
    
    code.stop()
    
    return state,time,eta61,forcing
Esempio n. 6
0
    def test2(self):
        tend=5*86400. | units.s

        param=adcirc_parameter_reader("data/test/2d/fort.15")
        param.read_parameters(NETA=9)

        gr=adcirc_grid_reader("data/test/2d/fort.14")
        gr.read_grid()
        nodes,elements,elev_boundary,flow_boundary=gr.get_sets()

        code=Adcirc()

        code._parameters=param.parameters        
        code.assign_grid_and_boundary(nodes,elements,elev_boundary, flow_boundary)

        code.parameters.use_interface_elevation_boundary=False
        code.parameters.use_interface_parameters=True
        code.parameters.use_interface_grid=True
        code.parameters.A_H=param.parameters["ESLM"] | units.m**2/units.s
        code.parameters.timestep=abs(param.parameters["DTDP"]) | units.s
        code.parameters.bottom_friction_law=["linear","quadratic","hybrid"][param.parameters["NOLIBF"]]
        try:
          code.parameters.linear_bottom_friction_coeff=param.parameters["TAU"]| units.s**-1
        except:
          pass
        try:
          code.parameters.quadratic_bottom_friction_coeff=param.parameters["CF"]
        except:
          pass
        code.parameters.use_predictor_corrector=param.parameters["DTDP"]<0
        code.parameters.use_interface_met_forcing=False

        print(code.parameters)

        tnow=code.model_time
        dt=code.parameters.timestep
  
        elev_boundaries= list(code.elevation_boundaries())
  
        eta61=[]
        time=[]
        forcing=[]
  
        while tnow<tend-dt/2:
            code.evolve_model(tnow+dt)
            tnow=code.get_model_time()
  
            eta=code.nodes[60].eta.number
            time.append(tnow.number)
            eta61.append(eta)  
            forcing.append(elev_boundaries[0].eta[0].number)
      
        code.stop()
        
        from matplotlib import pyplot
          
        pyplot.ion()
        f=pyplot.figure(figsize=(8,6))
        pyplot.show()

        pyplot.clf()
        pyplot.plot(time,eta61,'r+')
        pyplot.plot(time,forcing,'g+')
        pyplot.plot(time,tidal_force_function((time| units.s)).number)
        pyplot.draw()
        sleep(3)