Esempio n. 1
0
def test_run_to_run_fit():
    diabetes = datasets.load_diabetes()
    clf_first = SVR(kernel='linear', C=10.)
    clf_first.fit(diabetes.data, diabetes.target)

    for _ in range(10):
        clf = SVR(kernel='linear', C=10.)
        clf.fit(diabetes.data, diabetes.target)
        assert_allclose(clf_first.intercept_, clf.intercept_)
        assert_allclose(clf_first.support_vectors_, clf.support_vectors_)
        assert_allclose(clf_first.dual_coef_, clf.dual_coef_)
Esempio n. 2
0
def _test_boston_poly_compare_with_sklearn(params):
    diabetes = datasets.load_boston()
    clf = SVR(kernel='poly', **params)
    clf.fit(diabetes.data, diabetes.target)
    result = clf.score(diabetes.data, diabetes.target)

    clf = SklearnSVR(kernel='poly', **params)
    clf.fit(diabetes.data, diabetes.target)
    expected = clf.score(diabetes.data, diabetes.target)

    assert result > 0.5
    assert result > expected - 1e-5
Esempio n. 3
0
def _test_boston_linear_compare_with_sklearn(C):
    diabetes = datasets.load_boston()
    clf = SVR(kernel='linear', C=C)
    clf.fit(diabetes.data, diabetes.target)
    result = clf.score(diabetes.data, diabetes.target)

    clf = SklearnSVR(kernel='linear', C=C)
    clf.fit(diabetes.data, diabetes.target)
    expected = clf.score(diabetes.data, diabetes.target)

    assert result > 0.5
    assert result > expected - 1e-3
Esempio n. 4
0
def _test_boston_rbf_compare_with_sklearn(C, gamma):
    diabetes = datasets.load_boston()
    clf = SVR(kernel='rbf', gamma=gamma, C=C)
    clf.fit(diabetes.data, diabetes.target)
    result = clf.score(diabetes.data, diabetes.target)

    clf = SklearnSVR(kernel='rbf', gamma=gamma, C=C)
    clf.fit(diabetes.data, diabetes.target)
    expected = clf.score(diabetes.data, diabetes.target)

    assert result > 0.4
    assert result > expected - 1e-5
Esempio n. 5
0
def test_pickle():
    diabetes = datasets.load_diabetes()
    clf = SVR(kernel='rbf', C=10.)
    clf.fit(diabetes.data, diabetes.target)
    expected = clf.predict(diabetes.data)

    import pickle
    dump = pickle.dumps(clf)
    clf2 = pickle.loads(dump)

    assert type(clf2) == clf.__class__
    result = clf2.predict(diabetes.data)
    assert_array_equal(expected, result)
Esempio n. 6
0
def _test_diabetes_compare_with_sklearn(kernel):
    diabetes = datasets.load_diabetes()
    clf_onedal = SVR(kernel=kernel, C=10.)
    clf_onedal.fit(diabetes.data, diabetes.target)
    result = clf_onedal.score(diabetes.data, diabetes.target)

    clf_sklearn = SklearnSVR(kernel=kernel, C=10.)
    clf_sklearn.fit(diabetes.data, diabetes.target)
    expected = clf_sklearn.score(diabetes.data, diabetes.target)

    assert result > expected - 1e-5
    assert_allclose(clf_sklearn.intercept_, clf_onedal.intercept_, atol=1e-4)
    assert_allclose(clf_sklearn.support_vectors_.shape,
                    clf_sklearn.support_vectors_.shape)
    assert_allclose(clf_sklearn.dual_coef_, clf_onedal.dual_coef_, atol=1e-2)
Esempio n. 7
0
def test_input_format_for_diabetes():
    diabetes = datasets.load_diabetes()

    c_contiguous_numpy = np.asanyarray(diabetes.data, dtype='float', order='C')
    assert c_contiguous_numpy.flags.c_contiguous
    assert not c_contiguous_numpy.flags.f_contiguous
    assert not c_contiguous_numpy.flags.fnc

    clf = SVR(kernel='linear', C=10.)
    clf.fit(c_contiguous_numpy, diabetes.target)
    dual_c_contiguous_numpy = clf.dual_coef_
    res_c_contiguous_numpy = clf.predict(c_contiguous_numpy)

    f_contiguous_numpy = np.asanyarray(diabetes.data, dtype='float', order='F')
    assert not f_contiguous_numpy.flags.c_contiguous
    assert f_contiguous_numpy.flags.f_contiguous
    assert f_contiguous_numpy.flags.fnc

    clf = SVR(kernel='linear', C=10.)
    clf.fit(f_contiguous_numpy, diabetes.target)
    dual_f_contiguous_numpy = clf.dual_coef_
    res_f_contiguous_numpy = clf.predict(f_contiguous_numpy)
    assert_allclose(dual_c_contiguous_numpy, dual_f_contiguous_numpy)
    assert_allclose(res_c_contiguous_numpy, res_f_contiguous_numpy)
Esempio n. 8
0
def test_sided_sample_weight():
    clf = SVR(C=1e-2, kernel='linear')

    X = [[-2, 0], [-1, -1], [0, -2], [0, 2], [1, 1], [2, 0]]
    Y = [1, 1, 1, 2, 2, 2]

    sample_weight = [10., .1, .1, .1, .1, 10]
    clf.fit(X, Y, sample_weight=sample_weight)
    y_pred = clf.predict([[-1., 1.]])
    assert y_pred < 1.5

    sample_weight = [1., .1, 10., 10., .1, .1]
    clf.fit(X, Y, sample_weight=sample_weight)
    y_pred = clf.predict([[-1., 1.]])
    assert y_pred > 1.5

    sample_weight = [1] * 6
    clf.fit(X, Y, sample_weight=sample_weight)
    y_pred = clf.predict([[-1., 1.]])
    assert y_pred == pytest.approx(1.5)
Esempio n. 9
0
def test_diabetes_simple():
    diabetes = datasets.load_diabetes()
    clf = SVR(kernel='linear', C=10.)
    clf.fit(diabetes.data, diabetes.target)
    assert clf.score(diabetes.data, diabetes.target) > 0.02