Esempio n. 1
0
 def __init__(self, in_channel, out_channel, kernel, stride, padding):
     super(Up2d, self).__init__()
     self.c1 = nn.ConvTranspose2d(in_channel,
                                  out_channel,
                                  kernel_size=kernel,
                                  stride=stride,
                                  padding=padding)
     self.n1 = nn.InstanceNorm2d(out_channel)
     self.c2 = nn.ConvTranspose2d(in_channel,
                                  out_channel,
                                  kernel_size=kernel,
                                  stride=stride,
                                  padding=padding)
     self.n2 = nn.InstanceNorm2d(out_channel)
Esempio n. 2
0
 def downsample(self, in_channels, out_channels, kernel_size, stride, padding):
     convLayer = nn.Sequential(
         nn.Conv2d(
             in_channels=in_channels,
             out_channels=out_channels,
             kernel_size=kernel_size,
             stride=stride,
             padding=padding,
         ),
         nn.InstanceNorm2d(num_features=out_channels, affine=True),
         GLU(),
     )
     return convLayer
Esempio n. 3
0
    def __init__(self, in_channels, out_channels, kernel_size, stride, padding):
        super(DownSampleGenerator, self).__init__()

        self.convLayer = nn.Sequential(
            nn.Conv2d(
                in_channels=in_channels,
                out_channels=out_channels,
                kernel_size=kernel_size,
                stride=stride,
                padding=padding,
            ),
            nn.InstanceNorm2d(num_features=out_channels, affine=True),
        )
        self.convLayer_gates = nn.Sequential(
            nn.Conv2d(
                in_channels=in_channels,
                out_channels=out_channels,
                kernel_size=kernel_size,
                stride=stride,
                padding=padding,
            ),
            nn.InstanceNorm2d(num_features=out_channels, affine=True),
        )
Esempio n. 4
0
 def upsample(self, in_channels, out_channels, kernel_size, stride, padding):
     self.convLayer = nn.Sequential(
         nn.Conv2d(
             in_channels=in_channels,
             out_channels=out_channels,
             kernel_size=kernel_size,
             stride=stride,
             padding=padding,
         ),
         nn.PixelShuffle(upscale_factor=2),
         nn.InstanceNorm2d(num_features=out_channels // 4, affine=True),
         GLU(),
     )
     return self.convLayer