def judge_interaction(self, sessionid_in, label2entities_cur_dict_in,
                       str_in):
     #todo 添加 领域判断
     jdpin_id = usermanager.get_user(sessionid_in)['jdpin_id']
     sentence_classification = usermanager.get_user(
         sessionid_in)['sentence_pattern_classification']
     key_name = jdpin_id + _flag_recomm_sent_pattern
     # print('key_name==>',key_name)
     # last_question, last_answer,last_sentence_pattern_classification = _get_last_question(sessionid_in)
     last_question, last_answer, last_sentence_pattern_classification = _get_last_question_info(
         sessionid_in, 'none')
     # sc_cur=self._sentence_classification_class.classification_accurate(last_question)
     # print('rds.get(key_name)',)
     # print(rds.keys())
     # val_raw=rds.get(key_name)
     # if val_raw:
     #     print(eval(val_raw))
     #     val_flag=bytes(val_raw,encoding='utf-8')
     # if eval(val_raw) not in [0,'0']:
     #     print('val_flag==>',val_raw)
     if last_sentence_pattern_classification == pcname.query_product.value and sentence_classification in self._included_classification:
         mylog.info('RecomLastQuestionMultiProductInteraction return True')
         return True
     else:
         pass
         #todo 后续再打开
         # val_raw=rds.get(key_name)
         # if val_raw:
         #     flag_raw=eval(val_raw)
         #     if flag_raw and flag_raw==1 :
         #         print('测试检测到 redis 中上一句 是  推荐句式')
         #         mylog.info('测试检测到 redis 中上一句 是  推荐句式\t keyname={}'.format(str(key_name)))
         #         return True
     return False
    def judge_interaction(self, sessionid_in, label2entities_cur_dict_in,
                          str_in):
        #todo 添加 领域判断
        user_cur = usermanager.get_user(sessionid_in)
        # last_question, last_answer,last_sentence_pattern_classification = _get_last_question(sessionid_in)

        last_question, last_answer, last_sentence_pattern_classification = _get_last_question_info(
            sessionid_in, flag_preprocess='question')

        last_label2entities_cur_dict, last_words_timestap = self._get_entity_from_strs(
            [last_question], user_cur['domain_classification'])
        mylog.info('last_question\t{}'.format(str(last_question)))
        mylog.info(
            'last_label2entities_cur_dict[cname.domain.value\t{}'.format(
                str(last_label2entities_cur_dict[cname.domain.value])))
        mylog.info('label2entities_cur_dict_in[cname.domain.value\t{}'.format(
            str(label2entities_cur_dict_in[cname.domain.value])))
        mylog.info('sentence_pattern_classification\t{}'.format(
            str(user_cur['sentence_pattern_classification'])))
        if len(last_label2entities_cur_dict[cname.domain.value]) > 1 and not label2entities_cur_dict_in['domain'] and \
                user_cur['sentence_pattern_classification'] in self._sentence_classifications_needed:
            mylog.info('LastQuestionMultiProductInteracton return True')
            return True
        else:
            return False
Esempio n. 3
0
    def replace_with_context(self, sessionid_in):
        self._deal_last_question(sessionid_in)
        # todo 添加分类
        user_cur = usermanager.get_user(sessionid_in)
        # todo 添加当前槽位切换
        domain_classification = self._domain_classification_class.classify(user_cur['str_synonym'])
        mylog.info('domain_classification:\t\t{}'.format(domain_classification))
        usermanager.update(sessionid_in, domain_classification=domain_classification)

        # usermanager.get_user(sessionid_in).update_slots(index=-1,sentence_pattern_classification=sentence_pattern_classification_from_kg)
        # self._usermanager_class.update(sessionid_in,{'str_raw':str_in,'str_synonym':str_synonym,
        #                                              'domain_classification':domain_classification,'str_synonym_cut':str_synonym_cut})
        words_list_out, dst_word_to_fufill, label2entities_cur_dict = self.replace_with_context_only_question(
            sessionid_in)
        # print('words_list_out, dst_word_to_fufill, label2entities_cur_dict==>',words_list_out, dst_word_to_fufill, label2entities_cur_dict)
        flag_inter, abbrev_str, abbrev2std_list = self._fuzzy_interaction_class.deal_fuzzy_interaction(sessionid_in,
                                                                                                       label2entities_cur_dict,
                                                                                                       user_cur[
                                                                                                           'str_raw'],
                                                                                                       words_list_out)
        usermanager.get_user(sessionid_in).insert_slots(
            **{'question': user_cur['str_synonym'], 'slots_question': label2entities_cur_dict,
               'domain_classification': user_cur['domain_classification'],
               'sentence_pattern_classification': user_cur['sentence_pattern_classification']})
        rds.set(user_cur['jdpin_id'] + _flag_recomm_sent_pattern, 0)
        return words_list_out, dst_word_to_fufill, label2entities_cur_dict, flag_inter, abbrev_str, abbrev2std_list
 def judge_interaction(self, sessionid_in, label2entities_cur_dict_in,
                       str_in):
     if not label2entities_cur_dict_in[
             'domain'] and self._infer_abbrev2std_class.bool_abbrevation(
                 str_in):
         mylog.info('CurStrAbbrevInteraction return True')
         return True
     else:
         return False
 def deal_interaction(self, sessionid_in, label2entities_cur_dict_in,
                      str_in):
     # last_question, last_answer,last_sentence_pattern_classification = _get_last_question(sessionid_in)
     # last_question_rewrite,_=self._preprocess_class.process(last_question)
     last_question, last_answer, last_sentence_pattern_classification = _get_last_question_info(
         sessionid_in, flag_preprocess='question')
     mylog.info('deal_interaction:\t{}'.format(str(last_question)))
     abbrev2std_list = _deal_interaction(sessionid_in, [last_question],
                                         str_in)
     return 1, _default_name_abbrev, abbrev2std_list
Esempio n. 6
0
 def process(self, str_in):
     str_clean_se = self._clean_start_end(str_in)
     str_clean_punc = self._clean_punc(str_clean_se)
     str_std = self._similiar_sentences_replace(str_clean_punc)
     # str_std=str_clean_punc
     words = jieba.lcut(str_std)
     words_replaced = self._synonym_replace(words)
     words_number_transed = self._chinese_number2arab_number(words_replaced)
     str_synonym = ''.join(words_number_transed)
     str_synonym = self._reback_replace(str_synonym, str_in)
     words = self._cut_words(str_synonym)
     mylog.info('当前class\t{}\t\t 当前函数{}\n 输入str\t,输出str\t'.format(
         str(self.__class__), 'process', str_in, str_synonym))
     return str_synonym, words
Esempio n. 7
0
def request_post_kg(str_in, jdpin_in):
    # params = {"question": "我要去潜水能买什么产品?", "jdPin": "安行万里保不保外国人"}
    params = {"question": str_in, "jdPin": jdpin_in}
    status = 0
    try:
        result = requests.post(_url_kg_slots, json=params, timeout=0.5).json()
        status = 1
        mylog.info('请求kg 返回结果\t{}'.format(str(result)))
    except Exception as e:
        error_str = 'request_kg 错误信息{}\t url\t{}字段\t{}'.format(
            str(e.args), str(_url_kg_slots), str(params))
        mylog.debug(error_str)
        mylog.info(error_str)
        result = {}
    return status, result
Esempio n. 8
0
def _get_sentence_pattern_from_kg(sessionid_in, str_in):
    jdpin = usermanager.get_user(sessionid_in)['jdpin_id']
    status, result = request_post_kg(str_in, jdpin)
    sentence_pattern_classification_recommend = ''
    if status == 1:
        if _key_kg_sentence_classificiation in result:
            sentence_pattern_classification = result[_key_kg_sentence_classificiation]
            if sentence_pattern_classification == _value_kg_sentence_classificiation_recommendation:
                mylog.info('从图谱中获取句式\t{}'.format(sentence_pattern_classification))
                sentence_pattern_classification_recommend = pcname.query_product.value
        else:
            pass
    else:
        pass
    return sentence_pattern_classification_recommend
 def deal_interaction(self, sessionid_in, label2entities_cur_dict_in,
                      str_in):
     user_cur = usermanager.get_user(sessionid_in)
     last_question, last_answer, last_sentence_pattern_classification = _get_last_question(
         sessionid_in)
     jdpin_id = user_cur['jdpin_id']
     last_answer_rewrite, _ = self._preprocess_class.process(last_answer)
     mylog.info(
         'jdpin\t{}\t获取到的last_question\t{},\n last_answer{}\t'.format(
             str(jdpin_id), str(last_question), str(last_answer_rewrite)))
     abbrev2std_list = _deal_interaction(sessionid_in,
                                         [last_answer_rewrite], str_in)
     if abbrev2std_list:
         mylog.info('deal_interaction:\t{}'.format(
             str(last_answer_rewrite)))
         return 1, _default_name_abbrev, abbrev2std_list
     else:
         return 0, '', []
Esempio n. 10
0
 def replace_with_context_only_question(self, sessionid_in):
     """
         根据历史对话,从历史对话提取实体,根据当前str中是否存在指代词,决定 实体是补充还是替换
         args:
             str_in: 输入字符串
             words_list_in:输入字符串分词结果
             jdpin_in: id
         return:
             words_list_out: 补全后的分词列表
             dst_word_out:   从历史对话记录提取的slots
             label2entities_cur_dict: 当前用户话提取的slots,准备存入列表的slots
     """
     user_cur = self._usermanager_class.get_user(sessionid_in)
     sentence_classification = self._classification_sentence_pattern(sessionid_in,user_cur['str_raw'])
     mylog.info('sentence_classification:\t\t{}\tstr_raw\t{}'.format(sentence_classification, user_cur['str_raw']))
     self._usermanager_class.update(sessionid_in, sentence_pattern_classification=sentence_classification)
     src_prounoun_word, dst_word_to_fufill = self._get_prounoun_and_dst_words(sessionid_in)
     label2entities_cur_dict, words_timestap = self._prounoun_class.get_entity_from_strs([user_cur['str_synonym']],
                                                                                         user_cur[
                                                                                             'domain_classification'])
     words_list_out = self.replace_words_list(user_cur['str_synonym_cut'], src_prounoun_word, dst_word_to_fufill)
     usermanager.update(sessionid_in,**{'dst_word_to_fufill':dst_word_to_fufill,'label2entities_cur_dict':label2entities_cur_dict})
     return words_list_out, dst_word_to_fufill, label2entities_cur_dict
Esempio n. 11
0
    def action_with_fuzzy(self, sessionid_in):
        # 同义句替换,先分析当前句子实体词情况,再决定是否模糊匹配
        user_cur = self._usermanager.get_user(sessionid_in)
        src_prounoun_word, dst_word_to_fufill, label2entities_cur_dict = \
            self._prounoun_class.replace_words(sessionid_in)
        property_value = label2entities_cur_dict[cname.property.value]
        domain_list = label2entities_cur_dict[cname.domain.value]
        if not property_value:
            if domain_list:
                domain_str = domain_list[0]
                str_no_domain = user_cur['str_synonym'].replace(domain_str, '')
            else:
                domain_str = ''
                str_no_domain = user_cur['str_synonym']
            strs_set, scores_set = self._similarmodel_class.similar_threshold(
                str_no_domain)
            if strs_set:
                # print('recall similarity===>',words_set)
                mylog.info('similar_threshold   str_no_domain\t\t{}'.format(
                    str(str_no_domain)))
                mylog.info('similar_threshold   words_set\t\t{}'.format(
                    str(strs_set)))
                mylog.info('similar_threshold   scores_set\t\t{}'.format(
                    str(scores_set)))

                str_similar = strs_set[0]
                # str_similar = ''.join(words_similar)
                str_similar_with_domain = domain_str + str_similar
                str_synonym, str_synonym_words = self._preprocess_class.process(
                    str_similar_with_domain)
                self._usermanager.update(sessionid_in,
                                         str_synonym=str_synonym,
                                         str_synonym_cut=str_synonym_words)
                src_prounoun_word, dst_word_to_fufill, label2entities_cur_dict = self._prounoun_class.replace_words(
                    sessionid_in)

            else:
                # if '是多久' in str_no_domain:
                #     print('str_no_domain==>',str_no_domain)
                if self._depend_analysis_class.judge_complete(str_no_domain):
                    dst_word_to_fufill = {
                        cname.domain.value:
                        dst_word_to_fufill[cname.domain.value]
                    }
                else:
                    pass
        else:
            pass

        return src_prounoun_word, dst_word_to_fufill
Esempio n. 12
0
 def GET(self, name):
     # print('name==>',name)
     web.header('Content-Type', 'application/json,charset=UTF-8')
     ts = time.time()
     input_ = web.input(name=None)
     # for key,value in input_.items():
     #     print(key,value)
     # data_return={'status':0,'data':{},'msg':None}
     # print('input==>',input)
     _data_return = self._response_manage_class.distribute(name_in=name,
                                                           input_in=input_)
     mylog.info('输入字段信息{}'.format(str(input_)))
     mylog.info('get 返回字段信息  {}\n'.format(str(_data_return)))
     cost_time = time.time() - ts
     mylog.info('此次请求耗时\t{}'.format(str(cost_time)))
     return json.dumps(_data_return)
 def deal_fuzzy_interaction(self, sessionid_in, label2entities_cur_dict_in,
                            str_in, words_list_out):
     # todo 改成 class,不同的情况不同的交互
     if self.no_interaction.judge_interaction(sessionid_in,
                                              label2entities_cur_dict_in,
                                              str_in):
         mylog.info('no_interaction.judge_interaction  return True')
         pass
     else:
         for class_obj_iter in self.interactions_instances:
             if class_obj_iter.judge_interaction(
                     sessionid_in, label2entities_cur_dict_in, str_in):
                 flag_inter, abbrev, abbrev2std_list = class_obj_iter.deal_interaction(
                     sessionid_in, label2entities_cur_dict_in, str_in)
                 mylog.info(' {} return True'.format(str(class_obj_iter)))
                 return flag_inter, abbrev, abbrev2std_list
             else:
                 pass
     mylog.info('交互反问模块都没有return True')
     return 0, '', []
Esempio n. 14
0
def _get_last_question(sessionid_in):
    jdpin_id = usermanager.get_user(sessionid_in)['jdpin_id']
    instance = usermanager.get_user(sessionid_in).get_instance_by_index(-1)
    last_sentence_pattern_classification = ''
    if instance:
        last_question = instance.question
        last_sentence_pattern_classification = instance.sentence_pattern_classification
        # print('last_question==>',last_question)
        chatRecordList = getQAPairs(jdpin_id)
        if chatRecordList:
            last_answer = chatRecordList[-1].answer
            last_question = chatRecordList[-1].question
            usermanager.get_user(sessionid_in).update_slots(
                -1, **{'answer': last_answer})

            # mylog.info('获取 上一轮 question\t{}\n,answer\t{}\n 从 redis'.format(str(last_question),str(last_answer)))
            # mylog.info('redis中5轮问题 开始')
            # for chatrecord_iter in chatRecordList:
            #     question_iter=chatrecord_iter.question
            #     answer_iter=chatrecord_iter.answer
            #     mylog.info('redis 迭代  question\t{}\t\tanswer\t{}'.format(question_iter,answer_iter))
            # mylog.info('redis中5轮问题 开始')

        else:
            mylog.info(
                '_get_last_question 获取到instance,但是没有chatRecordList,last_question={}'
                .format(last_question))
            last_answer = ''
    else:
        mylog.info('_get_last_question  没有获取到instance')
        last_question, last_answer = '', ''
    mylog.info(
        '从redis获取到的last_question\t{},\n last_answer\t{},\nlast_sentence_pattern_classification\t{}'
        .format(last_question, last_answer,
                last_sentence_pattern_classification))
    return last_question, last_answer, last_sentence_pattern_classification