def gen_imagescaler_test(test_name):
    gb = onnx_script.GraphBuilder(test_name)
    test_data = np.ones([2, 3, 4, 5], dtype=np.float32)
    gb.input('input', test_data)
    scale = 2.0
    bias = [1., 2., 3.]
    expected = test_data * scale + np.array(
        bias, dtype=np.float32)[None, :, None, None]

    gb.output(gb.ImageScaler(
        inputs=['input'], scale=scale, bias=bias, outputs=['output']),
        expected)

    gb.gen_test()
Esempio n. 2
0
    def fn(test_name):
        gb = onnx_script.GraphBuilder(test_name)

        batch_size = 2
        chan = 3
        wh = 5
        epsilon = 1e-4
        momentum = 0.95
        chainer.config.train = True

        input = np.random.random((batch_size, chan, wh, wh)).astype(np.float32)
        bn = L.BatchNormalization(chan, decay=momentum, eps=epsilon)
        # Initialize.
        bn(np.random.random((batch_size, chan, wh, wh)).astype(np.float32))

        scale = bn.gamma.array.copy()
        bias = bn.beta.array.copy()
        running_mean = bn.avg_mean.copy()
        running_var = bn.avg_var.copy()

        output = bn(input)

        input_v = gb.input('input', input)
        scale_v = gb.input('scale', scale)
        bias_v = gb.input('bias', bias)
        mean_in_v = gb.input('mean_in', running_mean)
        var_in_v = gb.input('var_in', running_var)

        output_names = ['output', 'mean_out', 'var_out']
        if save_mean_var:
            output_names.extend(['saved_mean', 'saved_var'])

        output_v, mean_out_v, var_out_v, *saved = gb.BatchNormalization(
            inputs=[input_v, scale_v, bias_v, mean_in_v, var_in_v],
            epsilon=epsilon,
            momentum=momentum,
            outputs=output_names)

        gb.output(output_v, output)
        gb.output(mean_out_v, bn.avg_mean)
        gb.output(var_out_v, bn.avg_var)
        if saved:
            mean_out_v, var_out_v = saved
            mean_out = input.mean(axis=(0, 2, 3))
            var_out = input.var(axis=(0, 2, 3))
            np.testing.assert_allclose(output.creator.mean, mean_out)
            gb.output(mean_out_v, mean_out)
            gb.output(var_out_v, var_out)

        gb.gen_test()
Esempio n. 3
0
def gen_backprop_test(test_name):
    gb = onnx_script.GraphBuilder(test_name)
    i = np.array(42, np.float32)
    j = np.array(99, np.float32)

    i_v = gb.param('i', i)
    j_v = gb.param('j', j)

    r_v = gb.Mul([i_v, j_v])

    gb.output(r_v, i * j)
    gb.gradient(i_v, j)
    gb.gradient(j_v, i)
    gb.gen_test()
def gen_sequence_pad_test(test_name):
    # TODO(hamaji): Rewrite with GraphBuilder's input/output.
    gb = onnx_script.GraphBuilder(test_name)
    inputs = [np.array(a) for a in [[1, 2, 3], [4], [5, 6]]]
    gb.SequenceConstruct(inputs=[], outputs=['seq0'])

    for i, input in enumerate(inputs):
        gb.SequenceInsert(inputs=['seq%d' % i, 'in%d' % i],
                                outputs=['seq%d' % (i + 1)])

    index_value = 1
    index_v = gb.const([index_value])
    gb.SequenceAt(
        inputs=['seq3', index_v],
        outputs=['lookup_result'])
    gb.ChainerSequencePad(
        value=-42.0,
        length=4,
        inputs=['seq3'],
        outputs=['pad3_result'])
    gb.ChainerSequencePad(
        value=-42.0,
        inputs=['seq2'],
        outputs=['pad2_result'])
    gb.ChainerSequenceLengths(
        inputs=['seq3'],
        outputs=['seq3_lengths_seq'])
    gb.ConcatFromSequence(
        inputs=['seq3_lengths_seq'],
        outputs=['seq3_lengths'],
        axis=0,
        new_axis=1)

    padded = np.array([[1, 2, 3, -42], [4, -42, -42, -42], [5, 6, -42, -42]])
    outputs = [
        ('lookup_result', np.array([4])),
        ('pad3_result', padded),
        ('pad2_result', padded[0:2, 0:3]),
        ('seq3_lengths', np.array([3, 1, 2])),
    ]
    inputs = [('in%d' % i, input) for i, input in enumerate(inputs)]
    inputs_vi = [_extract_value_info(a, n) for n, a in inputs]
    outputs_vi = [_extract_value_info(a, n) for n, a in outputs]
    graph = onnx.helper.make_graph(
        nodes=gb.nodes,
        name=test_name,
        inputs=inputs_vi,
        outputs=outputs_vi)
    gen_test(graph, inputs, outputs, name=test_name)
Esempio n. 5
0
def gen_maxpool_cover_all_test(test_name):
    # A custom attribute for Chainer/ChainerX's `cover_all` parameter.
    gb = onnx_script.GraphBuilder(test_name)

    input = np.random.random((1, 3, 7, 7))
    input_v = gb.input('input', input)
    gb.output(gb.MaxPool([input_v], kernel_shape=[3, 3], strides=[2, 2],
                         outputs=['not_cover_all']),
              F.max_pooling_2d(input, ksize=3, stride=2, cover_all=False))
    gb.output(gb.MaxPool([input_v], kernel_shape=[3, 3], strides=[2, 2],
                         chainer_cover_all=True,
                         outputs=['cover_all']),
              F.max_pooling_2d(input, ksize=3, stride=2, cover_all=True))

    gb.gen_test()
Esempio n. 6
0
def gen_sieve_loop(initial_sieve_val, sieve_range_tbl):
    gb = onnx_script.GraphBuilder('gen_sieve')
    iter = gb.input('sieve_iter', 0)
    cond = gb.input('sieve_cond', True)
    sieve = gb.input('sieve_in', initial_sieve_val)

    n = gb.Add([iter, gb.const(2)])
    is_not_me = gb.Not([gb.Equal([sieve_range_tbl, n])])
    is_multiple = gb.Equal([calc_mod(gb, sieve_range_tbl, n), gb.const(0)])
    is_composite = gb.And([is_not_me, is_multiple])
    sieve = gb.Or([sieve, is_composite])

    gb.output(gb.const(True), True)
    gb.output(sieve, initial_sieve_val)
    return gb.make_graph()
Esempio n. 7
0
def gen_sequence_extend_test(test_name):
    gb = onnx_script.GraphBuilder(test_name)
    input1 = aranges(3, 4)
    input2 = aranges(3, 1) * 2
    seq1 = [np.squeeze(i, 0) for i in np.split(input1, 3)]
    seq2 = [np.squeeze(i, 0) for i in np.split(input2, 3)]

    input1_v = gb.input('input1', input1)
    input2_v = gb.input('input2', input2)
    seq1_v = gb.SplitToSequence([input1_v], keepdims=False)
    seq2_v = gb.SplitToSequence([input2_v], keepdims=False)

    gb.output(gb.ChainerSequenceExtend([seq1_v, seq2_v]), Seq(seq1 + seq2))

    gb.gen_test()
Esempio n. 8
0
def gen_sequence_range_test(test_name):
    gb = onnx_script.GraphBuilder(test_name)
    num_inputs = 0
    for args in [(4,), (-4,), (3, 8), (5, 2),
                 (1, 16, 3), (1, 17, 3), (5, -2, -1), (9, 15, -1)]:
        input_vs = []
        for arg in args:
            input_vs.append(gb.input('input_%d' % num_inputs, arg))
            num_inputs += 1
        output_v = gb.ChainerSequenceRange(input_vs)
        len_v = gb.ChainerSequenceSize([output_v])
        expected = list(range(*args))
        gb.output(len_v, len(expected))
        if expected:
            gb.output(output_v, Seq(expected))
    gb.gen_test()
Esempio n. 9
0
def gen_generic_getitem_test(test_name):
    gb = onnx_script.GraphBuilder(test_name)
    input = aranges(4, 5, 3)
    reduced = np.sum(input, 0)

    input_v = gb.input('input', input)
    reduced_v = gb.ReduceSum([input_v], axes=[0], keepdims=False)
    seq_v = gb.ChainerSequenceSeparate(inputs=[input_v])

    for i in range(-2, 4):
        index_v = gb.const([i])
        gb.output(gb.ChainerGenericGetItem([input_v, index_v]), input[i])
        gb.output(gb.ChainerGenericGetItem([reduced_v, index_v]), reduced[i])
        gb.output(gb.ChainerGenericGetItem([seq_v, index_v]), input[i])

    gb.gen_test()
Esempio n. 10
0
def gen_generic_len_test(test_name):
    gb = onnx_script.GraphBuilder(test_name)
    input = aranges(4, 2, 3)

    input_v = gb.input('input', input)
    len0_v = gb.ChainerGenericLen([input_v])
    reduced_v = gb.ReduceSum([input_v], axes=[0], keepdims=False)
    len1_v = gb.ChainerGenericLen([reduced_v])
    seq_v = gb.ChainerSequenceSeparate(inputs=[input_v])
    len_seq_v = gb.ChainerGenericLen([seq_v])

    gb.output(len0_v, input.shape[0])
    gb.output(len1_v, input.shape[1])
    gb.output(len_seq_v, input.shape[0])

    gb.gen_test()
Esempio n. 11
0
def gen_concat_backprop_test(test_name):
    gb = onnx_script.GraphBuilder(test_name)
    i = np.array([42], np.float32)
    j = np.array([99], np.float32)

    i_v = gb.param('i', i)
    j_v = gb.param('j', j)

    concat_v = gb.Concat([i_v, j_v], axis=0)
    m = np.array([2, 3], np.float32)
    r_v = gb.Mul([concat_v, gb.const(m)])
    r = np.concatenate([i, j]) * m

    gb.output(r_v, r)
    gb.gradient(i_v, np.array([2], np.float32))
    gb.gradient(j_v, np.array([3], np.float32))
    gb.gen_test()
Esempio n. 12
0
def gen_sequence_io_test(test_name):
    gb = onnx_script.GraphBuilder(test_name)
    input = aranges(3, 2, 4)
    input_seq = [[1, 2, 3, -42], [4, -42, -42, -42], [5, 6, -42, -42]]

    input_v = gb.input('input', input)
    input_seq_v = gb.input('input_seq', Seq(input_seq))

    split_v = gb.SplitToSequence([input_v], keepdims=False)
    stack_v = gb.ConcatFromSequence([input_seq_v], axis=0, new_axis=1)

    gb.output(gb.Identity([input_v]), input)
    gb.output(gb.Identity([input_seq_v]), Seq(input_seq))
    gb.output(split_v, Seq(list(map(np.squeeze, np.split(input, len(input))))))
    gb.output(stack_v, np.stack(input_seq))

    gb.gen_test()
Esempio n. 13
0
def gen_sequence_io_test(test_name):
    gb = onnx_script.GraphBuilder(test_name)
    input = aranges(3, 2, 4)
    input_seq = [[1, 2, 3, -42], [4, -42, -42, -42], [5, 6, -42, -42]]

    input_v = gb.input('input', input)
    input_seq_v = gb.input('input_seq', Seq(input_seq))

    split_v = gb.ChainerSequenceSeparate([input_v])
    stack_v = gb.ChainerSequenceStack([input_seq_v])

    gb.output(gb.Identity([input_v]), input)
    gb.output(gb.Identity([input_seq_v]), Seq(input_seq))
    gb.output(split_v, Seq(list(map(np.squeeze, np.split(input, len(input))))))
    gb.output(stack_v, np.stack(input_seq))

    gb.gen_test()
Esempio n. 14
0
def gen_generic_add_test(test_name):
    gb = onnx_script.GraphBuilder(test_name)
    input1 = aranges(3, 4)
    input2 = aranges(3, 1) * 2
    seq1 = [np.squeeze(i, 0) for i in np.split(input1, 3)]
    seq2 = [np.squeeze(i, 0) for i in np.split(input2, 3)]

    input1_v = gb.input('input1', input1)
    input2_v = gb.input('input2', input2)
    seq1_v = gb.ChainerSequenceSeparate([input1_v])
    seq2_v = gb.ChainerSequenceSeparate([input2_v])

    gb.output(gb.ChainerGenericAdd([input1_v, input2_v]), input1 + input2)
    gb.output(gb.ChainerGenericAdd([seq1_v, seq2_v]), Seq(seq1 + seq2))
    gb.output(gb.ChainerGenericAdd([input1_v, seq2_v]), input1 + input2)
    gb.output(gb.ChainerGenericAdd([seq1_v, input2_v]), input1 + input2)

    gb.gen_test()
Esempio n. 15
0
def gen_composites_loop(n):
    gb = onnx_script.GraphBuilder('gen_sieve')
    iter = gb.input('composites_iter', 0)
    cond = gb.input('composites_cond', True)
    # To workaround ONNX's restriction for Loop. The number of inputs
    # must be greater than 2.
    dummy = gb.input('composites_dummy', True)

    i = gb.Add([iter, gb.const(2)])
    is_greater = gb.Greater([i, n])
    mod = gb.Mul([gb.Div([i, n]), n])
    is_multiple = gb.Equal([i, mod])
    is_composite = gb.Mul([is_greater, is_multiple])

    gb.output(gb.const(True), True)
    gb.output(gb.Identity([dummy]), True)
    gb.output(is_composite, True)
    return gb.make_graph()
Esempio n. 16
0
def gen_generic_getslice_test(test_name):
    gb = onnx_script.GraphBuilder(test_name)
    input = aranges(4, 5, 3)
    reduced = np.sum(input, 0)

    input_v = gb.input('input', input)
    reduced_v = gb.ReduceSum([input_v], axes=[0], keepdims=False)
    seq_v = gb.SplitToSequence(inputs=[input_v], keepdims=False)

    def get_slice(input_v, s):
        ins = [input_v]
        if s.start is not None:
            v = gb.const([s.start])
            ins.append(v)
        if s.stop is not None:
            v = gb.const([s.stop])
            ins.append(v)
        if s.step is not None:
            v = gb.const([s.step])
            ins.append(v)
        return gb.ChainerGenericGetSlice(ins)

    def add_test(s):
        expected = input[s]
        gb.output(get_slice(input_v, s), expected)
        gb.output(get_slice(reduced_v, s), reduced[s])
        actual_v = get_slice(seq_v, s)
        if len(expected):
            gb.output(gb.ConcatFromSequence([actual_v], axis=0, new_axis=1),
                      expected)
        else:
            gb.output(gb.SequenceLength([actual_v]), 0)

    add_test(slice(None))
    for i in range(4):
        add_test(slice(i, None))

    for s, e in [(1, 2), (-2, 3), (0, -2), (999, 9999)]:
        add_test(slice(s, e))

    for s, e, t in [(1, 4, 2), (0, 100, -1), (0, 100, -2)]:
        add_test(slice(s, e, t))

    gb.gen_test()
Esempio n. 17
0
def gen_sieve_loop(initial_sieve_val):
    gb = onnx_script.GraphBuilder('gen_sieve')
    iter = gb.input('sieve_iter', 0)
    cond = gb.input('sieve_cond', True)
    sieve = gb.input('sieve', initial_sieve_val)

    n = gb.Add([iter, gb.const(2)])
    composites_loop = gen_composites_loop(n)
    _, composites_table = gb.Loop(
        [gb.const(len(initial_sieve_val)),
         gb.const(True),
         gb.const(True)],
        body=composites_loop,
        outputs=['dummy', 'composites_table'])
    sieve = gb.Add([sieve, composites_table])

    gb.output(gb.const(True), True)
    gb.output(sieve, initial_sieve_val)
    return gb.make_graph()
Esempio n. 18
0
def gen_type_coersion_test(test_name):
    # Probably, ONNX expects no type coersion happens and this test is
    # not valid ONNX, but we relax the restriction.
    gb = onnx_script.GraphBuilder(test_name)
    iv = 42
    fv = 2.3
    int_v = gb.const(iv)
    float_v = gb.const(fv)

    gb.output(gb.Add([int_v, float_v]), iv + fv)
    gb.output(gb.Add([float_v, int_v]), fv + iv)
    gb.output(gb.Sub([int_v, float_v]), iv - fv)
    gb.output(gb.Sub([float_v, int_v]), fv - iv)
    gb.output(gb.Mul([int_v, float_v]), iv * fv)
    gb.output(gb.Mul([float_v, int_v]), fv * iv)
    gb.output(gb.Div([int_v, float_v]), iv / fv)
    gb.output(gb.Div([float_v, int_v]), fv / iv)

    gb.gen_test()
Esempio n. 19
0
def gen_prime():
    max_val = 1200
    gb = onnx_script.GraphBuilder('gen_prime')

    num_prime = gb.input('num_prime', 100)

    initial_sieve_val = np.array([False] * max_val)

    sieve_loop = gen_sieve_loop(initial_sieve_val)
    sieve = gb.Loop(
        [gb.const(max_val),
         gb.const(True),
         gb.const(initial_sieve_val)],
        body=sieve_loop,
        outputs=['sieve'])

    gb.output(sieve, np.array(get_sieve_for_test(max_val)))

    gb.gen_test(validate=True)
def test_custom_op():
    gb = onnx_script.GraphBuilder('pytest_custom_op')
    a = np.array(13)
    b = np.array(4)
    c = np.array(10)
    a_v = gb.input('a', a)
    b_v = gb.input('b', b)
    c_v = gb.input('c', c)

    def custom_func(a, b, c):
        return a - b, a * b - c

    y, z = custom_func(a, b, c)
    y_v = 'y'
    z_v = 'z'

    gb.ChainerDoSomething([a_v, b_v, c_v],
                          outputs=[y_v, z_v],
                          function_name='CustomFunction')
    gb.output(y_v, y)
    gb.output(z_v, z)

    gb.gen_test()

    graph = chainer_compiler_core.load('out/pytest_custom_op/model.onnx')
    params = graph.params()
    input_names = graph.input_names()
    output_names = graph.output_names()
    assert len(input_names) == 3
    assert len(output_names) == 2

    xcvm = graph.compile()

    inputs = {}
    for n, v in [('a', a), ('b', b), ('c', c)]:
        inputs[n] = chainer_compiler_core.value(chainerx.array(v))

    outputs = xcvm.run(inputs, custom_funcs={'CustomFunction': custom_func})
    assert len(outputs) == 2

    chainerx.testing.assert_allclose(9, outputs['y'].array())
    chainerx.testing.assert_allclose(42, outputs['z'].array())
Esempio n. 21
0
def gen_primes_loop(initial_primes_val, sieve, range_tbl, num_primes):
    gb = onnx_script.GraphBuilder('primes_loop')
    iter = gb.input('prime_iter', 0)
    cond = gb.input('prime_cond', True)
    primes = gb.input('prime_primes', initial_primes_val)
    np = gb.input('np', 0)

    is_composite = gb.Gather([sieve, iter])
    then_graph = gen_primes_loop_then(initial_primes_val, primes, np)
    else_graph = gen_primes_loop_else(initial_primes_val, primes, np,
                                      iter, range_tbl)
    primes, np = gb.If([is_composite],
                       then_branch=then_graph,
                       else_branch=else_graph,
                       outputs=['next_primes', 'next_np'])

    cond = gb.Greater([to_float(gb, num_primes), to_float(gb, np)])
    gb.output(cond, True)
    gb.output(primes, initial_primes_val)
    gb.output(np, 0)
    return gb.make_graph()
Esempio n. 22
0
def gen_prime():
    max_val = 1500
    # ONNX runtime crashes when this is not a multiple of 8.
    max_num_primes = 104
    gb = onnx_script.GraphBuilder('gen_4949_prime')

    num_primes = gb.input('num_primes', max_num_primes)
    # ONNX runtime does not allow using inputs of enclosing graphs.
    num_primes = gb.Identity([num_primes])

    sieve_range_tbl = gen_range_tbl(gb, 'sieve', max_val)
    sieve_range_tbl = gb.Add([sieve_range_tbl, gb.const(2)])
    prime_range_tbl = gen_range_tbl(gb, 'prime', max_num_primes)

    initial_sieve_val = np.array([False] * max_val)

    sieve_loop = gen_sieve_loop(initial_sieve_val, sieve_range_tbl)
    sieve = gb.Loop([gb.const(max_val),
                     gb.const(True),
                     gb.const(initial_sieve_val)],
                    body=sieve_loop,
                    outputs=['sieve'])

    initial_primes_val = np.array([0] * max_num_primes)
    primes_loop = gen_primes_loop(initial_primes_val,
                                  sieve,
                                  prime_range_tbl,
                                  num_primes)
    primes, _ = gb.Loop([gb.const(max_val),
                         gb.const(True),
                         gb.const(initial_primes_val),
                         gb.const(0)],
                        body=primes_loop,
                        outputs=['primes', 'num_primes_out'])

    primes_val = get_4949_primes_for_test(max_num_primes)
    gb.output(primes, primes_val)

    gb.gen_test(validate=True)
Esempio n. 23
0
def gen_maxpool_cover_all_test(test_name):
    gb = onnx_script.GraphBuilder(test_name)

    input = np.random.random((1, 3, 7, 7))
    input_v = gb.input('input', input)

    # Forget shape.
    squeezed_v = gb.Squeeze([input_v])
    dynamic_v = gb.Unsqueeze([squeezed_v], axes=[0])

    gb.output(
        gb.MaxPool([input_v],
                   kernel_shape=[3, 3],
                   strides=[2, 2],
                   outputs=['not_cover_all']),
        F.max_pooling_2d(input, ksize=3, stride=2, cover_all=False))
    gb.output(
        gb.MaxPool([input_v],
                   kernel_shape=[3, 3],
                   strides=[2, 2],
                   ceil_mode=1,
                   outputs=['cover_all']),
        F.max_pooling_2d(input, ksize=3, stride=2, cover_all=True))
    gb.output(
        gb.MaxPool([dynamic_v],
                   kernel_shape=[3, 3],
                   strides=[2, 2],
                   outputs=['not_cover_all_dynamic']),
        F.max_pooling_2d(input, ksize=3, stride=2, cover_all=False))
    gb.output(
        gb.MaxPool([dynamic_v],
                   kernel_shape=[3, 3],
                   strides=[2, 2],
                   ceil_mode=1,
                   outputs=['cover_all_dynamic']),
        F.max_pooling_2d(input, ksize=3, stride=2, cover_all=True))

    gb.gen_test()
Esempio n. 24
0
def gen_sequence_split_test(test_name):
    gb = onnx_script.GraphBuilder(test_name)
    inputs = np.array([[1, 2, 3, -42], [4, -42, -42, -42], [5, 6, -42, -42]])
    lengths = np.array([3, 1, 2])

    inputs_v = gb.input('input', inputs)
    lengths_v = gb.input('lengths', lengths)

    seq_v = gb.SplitToSequence(inputs=[inputs_v],
                               outputs=['seq'],
                               keepdims=False)
    lengths_seq_v = gb.SplitToSequence(inputs=[lengths_v],
                                       outputs=['lengths_seq'],
                                       keepdims=False)
    unpadded_v = gb.ChainerSequenceUnpad(inputs=[inputs_v, lengths_seq_v],
                                         outputs=['unpadded'])
    seq_a1_v = gb.SplitToSequence(inputs=[inputs_v],
                                  outputs=['seq_a1'],
                                  axis=1,
                                  keepdims=False)

    for i in range(4):
        index_v = gb.const([i], name='index_%d' % i)
        if i < 3:
            gb.output(
                gb.SequenceAt(inputs=[seq_v, index_v],
                              outputs=['split_result_%d' % i]), inputs[i])
            gb.output(
                gb.SequenceAt(inputs=[unpadded_v, index_v],
                              outputs=['unpad_result_%d' % i]),
                inputs[i][:lengths[i]])
        gb.output(
            gb.SequenceAt(inputs=[seq_a1_v, index_v],
                          outputs=['split_a1_result_%d' % i]), inputs[:, i])

    gb.gen_test()
def gen_sequence_pop_test(test_name):
    gb = onnx_script.GraphBuilder(test_name)
    inputs = np.array([10, 3, 4, 7, 2, 5])

    inputs_v = gb.input('input', inputs)

    seq_v = gb.ChainerSequenceSeparate(inputs=[inputs_v])
    pop_count = 3
    for i in range(pop_count):
        seq_v, pop_v = gb.ChainerSequencePop(
            inputs=[seq_v], outputs=['seq_%d' % i, 'pop_%d' % i])
        gb.output(pop_v, inputs[-1 - i])

    # This `seq_v` is used twice, so not-optimized pass will be tested.
    len1_v = gb.ChainerSequenceSize(inputs=[seq_v])
    seq_v, _ = gb.ChainerSequencePop(
        inputs=[seq_v],
        outputs=['seq_final', 'pop_final'],
    )
    len2_v = gb.ChainerSequenceSize(inputs=[seq_v])
    gb.output(gb.Add(inputs=[len1_v, len2_v]),
              (len(inputs) - pop_count) * 2 - 1)

    gb.gen_test()
Esempio n. 26
0
def gen_primes_loop_then(initial_primes_val, primes, np):
    gb = onnx_script.GraphBuilder('primes_loop_then')
    gb.output(gb.Identity([primes]), initial_primes_val)
    gb.output(gb.Identity([np]), 0)
    return gb.make_graph()
Esempio n. 27
0
def gen_const_int_test(test_name):
    gb = onnx_script.GraphBuilder(test_name)
    c = np.array(list(range(20)))
    c_v = gb.const(c)
    gb.output(gb.Identity([c_v]), c)
    gb.gen_test()
Esempio n. 28
0
def gen_const_prop_use_twice_test(test_name):
    gb = onnx_script.GraphBuilder(test_name)
    c = np.array(list(range(20)))
    c_v = gb.const(c)
    gb.output(gb.Add([c_v, c_v]), c * 2)
    gb.gen_test()
Esempio n. 29
0
 def fn(test_name):
     gb = onnx_script.GraphBuilder(test_name)
     i = np.array([42, -24], dtype=dtype)
     i_v = gb.input('input', i)
     gb.output(gb.Abs([i_v]), np.abs(i))
     gb.gen_test()
Esempio n. 30
0
def gen_sequence_constants_test(test_name):
    gb = onnx_script.GraphBuilder(test_name)
    inputs = [4, 2, 3]
    seq_v = gb.const_seq(inputs)
    gb.output(seq_v, Seq(inputs))
    gb.gen_test()